
HAL Id: hal-00992634
https://hal.inria.fr/hal-00992634

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved algorithm for computing separating linear
forms for bivariate systems

Yacine Bouzidi, Sylvain Lazard, Guillaume Moroz, Marc Pouget, Fabrice
Rouillier

To cite this version:
Yacine Bouzidi, Sylvain Lazard, Guillaume Moroz, Marc Pouget, Fabrice Rouillier. Improved al-
gorithm for computing separating linear forms for bivariate systems. ISSAC - 39th International
Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. �hal-00992634�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49636728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00992634
https://hal.archives-ouvertes.fr

Improved algorithm for computing separating linear forms
for bivariate systems

Yacine Bouzidi
INRIA Nancy Grand Est
LORIA, Nancy, France

Yacine.Bouzidi@inria.fr

Sylvain Lazard
INRIA Nancy Grand Est
LORIA, Nancy, France

Sylvain.Lazard@inria.fr

Guillaume Moroz
INRIA Nancy Grand Est
LORIA, Nancy, France

Guillaume.Moroz@inria.fr

Marc Pouget
INRIA Nancy Grand Est
LORIA, Nancy, France

Marc.Pouget@inria.fr

Fabrice Rouillier
INRIA Paris-Rocquencourt

IMJ, Paris, France
Fabrice.Rouillier@inria.fr

ABSTRACT

We address the problem of computing a linear separating
form of a system of two bivariate polynomials with inte-
ger coefficients, that is a linear combination of the variables
that takes different values when evaluated at the distinct so-
lutions of the system. The computation of such linear forms
is at the core of most algorithms that solve algebraic sys-
tems by computing rational parameterizations of the solu-
tions and this is the bottleneck of these algorithms in terms
of worst-case bit complexity. We present for this problem

a new algorithm of worst-case bit complexity ÕB(d7 + d6τ)
where d and τ denote respectively the maximum degree and

bitsize of the input (and where Õ refers to the complexity
where polylogarithmic factors are omitted and OB refers to
the bit complexity). This algorithm simplifies and decreases
by a factor d the worst-case bit complexity presented for this
problem by Bouzidi et al. [5]. This algorithm also yields,
for this problem, a probabilistic Las-Vegas algorithm of ex-

pected bit complexity ÕB(d5 + d4τ).

1. INTRODUCTION
A classical approach for solving a system of polynomials

with a finite number of solutions is to compute a rational
parameterization of its solutions.

A rational parameterization is a representation of the (com-
plex) solutions by a set of univariate polynomials and associ-
ated rational one-to-one mappings that send the roots of the
univariate polynomials to the solutions of the system. Such
representations enable to reduce computations on the sys-
tem to computations with univariate polynomials and thus
ease, for instance, the isolation of the solutions or the eval-
uation of other polynomials at the solutions.

At the core of the algorithms that compute such paramete-
rizations (see for example [1, 3, 6, 8, 9, 14] and references

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’14 July 23–25, 2014, Kobe, Japan.
Copyright 2014 ACM 978-1-4503-2501-1/14/07 ...$15.00.

therein), is the computation of a so-called linear separat-
ing form for the solutions, that is a linear combination of
the coordinates that takes different values when evaluated
at different solutions of the system. Since a random linear
form is separating with probability one, probabilist Monte-
Carlo algorithms can overlook this issue. However, when
it comes to deterministically computing a linear separating
form, or even to check that an arbitrary chosen form is sep-
arating, this, surprisingly, turns out to be the bottleneck in
the computation of rational parameterizations, in particular
for bivariate systems as discussed below. This explains why,
among the many algorithms that compute rational parame-
terizations, seldom search deterministically for a separating
linear form.

Considering systems of two bivariate polynomials of to-
tal degree bounded by d with integer coefficients of bitsize
bounded by τ , one approach for computing a separating lin-
ear form together with a rational parameterization of the
solutions has been presented by Gonzalez-Vega and El Ka-
houi [9] and its bit complexity analyzed in [6]. The analysis

of this approach shows a bit complexity in ÕB(d10 + d9τ)
for computing a separating form and a bit complexity in

ÕB(d7 + d6τ) for computing the corresponding rational pa-
rameterization. The computation of a separating linear form
was thus the bottleneck in the computation of the rational
parameterization. This is still true even when considering
the additional phase of computing isolating boxes of the so-
lutions (from the rational parameterization), which state-of-

the-art complexity is in ÕB(d8 + d7τ) [5, Prop. 35].
More recently, Bouzidi et al. [5] presented a new algorithm

for computing a separating linear form that reduces the pre-

vious bit complexity to ÕB(d8 + d7τ). The same authors
also showed that, given such a separating linear form, an al-
ternative rational parameterization called RUR [14] can be

computed using ÕB(d7 + d6τ) bit operations [5, Thm. 22]
and that isolating boxes of the solutions can be computed

from this RUR in ÕB(d6 + d5τ) [4, Thm. 6.1.2]. Conse-
quently, despite the complexity improvement brought to the
separating form computation, this step was still the bottle-
neck in the computation of a rational parameterization of
a bivariate system and more generally in the whole solving
process, i.e. including the numerical isolation phase.

In addition, although the problem of searching determin-
istically for a separating form is interesting from the theoret-

ical point of view, in practice, a preferable approach would
be to design a Las-Vegas algorithm that chooses randomly
a linear form and then checks that the latter is separating.
However up to now, the problem of checking that an arbi-
trary linear form is separating has not been shown to be
easier (at least in terms of asymptotic bit complexity) than
the deterministic computation of a separating linear form.

Main results. Our main contribution is a new determinis-
tic algorithm of worst-case bit complexity ÕB(d7 + d6τ) for
computing a separating linear form of a zero-dimensional
system of two bivariate polynomials of total degree at most
d and integer coefficients of bitsize at most τ (Theorem 13).

This algorithm is simpler than the one presented by Bouzidi
et al. [5] and it decreases by a factor d its complexity. This
brings the complexity of solving bivariate systems by com-

puting a rational parameterization to ÕB(d7 + d6τ).
A second contribution is a Las-Vegas algorithm for com-

puting a separating linear form with an expected bit com-

plexity in ÕB(d5+d4τ) (Theorem 19). This Las-Vegas algo-
rithm stems naturally from the previous algorithm replacing
the deterministic version of the univariate gcd computation
by a Las-Vegas one. Recall that, in Las-Vegas algorithms,
the result is always correct and only the running time is
probabilistic.

