
HAL Id: hal-00993885
https://hal.archives-ouvertes.fr/hal-00993885

Submitted on 20 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Effect of Forgetting on the Performance of a
Synchronizer

Matthias Függer, Alexander Kößler, Thomas Nowak, Ulrich Schmid, Martin
Zeiner

To cite this version:
Matthias Függer, Alexander Kößler, Thomas Nowak, Ulrich Schmid, Martin Zeiner. The Effect of For-
getting on the Performance of a Synchronizer. ALGOSENSORS 2013 - 9th International Symposium
on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, Sep
2013, Sophia Antipolis, France. pp.185-200, �10.1007/978-3-642-45346-5_14�. �hal-00993885�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49635637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00993885
https://hal.archives-ouvertes.fr

The Effect of Forgetting on the Performance of a

Synchronizer⋆

Matthias Függer1, Alexander Kößler1, Thomas Nowak2, Ulrich Schmid1, and
Martin Zeiner1

1 ECS Group, TU Wien, Vienna, Austria
{fuegger,koe,s,mzeiner}@ecs.tuwien.ac.at

2 Laboratoire d’Informatique, École polytechnique, Palaiseau, France
nowak@lix.polytechnique.fr

Abstract. We study variants of the α-synchronizer by Awerbuch (J.
ACM, 1985) within a distributed message passing system with proba-
bilistic message loss. The purpose of synchronizers is to maintain a vir-
tual (discrete) round structure. Their idea essentially is to let processes
continuously exchange round numbers and to allow a process to proceed
to the next round only after it has witnessed that all processes have
already started its own current round.

In this work, we study how four different, naturally chosen, strategies
of forgetting affect the performance of these synchronizers. The variants
differ in the times when processes discard part of their accumulated
knowledge during execution. Such actively forgetting synchronizers have
applications, e.g., in sensor fusion where sensor data becomes outdated
and thus invalid after a certain amount of time.

We give analytical formulas to quantify the degradation of the synchro-
nizers’ performance in an environment with probabilistic message loss.
In particular, the formulas allow to explicitly calculate the performance’s
asymptotic behavior. Interestingly, all considered synchronizer variants
behave similarly in systems with low message loss, while one variant
shows fundamentally different behavior from the remaining three in sys-
tems with high message loss. The theoretical results are backed up by
Monte-Carlo simulations.

1 Introduction

A set of sensor nodes collecting in-field data and exchanging it over an ad-hoc
wireless network is a common setup for sensor fusion applications [9]. Message
loss is typically a non negligible issue within such systems. A common strategy
to deal with message loss is to run a synchronizer algorithm, whose purpose is to
generate a virtual (discrete) round structure at the application layer such that,
at each round step, a process receives all messages from all processes sent in the

⋆ This work has been partially supported by the Austrian Science Fund (FWF), grant
NFN RiSE (S11405).

current round. In this work we study a retransmission-based variant of the α-
synchronizer, introduced by Awerbuch [1] as the first in a series of synchronizer
algorithms for asynchronous message-passing systems. Its main idea is that each
process continuously broadcasts its current round number together with the
corresponding application data. In systems with high dynamics, this application
data may vary between broadcasts, even within one round. A process starts
the next round when it has received the messages of its current round from all
other processes. Additionally it delivers the most actual data it has received
in its current round to the application layer. The synchronizer then guarantees
a synchronization precision equal to the diameter of the network graph. The
original α-synchronizer by Awerbuch used additional acknowledgment messages,
which we omit. Rather, a message with round number R is treated as an implicit
acknowledge for messages with round numbers less than R.

3 t

round 1

2 t

round 1

1 t

round 1

0 1 2 3 4 5

round 2 round 2

Fig. 1. Messages to process 2 and its resulting round switches without forgetting
(black) and with forgetting (gray).