2. OVERVIEW
Our algorithm is based on the one presented by Bouzidi

et al. [5] on the same problem. For clarity, we briefly recall
the essence of that algorithm. It first computes the number
of distinct (complex) solutions of the input system {P,Q}
as well as a prime number µ such that the input system con-
sidered modulo µ has the same number of distinct solutions.

This first step has worst-case bit complexity ÕB(d8 + d7τ).
All polynomials and computations are thereafter considered
modulo µ. The algorithm then considers iteratively a candi-
date separating element x+ay with an integer a increment-
ing from 0. The input polynomials are considered through
a shearing of the coordinate system (x, y) ❀ (t−ay, y), and
the degree of the squarefree part of their resultant (with
respect to y) is computed; in other words, the algorithm
computes the number of distinct solutions after projection
along the direction of the line x + ay = 0. The algorithm
stops when a value a is found such that the number of dis-
tinct projected solutions equals that of the system. This
step trivially computes a separating element x + ay of the
input system considered modulo µ but the proof that this
form is also separating of the input system is not straight-
forward. This second step of the algorithm is presented in
[5] with the same worst-case bit complexity as the first step
but we show in Section 4 that it is straightforward to slightly

modify it so that it has complexity ÕB(d7 + d3τ).
We present in this paper an improvement of the above al-

gorithm using the following two ingredients. First, we show
in Section 5 that computing a separating linear form for a
system {P,Q} is essentially equivalent (in terms of asymp-
totic bit complexity) to computing a separating linear form
for the critical points of a curve. Second, we present in
Section 6 a rather simple algorithm of worst-case bit com-

plexity ÕB(d7 + d6τ) for computing the number of critical
points of a curve, as well as a prime number µ such that
the curve modulo µ has the same number of critical points.
In essence, given a curve of equation H , this algorithm first

computes a subresultant-based triangular decomposition [9]
of the system {H, ∂H

∂y
} and the sum of the degrees of the

resulting systems; the same computation is done for the sys-
tem {H, (∂H

∂y
)2} and we show that the difference of these two

sums of degrees is equal to the number of critical points of
the curve H . We then perform the same computation mod-
ulo some prime numbers µ until the same number of critical
points is obtained. Finally, given this number of solutions
and a corresponding prime µ, we obtain a separating linear
form for the input system by applying the variant presented
in Section 4 of the algorithm of [5] for computing a separat-
ing linear form for the critical points of the curve.

Furthermore, we show in Section 8 how this algorithm
naturally extends to a Las-Vegas algorithm of expected bit

complexity ÕB(d5 + d4τ).

3. NOTATION AND PRELIMINARIES
We introduce notation and recall some classical material.

Most of the material in this section is taken literally from [5].
The bitsize of an integer p is the number of bits needed to

represent it, that is ⌊log p⌋+1 (log refers to the logarithm in
base 2). The bitsize of a polynomial with integer coefficients
is the maximum bitsize of its coefficients. As mentioned
earlier, OB refers to the bit complexity and Õ and ÕB refer
to complexities where polylogarithmic factors are omitted,
see [15, Def. 25.8] for details.

In the following, µ is a prime number and we denote by Zµ

the quotient Z/µZ. We denote by φµ: Z → Zµ the reduction
modulo µ, and extend this definition to the reduction of
polynomials with integer coefficients. We denote by D a
unique factorization domain, typically Z[x, y], Z[x], Zµ[x], Z
or Zµ. We also denote by F a field, typically Q, C, or Zµ

and by FD the fraction field of D.
For any polynomial P ∈ D[x], let Lcx(P) denote its lead-

ing coefficient with respect to the variable x and dx(P)
its degree with respect to x. For any curve defined by
H(x, y) ∈ D[x, y], we call the critical points of H with re-
spect to x or more shortly the critical point of H , the points
that are solutions of the system {H, ∂H

∂y
}. In this paper, the

solutions of a system of polynomial are always considered in
the algebraic closure of FD.

Subresultant sequences. We first recall the concept of
polynomial determinant of a matrix which is used in the defi-
nition of subresultants. LetM be an m×n matrix with m 6

n andMi be the square submatrix ofM consisting of the first
m− 1 columns and the i-th column of M , for i = m, . . . , n.
The polynomial determinant of M is the polynomial defined
as det(Mm)yn−m + det(Mm+1)y

n−(m+1) + · · ·+ det(Mn).
Let P =

∑p

i=0 aiy
i andQ =

∑q

i=0 biy
i be two polynomials

in D[y] and assume without loss of generality that p > q.
The Sylvester matrix of P and Q, Sylv(P,Q) is the (p+ q)-
square matrix whose rows are yq−1P, . . . , P, yp−1Q, . . . , Q
considered as vectors in the basis yp+q−1, . . . , y, 1.

Definition 1. ([7, §3]). For i = 0, . . . ,min(q, p− 1), let
Sylvi(P,Q) be the (p+ q − 2i)× (p+ q − i) matrix obtained
from Sylv(P,Q) by deleting the i last rows of the coefficients
of P , the i last rows of the coefficients of Q, and the i last
columns.

For i = 0, . . . ,min(q, p− 1), the i-th polynomial subresul-
tant of P and Q, denoted by Sresy,i(P,Q) is the polynomial
determinant of Sylvi(P,Q). When q = p, the q-th polyno-
mial subresultant of P and Q is b−1

q Q.

Sresy,i(P,Q) has degree at most i in y, and the coefficient
of its monomial of degree i in y, denoted by sresy,i(P,Q), is
called the i-th principal subresultant coefficient. Note that
Sresy,0(P,Q) = sresy,0(P,Q) is the resultant of P and Q
with respect to y, which we also denote by Resy(P,Q).

We state below a fundamental property of subresultants
which is instrumental in the triangular decomposition algo-
rithm used in Section 6.1. For clarity, we state this property
for bivariate polynomials P =

∑p

i=0 aiy
i and Q =

∑q

i=0 biy
i

in D[x, y], with p > q. Note that this property is often stated
with a stronger assumption that is that none of the leading
terms ap(α) and bq(α) vanishes. This property is a direct
consequence of the specialization property of subresultants
and of the gap structure theorem; see for instance [7, Lem-
mas 2.3, 3.1 and Cor. 5.1].

Lemma 2. For any α such that ap(α) and bq(α) do not
both vanish, the first Sresy,k(P,Q)(α, y) (for k increasing)
that does not identically vanish is of degree k and it is the
gcd of P (α, y) and Q(α, y) (up to a nonzero constant in the
fraction field of D(α)).

Complexity. We recall complexity results, using fast al-
gorithms, on subresultants and gcd computations.

Lemma 3 ([2, Prop. 8.46] [13, §8] [15, Cor. 11.15]).
Let P and Q be in Z[x1, . . . , xn][y] (n fixed) with coefficients
of bitsize at most τ such that their degrees in y are bounded
by dy and their degrees in the other variables are bounded
by d.

• The coefficients of Sresy,i(P,Q) have bitsize in Õ(dyτ).
• The degree in xj of Sresy,i(P,Q) is at most 2d(dy− i).
• Any subresultant Sresy,i(P,Q) as well as the sequence

of principal subresultant coefficients sresy,i(P,Q) can

be computed in Õ(dndn+1
y) arithmetic operations, and

ÕB(dndn+2
y τ) bit operations.

In the sequel, we often consider the gcd of two univariate
polynomials P and Q and the gcd-free part of P with respect
to Q, that is, the divisor D of P such that P = gcd(P,Q)D.
Note that, when Q = P ′, the latter is the squarefree part
of P , provided that the characteristic of the coefficient ring
is zero or sufficiently large (e.g., larger than the degree of P).

Lemma 4 ([2, Rem. 10.19]). Let P and Q in F[x] of
degree at most d. gcd(P,Q) or the gcd-free part of P with

respect to Q can be computed with Õ(d) operations in F.

4. SEPARATING LINEAR FORM
As mentioned in the overview, our approach for computing

a separating form of a zero-dimensional system {P,Q} is
similar to the one in [5] once we know the number of distinct
solutions and a so-called lucky prime µ. Such a lucky prime
is, roughly speaking, a prime such that {P,Q} has the same
number of distinct solutions as its image modulo µ. Before
presenting Algorithm 1, which computes a separating linear
form in this context, we introduce the following notation and
formally define lucky primes.

Given the two input polynomials P and Q, we consider
the “generic” change of variables x = t − sy, and define the
“sheared” polynomials P (t − sy, y), Q(t − sy, y), and their
resultant with respect to y,

R(t, s) = Resy(P (t− sy, y), Q(t− sy, y)).

Algorithm 1 Separating form for {P,Q}

Input: P,Q in Z[x, y] of total degree at most d and defin-
ing a zero-dimensional system, its number N of dis-
tinct (complex) solutions and a lucky prime µ of bitsize
O(log d)

Output: A separating linear form x + ay for {P,Q}, with
a < 2d4

1: Compute P (t− sy, y) and Q(t− sy, y)
2: Compute Υµ(s) = φµ(LP (s)) φµ(LQ(s))
3: Compute Pµ = φµ(P) and Qµ = φµ(Q)
4: a := 0
5: repeat

6: Compute Pµ(t− ay, y), Qµ(t− ay, y) and their resul-
tant Rµ,a(t)

7: Compute the degree Na of the squarefree part of
Rµ,a(t)

8: a := a+ 1
9: until Υµ(a) 6= 02and Na = N
10: return The linear form x+ ay

We introduce the following notation for the leading coeffi-
cients of these polynomials;

LP (s) = Lcy(P (t− sy, y)) LQ(s) = Lcy(Q(t− sy, y)).

Note that these polynomials do not depend on t.

Definition 5 ([5, Def. 8]). A prime number µ is said
to be lucky for a zero-dimensional system {P,Q} if {P,Q}
and {φµ(P), φµ(Q)} have the same number of distinct solu-
tions and if µ > 2d4 and

φµ(LP (s)) φµ(LQ(s)) 6≡ 0.

Note that we consider µ in Ω(d4) in Definition 5 because,
in Algorithm 1, we want to ensure that there exists, for the
system {Pµ, Qµ} (resp. {P,Q}), a separating form X + aY
with a ∈ Zµ (resp. 0 6 a < µ in Z). The constant 2 in the
bound 2d4 is an overestimate, which simplifies some proofs
in [5].

Recall that we consider we know the number of distinct
(complex) solutions of system {P,Q} and a lucky prime µ
for that system. Algorithm 4 of [5] computes a separating
linear form for {P,Q} by considering iteratively linear forms
x + ay, where a is an integer incrementing from 0 and by
computing the degree of the squarefree part of the reduction
modulo µ of R(t, a) until this degree is equal to the (known)
number of distinct solutions of the system and such that
φµ(LP (a)) φµ(LQ(a)) 6= 0.

Doing so, the algorithm computes a separating form for
the system modulo µ, which, under the hypothesis of the
luckiness of µ, has been proven to be also separating for the
system {P,Q}. In Algorithm 1, we follow the same approach
except that we perform the computations in a slightly differ-

ent way1 so that the complexity is in ÕB(d7 + d3τ) (instead

of ÕB(d8 + d7τ) in [5]).

1Namely, in Algorithm 1, we first compute the reduction mod-
ulo µ of the input polynomials P and Q (Line 3) and then, for
every value of a, the resultant of their sheared images through
the change of variables (x, y) ❀ (t − ay, y) (Line 6), while in [5,
Algorithm 4], we first compute the reduction modulo µ of the
resultant R(t, s) and then, for every value of a, its specialization
at s = a.
2Υµ(s) ∈ Zµ[s] and we consider Υµ(a) in Zµ.

Proposition 6. Algorithm 1 computes a separating lin-
ear form x+ay for {P,Q} with a < 2d4 with a bit complexity

ÕB(d7 + d3τ).

Proof. We first prove the correctness of Algorithm 1
which essentially follows from [5, Algorithm 4]. The lat-
ter algorithm computes the degree of the squarefree part of
φµ(R)(t, a) until the condition of Line 9 is satisfied, and it
returns the corresponding form x + ay. It is thus sufficient
to argue that φµ(R)(t, a) = Rµ,a(t).

Denoting by ψa the morphism that evaluates a polynomial
at s = a, and Resy the resultant with respect to y, we have

φµ(R)(t, a) = ψa ◦ φµ(Resy(P (t− sy, y),Q(t− sy, y)) =

Resy(ψa ◦ φµ(P (t− sy, y)), ψa ◦ φµ(Q(t− sy, y)))

by the specialization property of the resultants since the
leading coefficients of P and Q (with respect to y) do not
vanish through ψa ◦φµ when the condition Υµ(a) 6= 0 is sat-
isfied in Line 9. Furthermore, φµ(P (t− sy, y)) = φµ(P)(t−
sy, y) and similarly for Q, which implies that the right-hand
side of the equation is equal to Rµ,a(t). This concludes the
proof of correctness. Note that this correctness includes the
property that the output integer a is less than 2d4.