Figure 1 shows the beginning of an execution of the synchronizer executed in
a system with three processes. For clarity, only messages to process 2 are shown.
Time is assumed to elapse in discrete steps at all processes. We assume the
existence of an underlying mechanism preventing the processes’ discrete time
from diverging, i.e., a synchronous system. At each point in time a process
broadcasts its application data, e.g., the current sensor reading. Initially, at
time 0, all processes start round 1. By time 4, process 2 has received round 1
messages from all processes and thus proceeds to round 2. Note, however, that
the age of the round 1 data it hands over to the application layer when switching
to round 2 differs significantly per process: while its own data and the data from
process 3 is of age 1 (discrete time units), data from process 1 is of age 3. If
this data is time-variant, e.g., the position of a moving object, it is typically
represented by an interval (i.e., a value ± some accuracy) that detoriates with
time [9]. A proper deterioration accounts for the maximum change of the position
since the actual sampling of the data. When merging intervals representing the
same data, from different sources, e.g. using (fault-tolerant) interval-intersection
functions like [7, 13], relying on old data obviously yields imprecise results.

A strategy to counteract this problem is to let the synchronizer actively “for-
get” old data it has received by discarding it. As an extreme, consider a variant
of the synchronizer that discards data at each (discrete) time step, resulting in
all the data to be of age 1 at each round switch. Clearly, however, this results
in a performance loss, i.e., longer times between round switches. The resulting
execution is depicted in gray in Figure 1 with the difference that process 2 then
switches to round 2 only at time 5.

In this paper we consider four variants of the α-synchronizer that differ in
the conditions of when to forget memory content, that is, reset the variables
representing the knowledge to their initial values. While three of the variants,
namely the variant that never forgets, the variant in which a process forgets
when it makes a round switch, and the variant that forgets at each time step,
can be implemented in a distributed manner, the variant which forgets when the
last process makes a round switch serves as a theoretical bound only.

We study the impact of forgetting on the performance of the synchronizer
variants in an environment where every message transmission succeeds with a
certain probability. By giving explicit formulas and simulation results for the
performance as well as simulation results for the average age of data when a
process makes a round switch, our results can be used to quantify the tradeoff
between the different strategies.

Detailed Contribution. Wemake the following contributions in this paper: (1) We
formally introduce the notion of forgetting in the context of a (specific) syn-
chronizer. We consider four different conditions on when processes forget and
study the respective degrading effects on the synchronizer’s performance in a
probabilistic environment. (2) We state explicit formulas for the expected round
duration for two of these conditions and give efficient bounds for the other two
conditions. These bounds are shown to approximate the true value well if the
probability p of successful message transmission is high. (3) We show that for
all four conditions, the expected round durations collapse when p→ 1: All four
expected round durations, as well as its first derivative as a function of p, are
equal in p = 1. (4) We prove that for p → 0, the expected round duration for
three of the conditions has the same order of growth, which we calculate ex-
plicitly for all four conditions. (5) We present simulation results of the expected
round duration, comparing them to our calculations, and simulation results for
the average age of data when a process makes a round switch.

Related Work. Our notion of knowledge is different from that of Fagin et al. [3],
who studied the evolution of knowledge in distributed systems with powerful
agents; in particular, their agents do not forget. While Mahesh and Varghese [5]
use crashing processes and the forgetting during reboot in a destructive way, we
use forgetting in a constructive manner. Nowak et al. [10] calculated the expected
round duration of a retransmission-based synchronizer when a single transmis-
sion arrives with constant probability p, but a message that was retransmitted
at least M times is guaranteed to arrive. They did not investigate the impact
of forgetting on the synchronizer’s performance, and assumed M to be finite,

which we do not. Bertsekas and Tsitsiklis [2] proved bounds for the case of con-
stant processing times and exponentially distributed message delays. They did
not derive exact performance measures. Rajsbaum [11] presented bounds on the
synchronizer rate for the case of exponentially distributed processing times and
transmission delays. Rajsbaum and Sidi [12] calculated the rate’s exact value in
the case of exponentially distributed processing times and negligible transmission
delays.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
introduces our system model, the studied synchronizer algorithm, and the four
conditions on forgetting we investigate, i.e., when the processes forget the gained
knowledge. In Section 3 we give the performance measure and we derive explicit
formulas for two of the four conditions in Section 4. Section 5 uses a Markov chain
model to compute the expected round duration of the remaining two conditions
on forgetting and states results on the asymptotic behavior of the expected round
duration. It also presents analytical lower bounds that facilitate estimations of
the expected round duration. In Section 6 we compare the performance as well
as the average age of data achieved by the different conditions on forgetting
against each other.