We now prove the complexity of our algorithm. It is
straightforward that, in Line 1, the sheared polynomials
P (t − sy, y) and Q(t − sy, y) can be computed in bit com-

plexity ÕB(d4 + d3τ) and that their bitsizes are in Õ(d+ τ)
(see e.g. [5, Lemma 7]). In Lines 2 and 3, the polynomials,
in one or two variables, have degree at most d and bitsize

Õ(d + τ). The reduction of each of their O(d2) coefficients
modulo µ can be done in a bit complexity that is softly linear
in the maximum bitsizes [15, Thm. 9.8], that is in a total bit

complexity of ÕB(d3+ d2τ). In Line 6, computing the poly-
nomials Pµ(t − ay, y) and Qµ(t − ay, y) is performed using

ÕB(d3) bit operations (see e.g. the proof [5, Lemma 7]) and
similarly for their resultant Rµ,a(t) according to Lemma 3.
In Line 7, the squarefree part of Rµ,a(t) can also be com-

puted in ÕB(d3) bit operations by Lemma 4, since the resul-
tant has degree O(d2). We have shown that the loop stops

with a < 2d4, thus the whole loop has complexity ÕB(d7),
which concludes the proof.

5. FROM A SYSTEM TO A CURVE
In this section, we consider two polynomials P,Q ∈ Z[x, y]

of total degree at most d and maximum bitsize τ and show
that it is essentially equivalent from an asymptotic worst-
case bit complexity point of view to compute a separating
linear form for a system {P,Q} and to compute a separating
linear form for the critical points of a curve. For simplicity,
we refer to the latter as a separating linear form for a curve.

By definition, the critical points of a curve of equation H
are the solutions of the system {H, ∂H

∂y
}, thus computing a

separating linear form for a curve amounts by definition to
computing a separating linear form for a system of two equa-
tions. Conversely, a separating linear form for the curve PQ
is also separating for the system {P,Q} since any solution
of {P,Q} is also solution of PQ and of ∂PQ

∂y
= P ∂Q

∂y
+ ∂P

∂y
Q.

However, it may happen that the curve PQ admits no
separating linear form even if {P,Q} admits one. Indeed,
{P,Q} can be zero-dimensional while PQ is not squarefree
(and such that the infinitely many critical points cannot be
separated by a linear form). Nevertheless, if P and Q are

coprime and squarefree, then PQ is squarefree and thus it
has finitely many singular points. Still the curve H = PQ
may contain vertical lines, and thus infinitely many critical
points, but this issue can easily be handled by shearing the
coordinate system.

Lemma 7. Given a zero-dimensional system of two poly-
nomials P and Q in Z[x, y] of maximum degree d and maxi-

mum bitsize τ , we can compute in complexity ÕB(d6 + d5τ)
a shearing of the coordinate system (x, y) ❀ (t − αy, y) (α
integer in O(d)) and a polynomial H in Z[t, y] of degree at

most 2d and bitsize Õ(d + τ) so that the system {H, ∂H
∂y

}
is zero-dimensional and any separating linear form for that
system is also separating for {P,Q} after being sheared back.

Proof. As discussed above, we first compute the square-
free part of each polynomial P and Q, which can be done

in complexity ÕB(d6 + d5τ) [11, Lemma 13]. Let H(x, y)
denote their product, which is squarefree since P and Q are
coprime. We then consider a generic shearing of the coor-
dinate system (x, y) ❀ (t − sy, y) in order to find a value

s = α so that the sheared curve Ĥ(t, y) = H(t− αy, y) has
no vertical asymptote and thus no vertical line. The lead-
ing coefficient of H(t − sy, y) (seen as a polynomial in y)
is a polynomial of degree at most d in Z[s] (t does not ap-
pear in the leading term); furthermore an expanded form of

H(t − sy, y) can be computed in complexity ÕB(d4 + d3τ)

and the coefficients have bitsize Õ(d+τ) (see e.g. [5, Lemma
7]). Finding an integer value s = α where the leading co-
efficient does not vanish can thus be done in d evaluations
of complexity ÕB(d(d + τ)) each [5, Lemma 6] and such α
can be found in [0, d]. Then, computing H(t − αy, y) can
be done by evaluating each of the coefficients of H(t− sy, y)
at s = α, which can again be done with O(d) evaluations of

complexity ÕB(d(d+τ)) each. Thus, we can shear the curve

in complexity ÕB(d4 + d3τ) so that the leading coefficient

of the resulting polynomial Ĥ(t, y) = H(t − αy, y) (seen as
a polynomial in y) is a constant.

Modulo the shearing, all solutions of {P,Q} are solutions

of the system {Ĥ, ∂Ĥ
∂y

}. Indeed, a solution (x0, y0) of {P,Q}

is such that (t0 = x0 + αy0, y0) is solution of {P̂ , Q̂} with

P̂ (t, y) equal to the squarefree part of P (t−αy, y) and sim-

ilarly for Q̂; thus (t0, y0) is solution of Ĥ = P̂ Q̂ and of
∂Ĥ
∂y

= P̂ ∂Q̂

∂y
+ ∂P̂

∂y
Q̂. Thus, any separating linear form for

{Ĥ, ∂Ĥ
∂y

} is also separating for {P,Q} modulo the shearing.

Finally, {Ĥ, ∂Ĥ
∂y

} is zero-dimensional since, by construction,

Ĥ is squarefree and contains no vertical line. Renaming Ĥ
by H , this concludes the proof.

6. THE CASE OF A CURVE
In this section, we consider an arbitrary curve defined by

H ∈ Z[x, y] of degree d and bitsize τ , with a constant leading
coefficient in y, and such that H has a finite number of
critical points, i.e., the system {H, ∂H

∂y
} is zero-dimensional.

We show in the following that (i) computing the number of
the critical points of H and (ii) computing a lucky prime for
{H, ∂H

∂y
} (see Definition 5) can be done in a bit complexity

in ÕB(d7 + d6τ). Combined with the results of the previous
sections, this will yield that we can compute a separating

Algorithm 2 Triangular decomposition [9, 10]

Input: P,Q in F[x, y] coprime such that Lcy(P) and Lcy(Q)
are coprime, dy(Q) 6 dy(P)

Output: Triangular decomp. {(Ai(x),Bi(x, y))}i∈I such
that the set of solutions of {P,Q}) is the disjoint union
of the sets of solutions of {Ai(x),Bi(x, y)}i∈I

1: Compute the subresultant sequence of P and Q with
respect to y: Bi = Sresy,i(P,Q)

2: G0 = squarefree part(Resy(P,Q)) and T = ∅
3: for i = 1 to dy(Q) do
4: Gi = gcd(Gi−1, sresy,i(P,Q))
5: Ai = Gi−1/Gi

6: if dx(Ai) > 0, add (Ai, Bi) to T
7: return T = {(Ai(x),Bi(x, y))}i∈I

linear form for an arbitrary zero-dimensional system {P,Q}
in the same complexity.

6.1 Number of critical points
Our algorithm for computing the number of (complex)

critical points of a curve is based on a classical algorithm
for computing a triangular decomposition of a system of
two bivariate polynomials. We first recall this algorithm
and then show how it can be slightly modified and used to
compute the number of critical points of a curve.

Triangular decomposition. Let P and Q be two poly-
nomials in F[x, y] of degree at most d. A decomposition of
the system {P,Q} using the subresultant sequence appears
in the theory of triangular sets [10] and for the computation
of the topology of curves [9].

The idea is based on Lemma 2 which states that, after
specialization at x = α, the first (with respect to increas-
ing i) nonzero subresultant Sresy,i(P,Q)(α, y) is of degree
i and is equal to the gcd of P (α, y) and Q(α, y). This in-
duces a decomposition into triangular subsystems ({Ai(x),
Sresy,i(P,Q)(x, y)}) where a solution α of Ai(x) = 0 is
such that the system {P (α, y),Q(α, y)} admits exactly i
roots (counted with multiplicity), which are exactly those
of Sresy,i(P,Q)(α, y). Furthermore, these triangular sub-
systems are regular chains, i.e., the leading coefficient of the
bivariate polynomial (seen in y) is coprime with the uni-
variate polynomial. For clarity and self-containedness, we
recall this decomposition in Algorithm 2. Note that this al-

gorithm performs Õ(d4) arithmetic operations in F (see e.g.
[5, Lemma 15]). We also state the following properties which
directly follow from the algorithm and Lemma 2.

Lemma 8 ([9, 10]). Algorithm 2 computes a triangular
decomposition {(Ai(x), Bi(x, y))}i∈I such that

• the set of solutions of {P,Q} is the disjoint union of
the sets of solutions of the {Ai(x),Bi(x, y)}, i ∈ I

•
∏

i∈I
Ai is squarefree,

• for any root α of Ai, Bi(α, y) is of degree i and is equal
to gcd(P (α, y), Q(α, y)).

Degree of the triangular decomposition. We call the
degree of the triangular decomposition of {P,Q}, the sum
of the degrees of the triangular systems computed by Algo-
rithm 2, that is,

∑

i∈I

degx(Ai(x)) degy(Bi(x, y))

Algorithm 3 Degree of the triangular decomposition

Input: P,Q in F[x, y] coprime such that Lcy(P) and Lcy(Q)
are coprime, dy(Q) 6 dy(P)

Output: The degree of the triangular decomposition of
{P,Q}

1: Compute the principal subresultant sequence of P and
Q with respect to y: sresy,i(P,Q)

2: G0 = squarefree part(Resy(P,Q))
3: for i = 1 to dy(Q) do
4: Gi = gcd(Gi−1, sresy,i(P,Q))
5: return

∑
i∈I

(deg(Gi−1)− deg(Gi)) i

where degx refers to the degree of the polynomial with re-
spect to x and similarly for y. As we will see below, we only
need the degree of the triangular decomposition of some sys-
tems for computing the number of critical points of H .

We present in Algorithm 3 a slight variation of the tri-
angular decomposition algorithm in which we only compute
the degree of the decomposition. Instead of computing the
subresultant sequence Sresy,i(P,Q) of P and Q as in Algo-
rithm 2, we only compute the sequence of principal subre-
sultant coefficients of P and Q (that is, the sequence of co-
efficients of the monomials of degree i in y in Sresy,i(P,Q)),
which is sufficient for computing the degree of the decom-
position. As we will see, this decreases by a factor d the
arithmetic complexity in F of the algorithm, which is criti-
cal for our global algorithm.3

Lemma 9. Algorithm 3 computes the degree of the trian-
gular decomposition of {P,Q}. If P,Q ∈ F[x, y] have degree

at most d, the algorithm performs Õ(d3) arithmetic opera-
tions in F. If P,Q ∈ Z[x, y] (⊂ Q[x, y]) have degree at most

d and bitsize at most τ , the algorithm performs ÕB(d7+d6τ)
bit operations in Z.

Proof. The correctness of Algorithm 3 directly follows
from Lemma 8. Concerning the complexity, the resultant
and the sequence of the principal subresultant coefficients of

P and Q can be computed in Õ(d3) arithmetic operations,
and each of these principal subresultants (including the re-
sultant) has degree in O(d2), by Lemma 3 (note that this
lemma is stated for the coefficient ring Z, but the arithmetic
complexity is the same for any field F). The algorithm per-
forms at most d gcd computations between these polynomi-
als. The arithmetic complexity of one such gcd computation

is softly linear in their degrees, that is Õ(d2) (Lemma 4).

Hence the complexity of computing all the gcds is in Õ(d3).
The bit complexity over Z Algorithm 3 is bounded by that

of Algorithm 2 which is in ÕB(d7 + d6τ) according to the
proof of [6, Thm. 19].4

Lemma 10. The degree of the triangular decomposition of
{P,Q} is equal to the sum, over all distinct solutions (α, β)
of {P,Q}, of the multiplicities of β in gcd(P (α, y),Q(α, y)).
3Note that, while this complexity improvement does not impact
the bit complexity of computing the number of critical points of
a curve H over Z, it is critical when computing a lucky prime
for {H, ∂H

∂y
} where the number of critical points is computed for

O(d4 + d3τ) systems defined over distinct Zµ (Proposition 12).
4Note that this bound is not an obvious overestimate because
known bounds yield a complexity of ÕB(d7 + d6τ) for all the gcd
computations in Line 4 of Algorithm 2, which is the same for
Line 4 of Algorithm 3.