2 System Model and Algorithm

In this paper we study the performance of variants of the α-synchronizer [1]
running in a fully-connected message passing system with processes 1, 2, . . . , N .
Processes take steps simultaneously at all integral times t > 0, but messages
may be lost. Messages that do arrive have a transmission delay of 1, i.e., a
message sent at time t arrives at time t + 1, or not at all. A step consists in
(a) receiving messages from other processes, (b) performing local computations,
and (c) broadcasting a message to the other processes.

The synchronizer variants have two local variables, specified for every pro-
cess i at time t: The local round number Ri(t) and the knowledge vector

(

Ki,1(t),

Ki,2(t), . . . ,Ki,N (t)
)

. Processes continuously broadcast their local round num-
ber. The knowledge vector contains information on other processes’ local round
numbers, accumulated via received messages. A process increments its local
round number, and thereby starts the next round, after it has gained knowl-
edge that all other processes have already started the current round. The round
increment rule assures a precision of 1, i.e., |Ri(t) − Rj(t)| 6 1 for all t. We
write RG(t) = mini Ri(t) and call it the global round number at time t.

After updating its local round number, a process may forget, i.e., lose its
knowledge about other processes’ local round numbers. We are considering four
different conditions COND, describing the times when process i forgets:

I. Never, i.e., COND := false.
II. At every local round switch, i.e., COND :=

[

Ri(t) = Ri(t− 1) + 1
]

.

III. At every global round switch, i.e., COND :=
[

RG(t) = RG(t− 1) + 1
]

.

IV. Always, i.e., COND := true.

Formally, we write Mi,j(t) = 0 if process j’s message to process i sent at
time t was lost, andMi,j(t) = 1 if it arrives (at time t+ 1). Process i’s compu-
tation in its step at time t consists of the following:

1. Update knowledge according to received messages:

Ki,j(t)← Rj(t− 1) ifMi,j(t− 1) = 1, and Ki,j(t)← Ki,j(t− 1) otherwise.

2. Increment round number if possible: Ri(t)← Ri(t−1)+1 ifKi,j(t) > Ri(t−1)
for all j, and Ri(t)← Ri(t− 1) otherwise.

3. Conditional forget: Ki,j(t)← 0 if COND is true.

Initially, Ki,j(0) = 0, and no messages are received at time 0. In particular,
Ri(0) = 1. In the remainder of this paper, when we refer to Ki,j(t), we mean its
value after step 3.

We assume that theMi,j(t) are pairwise independent random variables with

P
(

Mi,j(t) = 1
)

= p if i 6= j and P
(

Mi,i(t) = 1
)

= 1 . (1)

We call the parameter p the probability of successful transmission.

Figure 2 shows part of an execution for condition I on forgetting. Times are
labeled t0 to t10. Processes 1 and 3 start their local round R at time t4 while
process 2 has already started its local round R at time t3. The arrows in the

3 t

2 t

1 t

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

R1(t1) = R − 1

R2(t0) = R − 1

R3(t0) = R − 1

R1(t4) = R

R2(t3) = R

R3(t4) = R

R1(t9) = R + 1

R2(t8) = R + 1

R3(t7) = R + 1

Fig. 2. An execution of the synchronizer

figure indicate the time until the first successful reception of a message sent in
round R: The tail of the arrow is located at time t a process i starts round R and
thus broadcasts R for the first time. The head of the arrow marks the smallest
time after t at which a process j receives a message from i. Messages from
processes to themselves are always received at the next time step and thus are
not explicitly shown in the figure. For example, processes 1 and 3 start round R
at time t4 sending R for the first time. While process 2 receives the message from
3 in the next step, it needs an overall amount of 4 time steps and consecutive
retransmissions to receive a message from process 1 at time t8.

3 Performance Measure

For a system with N processes and probability p of successful transmission, we
define the expected round duration of process i by λi(N, p) = E limt→∞ t/Ri(t).
Since our synchronization algorithm guarantees precision 1, it directly follows
that λi(N, p) = λj(N, p) for any two processes i and j. We will henceforth refer
to this common value as λ(N, p), or simply λ if the choice of parameters N
and p is clear from the context. To distinguish the four proposed conditions on
forgetting, I to IV, we will write λI, λII, λIII, and λIV, respectively.