Algorithm 4 Number of critical points of H

Input: H in F[x, y] squarefree such that Lcy(H) ∈ F

Output: The number of critical points of H

1: return Algo 3 (H, (∂H
∂y

)2) - Algo 3 (H, ∂H
∂y

)

Proof. By Lemma 8, the sets of solutions of the systems
of the triangular decomposition of Algorithm 2 are disjoint
and polynomials Ai are squarefree. The degree of the trian-
gular decomposition of {P,Q} is thus
∑

i∈I

degx(Ai(x)) degy(Bi(x, y)) =
∑

(α,β)∈V

mult(β,Bi(α, y)),

where V is the set of solutions of {P,Q} and mult(β,Bi(α, y))
denotes the multiplicity of β in Bi(α, y). The result follows
since Bi(α, y) = gcd(P (α, y),Q(α, y)) by Lemma 8.

Number of critical points of H. Algorithm 4 computes
the number of critical points of H as the difference between
the degree of the triangular decompositions of the systems
{H, (∂H

∂y
)2} and {H, ∂H

∂y
}. We first prove the correctness of

this algorithm and then its complexity.

Proposition 11. Algorithm 4 computes the number of
critical points of H. If H ∈ F[x, y] has degree d, the algo-

rithm performs Õ(d3) arithmetic operations in F. If H ∈
Z[x, y] (⊂ Q[x, y]) has degree d and bitsize τ , the algorithm

performs ÕB(d7 + d6τ) bit operations in Z.

Proof. We first prove that for any critical point (α, β)
of H , the multiplicity of β in gcd(H(α, y), (∂H

∂y
)2(α, y)) is

greater by one than the multiplicity of β in gcd(H(α, y),
∂H
∂y

(α, y)). Since (α, β) is a critical point of H , it is solu-

tion of both the systems {H, ∂H
∂y

} and {H, (∂H
∂y

)2}. This

implies that β is a root of both gcd(H(α, y), ∂H
∂y

(α, y)) and

gcd(H(α, y), (∂H
∂y

)2(α, y)). If m is the multiplicity of β in

H(α, y) then β has multiplicity m− 1 in ∂H
∂y

(α, y) and thus,

that it has multiplicity 2m − 2 in (∂H
∂y

)2. It follows that

β has multiplicity m − 1 in gcd(H(α, y), ∂H
∂y

(α, y)) and m

in gcd(H(α, y), (∂H
∂y

)2(α, y)) because m 6 2m − 2, that is

m− 1 > 1, since β is solution of ∂H
∂y

(α, y).

We denote the multiplicity of β in gcd(P (α, y),Q(α, y)) as
mult(β, gcd(P (α, y), Q(α, y))). Summing over all the critical
points of H and noticing that the set VH of distinct solutions
of {H, ∂H

∂y
} is the same as that of {H, (∂H

∂y
)2}, we obtain that

the number of critical points is

#VH =
∑

(α,β)∈VH

mult(β, gcd(H(α, y), (
∂H

∂y
)2(α, y)))

−
∑

(α,β)∈VH

mult(β, gcd(H(α, y),
∂H

∂y
(α, y))),

which is equal, by Lemma 10, to the difference of the degrees
of the decompositions of {H, (∂H

∂y
)2} and {H, ∂H

∂y
}. These

degrees are computed by Algorithm 3, which concludes the
proof of correctness of Algorithm 4.

The complexity analysis of the algorithm directly follows
from Lemma 9 noticing that ∂H

∂y
and (∂H

∂y
)2 have degrees at

most 2d (and bitsizes in O(d+ τ) when defined over Z) and

Algorithm 5 Lucky prime for {H, ∂H
∂y

}

Input: H in Z[X, Y] such that Lcy(H) ∈ Z

Output: A lucky prime µ for the system {H, ∂H
∂y

}

1: N= Algorithm 4 (H)
2: Compute H(t− sy, y) and ∂H

∂y
(t− sy, y)

3: m = 2d4

4: while true do

5: Compute the set B of the first d4 + d3τ primes > m
6: for all µ in B do

7: Compute the reduction mod. µ of H , ∂H
∂y

, LH , L ∂H
∂y

8: if φµ(LH(s)) φµ(L ∂H
∂y

(s)) 6≡ 0 then

9: Compute Nµ = Algorithm 4(φµ(H), φµ(
∂H
∂y

))
10: if Nµ = N then

11: return µ
12: m = the largest prime in B

that (∂H
∂y

)2 can be computed from ∂H
∂y

in complexity Õ(d2)

(and ÕB(d2τ) when defined over Z) [15, Cor. 8.28].

6.2 Lucky prime
In Algorithm 5, we compute a lucky prime for {H, ∂H

∂y
}

(see Definition 5) in a straightforward manner by first com-
puting the number of distinct solutions of the system and
then by computing the number of solutions of its image mod-
ulo distinct prime numbers µ until the same number of solu-
tions is found (and checking that some leading coefficients do
not vanish modulo µ). Note that Algorithm 5 is a simplified
variant of [5, Algorithm 3] where we use here the knowledge
of the number of critical points of H to avoid computing an
explicit bound on the number of unlucky primes.

Proposition 12. Given H ∈ Z[x, y] of degree d and bit-
size τ , Algorithm 5 computes a lucky prime for {H, ∂H

∂y
}

using ÕB(d7 + d6τ) bit operations.

Proof. The correctness of Algorithm 5 follows directly
from the fact that the number of unlucky primes is finite
(see [5, Prop. 13]).

We now analyze the complexity of the algorithm. Com-
puting the number of critical points of H in Line 1 has com-

plexity ÕB(d7 + d6τ) by Proposition 11. It is straightfor-
ward that the computations in Line 2 can be done in bit

complexity ÕB(d4+d3τ) (see e.g. [5, Lemma 7]). There are
O(log dτ) iterations of the loop in Line 4 because there are

Õ(d4 + d3τ) unlucky primes [5, Prop. 13]. Each iteration of
this loop consists in testing, for the d4 + d3τ primes in B,
the non-vanishing of the reduction of the two polynomials
LH(s) and L ∂H

∂y
(s) and the equality between the number of

solution over Z and its analogue over Zµ.
Polynomials H , ∂H

∂y
, LH and L ∂H

∂y
are of degree at most d

in one or two variables and they have bitsize at most Õ(d+τ)
(see e.g. [5, Lemma 7]). The reduction of all their O(d2)
coefficients modulo all the primes in B can be computed via
a remainder tree in a bit complexity that is soft linear in the
total bitsize of the input [12, Thm. 1], which is dominated by
the sum of the bitsizes of the d4+d3τ primes in B each being
of bitsize O(log dτ) (since there are O(log dτ) iterations of
the loop in Line 4). Hence, the bit complexity of Line 7

is ÕB(d4 + d3τ).

Finally, the arithmetic complexity of Algorithm 4 is in

Õ(d3), by Lemma 11, thus its bit complexity is also in

ÕB(d3) since µ ∈ O(log dτ). Hence, the total bit complexity

of Line 9 is ÕB(d7+d6τ), and so is the bit complexity of one
iteration of the loop in Line 4. Since at most O(log dτ) it-
erations are performed, this yields an overall bit complexity

for Algorithm 5 in ÕB(d7 + d6τ).

7. WRAP UP
The results of the previous sections can easily be combined

in the following theorem.

Theorem 13. Let P,Q ∈ Z[x, y] of total degree at most
d and maximum bitsize τ . A separating linear form x + ay
for {P,Q} with a an integer of bitsize in O(log d) can be

computed using ÕB(d7 + d6τ) bit operations.

Proof. According to Lemma 7, we can compute in com-

plexity ÕB(d6 + d5τ) a shearing t = x + αy, α ∈ O(d), and
a polynomial H ∈ Z[t, y] of total degree at most 2d and

bitsize Õ(d+ τ) such that {H, ∂H
∂y

} is zero-dimensional and

such that x + (α + a)y is separating for {P,Q} if t + ay is
separating for {H, ∂H

∂y
}. The result follows since by Proposi-

tions 6, 11 and 12, since an integer a in O(d4) such that t+ay

separates {H, ∂H
∂y

} can be computed using ÕB(d7+ d6τ) bit
operations.

8. LAS-VEGAS ALGORITHM
In this section, we present a Las-Vegas version of the al-

gorithm presented in the previous sections, whose expected

bit complexity is ÕB(d5 + d4τ) (Theorem 19).
The Las-Vegas version of our algorithm is the same as

the deterministic one except that we use Las-Vegas algo-
rithms for gcd computations and that we choose randomly
candidates for a separating linear form and a lucky prime in
Algorithms 1 and 5.

More precisely, in the Las-Vegas version of Algorithm 1,
the separating linear form is computed by choosing at ran-
dom an integer a in [0, 4d4] until a candidate satisfying the
condition of Line 9 is found. There are at most 2d4 integers
that do not satisfy this condition,5 thus a good candidate is
chosen with probability at least 1

2
, and so at most 2 candi-

dates are chosen on average.
In the Las-Vegas version of Algorithm 5, we first compute

a set B of 2m prime numbers where m is an upper bound on
the number of unlucky primes for {H, ∂H

∂y
}; such a set B can

be computed in bit complexity ÕB(d4 + d3τ) (see the proof
of [5, Lemma 18]). Then, we iteratively choose at random a
prime number µ in B until the conditions of Algorithm 5 are
satisfied (Lines 8 and 10). The primes not satisfying these
conditions are the unlucky ones, by definition, thus a lucky
prime is found with probability at least 1

2
, and so at most 2

candidates are chosen on average.
It remains to prove that the expected bit complexity of

Algorithms 1, 4, and 5, as well as the initial shearing of the

coordinate systems, are in ÕB(d5 + d4τ). Our analysis is

5Indeed, Υ is of degree at most 2d and the system {Pµ, Qµ}

has at most d2 solutions which define at most
(d2
2

)
directions in

which two solutions are aligned. Furthermore 2d +
(d2
2

)
< 2d4

(for d > 2).

based on the following result on the expected complexity of
gcd computations.

Lemma 14 ([15, Cor. 11.11]). Let f, g ∈ Z[x] of de-
gree at most d and maximum bitsize τ . The gcd of f and g

can be computed using an expected number of ÕB(d2 + dτ)
bit operations.

Lemma 15. Given P,Q ∈ Z[x, y] of total degree at most
d and maximum bitsize τ , the Las-Vegas version of Algo-
rithm 1 computes a separating linear form x+ay for {P,Q}

with a < 2d4 with an expected bit complexity in ÕB(d4+d3τ).

Proof. In the proof of Proposition 6, we proved that the

complexity of the algorithm is ÕB(d4 + d3τ) plus ÕB(d3)
times the number of considered choices of integer a. As
argued above, at most two candidate integers are considered
on average, which yields the lemma.

Lemma 16. Given P,Q ∈ Z[x, y] of total degree at most
d and maximum bitsize τ , Algorithm 3 computes the degree
of the triangular decomposition of {P,Q} with an expected

bit complexity in ÕB(d5 + d4τ).

Proof. According to Lemma 3, the sequence of the prin-
cipal subresultant coefficients sresi,y(P,Q), i = 0, . . . , d can

be computed in ÕB(d4τ) bit operations, and each of these
principal subresultants (including the resultant) has degree

O(d2) and bitsize Õ(dτ). The algorithm then performs at
most d gcd computations between these polynomials (includ-
ing the computation of the squarefree part of the resultant).
By Lemma 14 and using Mignotte’s bound [2, Cor. 10.12],
each of these gcds can be computed in an expected bit com-

plexity ÕB(d4 + d3τ). Hence computing d such gcds can

be done with expected bit complexity ÕB(d5 + d4τ), which
concludes the proof.

Lemma 17. Given P,Q ∈ Z[x, y] of total degree at most d
and maximum bitsize τ , Algorithm 4 computes the number
of critical points of H with an expected bit complexity in

ÕB(d5 + d4τ).

Proof. As seen in the proof of Proposition 11, Algorithm

4 computes ∂H
∂y

and (∂H
∂y

)2 in bit complexity ÕB(d2τ) and

calls Algorithm 3 on two systems of degrees O(d) and bitsizes
O(d+ τ). The result follows from Lemma 16.

Lemma 18. Given H ∈ Z[x, y] of total degree d and bit-
size τ , the Las-Vegas version of Algorithm 5 computes a
lucky prime for {H, ∂H

∂y
} with an expected bit complexity in

ÕB(d5 + d4τ).