In the rest of the paper, we study the expected round duration λ for the four
conditions on forgetting. Note that the condition in case III cannot be detected
locally and thus does not allow for a distributed implementation. We rather use
λIII as a bound (cf. Equation (2)). For case IV, where processes always forget, and
for case III, where processes forget on global round switches, λ can be calculated
efficiently with explicit formulas, which we give in Section 4 in Theorems 1 and 2.
For the remaining cases, I and II, we could compute λ(N, p) by means of a steady
state analysis of a finite Markov chain with time complexity exponential in N .
We show how to do this in Section 5.1. The Markov chain model is also useful
to study the behavior of λ, for all four conditions on forgetting, when p→ 1 and
p→ 0. We do this in Sections 5.2 and 5.3, respectively. We derive explicit lower
bounds on λI and λII in Section 5.4.

We will repeatedly use the dual of Ri(t), namely Ti(r), the time process i
switches to round r. Further set TG(r) = maxi Ti(r). The next proposition allows
to calculate λ dually by:

Proposition 1. For all four conditions on forgetting, λ = E lim
t→∞

t/Ri(t) =

E lim
r→∞

Ti(r)/r.

It is not hard to show, by comparing Ti(r) for every fixed choice of the
sequenceM, that

λI
6 λII

6 λIII
6 λIV . (2)

4 Explicit Formulas for λIII and λIV

In this section, by elementary probability theory and calculations, we derive
explicit formulas for λIII and λIV in Theorems 1 and 2, respectively. Both use a
formula for the expected maximum of geometrically distributed random variables
(Proposition 2). For that purpose define for pairwise independent with parameter
p geometrically distributed random variables Gi

Λ(M,p) = E max
16i6M

Gi .

We will make use of the following well-known proposition [6, 14].

Proposition 2. Λ(M,p) =

M
∑

i=1

(

M

i

)

(−1)i
1

(1− p)i − 1

Consider case III, i.e., processes forget on global round switches. Initially,
all processes i are in round Ri(0) = 1, and their knowledge is Ki,j(0) = 0.
Observe that processes switch to round 2 as messages are received. At the time t
at which the last process switches to round 2, it holds that (i) all processes i
have Ri(t) = 2, (ii) all processes have knowledge Ki,j(t) > 1 for all j before
forgetting, and (iii) all processes forget, since a global round switch occurred,
ultimately resulting in Ki,j(t) = 0. The only difference between the initial state
and the state at time t is the constant round number offset Ri(t) = Ri(0)+1. By
repeated application of the above arguments we obtain that the system is reset
to the initial state modulo a constant offset in round numbers Ri, each time a
global round switch occurs. This allows to determine the expected average round
duration by analyzing the expected time until the first round switch.

We will now state explicit formulas for the expected round duration in
cases III and IV. We will use these formulas in particular in Section 5.3 when
studying the behavior of λ for p→ 0.

Theorem 1. λIII(N, p) = Λ
(

N(N − 1), p
)

=

N(N−1)
∑

i=1

(

N(N − 1)

i

)

(−1)i

(1− p)i − 1

Proof. Recall that the events that i receives a message from j at time t are
pairwise independent for all i, j and times t. Thus the smallest time t, at which i
receives a message from j is geometrically distributed with parameter p. Noting
that the first global round switch occurs at time TG(2) = maxi(Ti(2)), we obtain

λ(N, p) = E lim
r→∞

TG(r)/r = ETG(2) = E max
16i6N(N−1)

Gi

where the Gi are geometrically distributed with parameter p. The theorem now
follows from Proposition 2. ⊓⊔

Theorem 2. λIV(N, p) = Λ
(

N, pN−1
)

=

N
∑

i=1

(

N

i

)

(−1)i
1

(1− pN−1)i − 1

Proof. Observe that the first global round switch occurs at the minimum time t
by which each of the processes has received messages from all processes simulta-
neously; and that Ri(t) = 2 as well as Ki,j(t) = 0 holds at this time. Again the
state at time t is identical to the initial state with all round numbers incremented
by 1. Repeated application of the above arguments allows to calculate the ex-
pected round duration by λ(N, p) = ETG(2). The first time i receives a message
from all processes simultaneously is geometrically distributed with parameter
pN−1. Since we have N nodes, we take the maximum over N such geometrically
distributed random variables. The theorem now follows from Proposition 2. ⊓⊔

5 Markovian Analysis

Determining λI and λII, the expected round duration in the cases that processes
never forget or forget at local round switches, is more involved. In the following,

we will calculate λ by modeling the system as a finite Markov chain and analyzing
its steady state distribution. Additionally, we derive the asymptotic behaviors
for p → 1 and for p → 0 from the Markov chain model. As the computation of
the chain’s steady state distribution is computationally very expensive, we will
give analytical lower bounds in Section 5.4.

Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j(t) =
Ki,j(t) for i 6= j. It is easy to see that A(t) is a Markov chain, i.e., the distribution
of A(t+ 1) depends only on A(t). Since both Ri(t) and Ki,j(t) are unbounded,
the state space of Markov chain A(t) is infinite.

We therefore introduce the sequence of normalized states a(t), defined by
A(t)−mink Ak,k(t) cropping negative entries to −1, i.e., ai,j(t) = max

{

Ai,j(t)−

mink Ak,k(t) , −1
}

. Normalized states belong to the finite set {−1, 0, 1}N×N .
The sequence of normalized states a(t) is a Markov chain: The probability

that A(t+1) = Y , given that A(t) = X, is equal to the probability that A(t+1) =
Y + c, given that A(t) = X + c. We may thus restrict ourselves without loss of
generality to considering the system being in state X − mini(Xi,i) at time t.
Further, by the algorithm and the fact that the precision is 1, cropping the
entries of X−mini(Xi,i) at −1 does not lead to different transition probabilities:
the probability that A(t+ 1) = Y given that A(t) = X −mini(Xi,i) is equal to
the probability that A(t+ 1) = Y given that A(t) is X −mini(Xi,i) cropped at
−1. It follows that a(t) is a finite Markov chain, for the algorithm with any of
the four conditions on forgetting.

We will repeatedly need to distinguish whether there is a global round switch
at time t or not. Let â(t) be the Markov chain obtained from a(t) by adding to
each state a an additional flag Step such that Step(â(t)) = 1 if there is a global
round switch at time t, and 0 otherwise.

5.1 Using the Steady State to Calculate λ

Call a Markov chain good if it is aperiodic, irreducible, Harris recurrent, and has
a unique steady state distribution. It is not difficult to see that â(t) is good for
all four conditions on forgetting.

Theorem 3. Let X(r) be good Markov chain with state space X and steady state

distribution π. Further, let g : X → R be a function such that
∑

X∈X |g(X)| ·

π(X) <∞. Then, limr→∞
1
r

∑r

k=1 g
(

X(k)
)

=
∑

X∈X g(X) ·π(X) with probabil-

ity 1 for every initial distribution.

Proof. [8, Theorem 17.0.1(i)]

A standard method, given the chain’s transition matrix P , to compute the
steady state distribution π is by matrix inversion:

π = e ·
(

P (n→1) − I(n→0)
)−1

(3)

where M (k→x) denotes matrix M with its kth column set to x, I is the identity
matrix, and e = (1, 1, . . . , 1).

We call a processes i a 1-process in state â if âi,i = 1. Likewise, we call i a
0-process in â if âi,i = 0. Denote by #−1(â) the number of −1 entries in rows of
matrix â that correspond to 0-processes in â.

Proposition 3. For all conditions of forgetting, Ri(t)/t→ 1/λ with probability

1 as t→∞. Furthermore, λ = 1/
(
∑

â p
#−1(â) · π(â)

)

.

Proof. It holds that RG(t) =
∑t

k=1 Step
(

â(k)
)

. By Theorem 3, with probabil-
ity 1 it holds that:

lim
t→∞

Ri(t)/t = lim
t→∞

RG(t)/t = lim
t→∞

1

t

t
∑

k=1

Step(â(k)) =
∑

â

Step(â) · π(â) .

Since â(t) is a finite Markov chain, the last sum is finite. It follows that Ri(t)/t
converges to a constant, say c, with probability 1. Thus t/Ri(t) converges to 1/c
with probability 1. By definition of λ, it follows that λ = 1/c. This shows the
first part of the proposition.