Proof. By Lemma 17, the first call to Algorithm 4 has

an expected bit complexity in ÕB(d5+d4τ). As shown in the
proof of Proposition 12, the bit complexity of shearingH and
∂H
∂y

, as well as the reductions modulo µ have bit complexity

ÕB(d4 + d3τ). Finally, by Proposition 11, the calls in Zµ to

Algorithm 4 have arithmetic complexity Õ(d3) and thus bit

complexity ÕB(d3) (since µ ∈ O(log dτ)). This concludes
the proof since, as discussed above, the expected number of
such calls is at most 2.

Combining the above results, we obtain the following the-
orem.

Theorem 19. Let P,Q ∈ Z[x, y] of total degree at most
d and maximum bitsize τ . A separating linear form x +
ay for {P,Q} with a an integer of bitsize in O(log d) can

be computed using an expected number of ÕB(d5 + d4τ) bit
operations.

Proof. As in the proof of Theorem 13, Lemmas 15, 17
and 18 yield the result once we prove, as in Lemma 7, that
we can compute with the right complexity a shearing t =
x + αy, α ∈ O(d), and a polynomial H ∈ Z[t, y] of total

degree at most 2d and bitsize Õ(d + τ) such that {H, ∂H
∂y

}
is zero-dimensional and such that, if t+ ay is separating for
{H, ∂H

∂y
}, then x+ (α+ a)y is separating for {P,Q}.

According to the proof of Lemma 7, we only need to prove
that the computation of the squarefree part of H = P Q can

be done with an expected bit complexity in ÕB(d5 + d4τ).
Replacing in the proof of [11, Lemma 13] the bit complexity
of computing a univariate gcd by the one in Lemma 14 yields
the result.

9. CONCLUSION
This paper focuses on the computation of separating linear

forms for bivariate systems. First, we proved that the com-
putation of such a separating form can be done with a bit

complexity ÕB(d7+d6τ) in the worst case. As mentioned in
the introduction, this result directly yields, within the same
worst-case bit complexity, the rational parameterization of
Gonzalez-Vega et al. [9, 6] and that of Rouillier [14, 5]. Sec-
ond, we proved that the computation of a separating linear
form can be done in a Las-Vegas setting using an expected

number of ÕB(d5 + d4τ) bit operations. As a consequence,
the computation in this setting of a separating linear form
now becomes non-dominant in the whole process of comput-
ing a rational parameterization; indeed, given a separating
linear form, computing Gonzalez-Vega et al. and Rouillier’s

parameterizations both have bit complexity in ÕB(d7+d6τ)
even in the Las-Vegas setting.

It should be mentioned that the best known upper bound
for the total bitsize of the parameterization of Gonzalez-

Vega et al. is Õ(d5+d4τ).6 Thus, some progress on this up-
per bound would be required before any further progress on
the computation of a separating linear form in the Las-Vegas
setting could impact that of computing this parameteriza-
tion. However, note that the situation is slightly different for
the Rational Univariate Representation (RUR) of Rouillier

[14] whose total bitsize is Õ(d4 + d3τ) [5, Theorem 22].
Finally, we note that, for computing a separating linear

form of an arbitrary system {P,Q}, the algorithm presented
here is likely purely theoretical because considering the sys-
tem {PQ, ∂PQ

∂y
} instead {P,Q} essentially doubles the de-

gree of the input polynomials, which is likely not efficient in
practice. However, for the problem of computing the critical
points of a curve, there is some good hope that our algorithm
is efficient in practice.
6Indeed, the approach of Gonzalez-Vega et al. first applies a lin-
ear change of variables to the input polynomials, which increases

the bitsize of the polynomials to τ ′ ∈ Õ(d + τ), and then com-
putes rational parameterizations of the solutions of the O(d) sys-
tems of the triangular decomposition (Algorithm 2). The rational
parameterizations are ratios of coefficients of the polynomial sub-
resultants (seen as polynomials in y) which have degrees O(d2)

and bitsize Õ(dτ ′) = Õ(d2 + dτ) (Lemma 3). The total bitsize of

the O(d) parameterizations is thus Õ(d5 + d4τ).

10. REFERENCES
[1] M.-E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann.

Multiplicities and idempotents for zerodimensional systems.
In Algorithms in Algebraic Geometry and Applications,
volume 143 of Progress in Mathematics, pages 1–20.
Birkhäuser, 1996.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real
Algebraic Geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer-Verlag, 2nd edition,
2006.

[3] A. Bostan, B. Salvy, and É. Schost. Fast algorithms for
zero-dimensional polynomial systems using duality.
Applicable Algebra in Engineering, Communication and
Computing, 14(4):239–272, 2003.

[4] Y. Bouzidi. Solving bivariates algebraic systems and
topology of plane curves. PhD thesis, Université de
Lorraine, March 2014.

[5] Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier.
Separating linear forms and rational univariate
representations of bivariate systems. J. Symb. Comput.,
2014. To appear.

[6] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the
asymptotic and practical complexity of solving bivariate
systems over the reals. J. Symb. Comput., 44(7):818–835,
2009.

[7] M. El Kahoui. An elementary approach to subresultants
theory. J. Symb. Comput., 35(3):281–292, 2003.

[8] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free
alternative for solving polynomial systems. J. of
Complexity, 17(1):154–211, 2001.

[9] L. González-Vega and M. El Kahoui. An improved upper
complexity bound for the topology computation of a real
algebraic plane curve. J. of Complexity, 12(4):527–544,
1996.

[10] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The
modpn library: Bringing fast polynomial arithmetic into
maple. J. Symb. Comput., 46(7):841–858, 2011.

[11] K. Mehlhorn, M. Sagraloff, and P. Wang. From
approximate factorization to root isolation with application
to cylindrical algebraic decomposition. CoRR,
abs/1301.4870, 2013.

[12] R. Moenck and A. Borodin. Fast modular transforms.
Journal of Computer and System Sciences, 8, 1974.

[13] D. Reischert. Asymptotically fast computation of
subresultants. In Proceedings of the 10th international
Symposium on Symbolic and Algebraic Computation,
ISSAC’97, pages 233–240, 1997.

[14] F. Rouillier. Solving zero-dimensional systems through the
rational univariate representation. J. of Applicable Algebra
in Engineering, Communication and Computing,
9(5):433–461, 1999.

[15] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge Univ. Press, Cambridge, U.K., 2nd
edition, 2003.

	Introduction
	Overview
	Notation and preliminaries
	Separating linear form
	From a system to a curve
	The case of a curve
	Number of critical points
	Lucky prime

	Wrap up
	Las-Vegas algorithm
	Conclusion
	References