The second part of the proposition is proved by the following calculation:

1/λ = E lim
t→∞

Ri(t)/t = E lim
t→∞

RG(t)/t = E lim
t→∞

1

t

t
∑

k=1

Step
(

â(k)
)

=
∑

â

lim
t→∞

1

t

t
∑

k=1

P
(

â(k − 1) = â
)

· E
(

Step(â(k)) | â(k − 1) = â
)

=
∑

â

p#−1(â) lim
t→∞

1

t

t
∑

k=1

P
(

â(k − 1) = â
)

=
∑

â

p#−1(â) · π(â) . ⊓⊔

5.2 Behavior of λ for p → 1

The next theorem provides means to approximate the expected round duration
for all conditions on forgetting when messages are successfully received with high
probability. Since this is typically the case for real-world systems, it allows to
characterize their expected round duration very efficiently.

Theorem 4. For all four conditions on forgetting,
d

dp
λ(N, p)

∣

∣

p=1
= −N(N−1).

Proof. Let p ∈ (0, 1). Let πN,p(â) be the steady state probability of state â of
Markov chain â(t). From Proposition 3, 1/λ(N, p) =

∑

â p
#−1(â) · πN,p(â). Then

d

dp
1/λ(N, p) =

∑

â

#−1(â) · p
#−1(â)−1 · πN,p(â) +

∑

â

p#−1(â) ·
d

dp
πN,p(â) .

Evaluation of the derivative at p = 1 leads to

d

dp
1/λ(N, p)

∣

∣

∣

p=1
=
∑

â

#−1(â) · πN,1(â) +
∑

â

d

dp
πN,p(â)

∣

∣

∣

p=1
.

Observe that as p goes to 1, πN,p(â) goes to 0 for all states â, except for â0,
the state with 0 in the diagonal, −1 everywhere else, and Step(â) = 1. It is
#−1(â0) = N(N − 1). Moreover, as p goes to 1, πN,p(â0) approaches 1. Hence,

= N(N − 1) +
d

dp

(

∑

â

πN,p(â)

)∣

∣

∣

∣

∣

p=1

= N(N − 1) + 0 ,

as the sum of the steady state probabilities over all states a equals 1. The theorem
follows from d

dp
λ(N, p)

∣

∣

p=1
= − d

dp
1/λ(N, p)

∣

∣

p=1
· λ2(N, 1) and λ(N, 1) = 1. ⊓⊔

5.3 Behavior of λ for p → 0

In systems with unreliable communication, in which Theorem 4 is not valuable,
the following theorem on the asymptotic behavior of the expected round duration
for all our conditions on forgetting, is useful. It turns out that λI, λII, and λIII

have the same order of growth for p → 0, namely p−1, while λIV has a higher
order of growth.

Theorem 5. For p→ 0, λI(N, p), λII(N, p) and λIII(N, p) are in Θ
(

p−1
)

, and

λIV(N, p) is in Θ
(

p−(N−1)
)

.

Proof. We first show the statement for λIII. It is (1−p)i−1 =
∑i

j=1

(

i
j

)

(−p)j =

Ω(p) for p→ 0. Hence by Theorem 1, λIII(N, p) = O(p−1) for p→ 0.
For all conditions on forgetting, all transition probabilities of the Markov

chain â(t) are polynomials in p. Hence by Equation (3), all steady state proba-
bilities π(â) are rational functions in p. Proposition 3 then in particular implies
that λI(N, p) is also rational in p. Clearly, λI(N, p) → ∞ as p → 0. Hence
λI(N, p) has a pole at p = 0 of order at least 1. This implies λI(N, p) = Ω(p−1).
From the inequalities λI 6 λII 6 λIII, the first part of the theorem follows.

To show the asymptotic behavior of λIV(N, p), observe that by (1−p)i−1 =

−p
∑i

j=1

(

i
j

)

(−p)j−1 ∼ −p · i for p→ 0 and by Proposition 2, we have

p · Λ(M,p) ∼

M
∑

i=1

(

M

i

)

(−1)i+1 1

i
.

As shown in the textbook by Graham et al. [4, (6.72) and (6.73)] this sum
equals HM , denoting the M th harmonic number. This concludes the proof. ⊓⊔

5.4 Lower Bounds on λI and λII

Determining the expected round duration for cases I and II by means of the
Markov chain a(t) is computationally intensive, even for small system sizes N .
We can, however, compute efficient lower and upper bounds on λ(N, p): For both,
case I and II, λIII(N, p) is an upper bound. We will next derive computationally
feasible lower bounds for λI(N, p) and λII(N, p).

From Proposition 1 and Theorem 3 follows, by considering the conditional
expectation of TG:

λ =
1

∑

â Step(â) · π(â)

∑

â

Step(â) · π(â) · E(TG(2) | â(0) = â) ,

where E(TG(2) | â(0) = â) is the expected time until the first global round
switch, given that the system initially is in state â. It holds that E(TG(2) |
â(0) = â) = Λ(#−1(â), p).

Let [n] denote the set of states â with #−1(â) = n and Step(â) = 1, and
denote by

⋃

[n] the union of all [n] for 0 6 n 6 N(N − 1). Further let π̂(n) =
∑

â∈[n] π(â)/(
∑

â Step(â) ·π(â)). It follows that π̂(n) = 0 for n < 2N − 2 in case

II and π̂(n) = 0 for n < N − 1 in case I.
The basic idea of the bounds on λ is to bound π̂(n). Let P(â ❀ [n]) be the

probability that, given the system is in state â at some time t, for the minimum
time t′ > t at which a global round switch occurs, â(t′) ∈ [n]. We obtain for
π̂(n):

π̂(n) =
∑

â

Step(â) · π̂(â) · P(â ❀ [n]) =
∑

â∈
⋃
[n]

π̂(â) · P(â ❀ [n])

=
∑

â∈[n]

π̂(â) · P(â ❀ [n]) +
∑

â∈
⋃
[n]\[n]

π̂(â) · P(â ❀ [n])

> π̂(n) min
â∈[n]

P(â ❀ [n]) + (1− π̂(n)) min
â∈

⋃
[n]\[n]

P(â ❀ [n])

> π̂(n)cn + (1− π̂(n))dn

for cn, dn suitably chosen. One can derive valid choices for both parameters for
cases I and II by excessive case inspection of transition probabilities for all state
equivalence classes [k], k > 0. We provide only a proof for case II in Section 5.5,
as the proof for case I is by analogous arguments.

Partitioning the above sum into a one term from states in [n] to states in [n],
and one remaining term, allows us to finally state inequality

π̂(n) >
dn

1 + dn − cn
=: πn . (4)

The resulting lower bounds on π̂(n), denoted by πI
n and πII

n for cases I and II
respectively, finally yield lower bounds on λ. Since Λ is nondecreasing in its first
argument, we can bound λ(N, p) by

1−

N(N−1)
∑

n=N

πI
n

Λ(N − 1, p) +

N(N−1)
∑

n=N

πI
nΛ(n, p) 6 λI(N, p) (5)

in case I. For case II we obtain

1−

N(N−1)
∑

n=2N−1

πII
n

Λ(2N − 2, p) +

N(N−1)
∑

n=2N−1

πII
nΛ(n, p) 6 λII(N, p) . (6)

5.5 Lower Bound on Parameters for λII

We next show how to derive bounds on parameters cn and dn, in the following
denoted by dIIn and cIIn . From these we obtain bounds on πN(N−1) from (4).

We start our analysis with determining πN(N−1). Since P(â ❀ [N(N − 1)])
is greater than the probability that â(t + 1) ∈ [N(N − 1)], given that â(t) =
â, for arbitrary t, we have P(â ❀ [N(N − 1)]) > p#−1(â). Thus we may choose
cII
N(N−1) = pN(N−1), dII

N(N−1) = pN(N−1)−1 and obtain

πN(N−1) =
pN(N−1)−1

1 + pN(N−1)−1(1− p)
.

Next we turn to the analysis of πN(N−1)−1. Since it is not possible to make a
direct transition from a state â ∈

⋃

[n] to a state in [N(N − 1)− 1], we consider
bounds on the probability that the system is in a state within [N(N − 1) − 1]
at time t+2, given that â(t) = â. Fix in â one column j whose all non-diagonal
entries equal −1. Clearly such a column must exist, since Step(â) = 1. Given
that â(t) = â, assume that at time t + 1, all messages from processes i 6= j
to all processes i′ with Ki′,i(t) = −1, and one message from process j to some
fixed j′ 6= j, are received. That is, N(N − 2) + 2−#0(â) messages are received.
Moreover, at time t+1, k (up to N−3) of the remaining N−2 message sent by j
are received. By construction, k+2 of the processes are 1-processes at time t+1.
For â(t + 1) ∈ [N(N − 1) − 1] to hold, it is sufficient that: For all 0-processes i
with âi,j(t + 1) = −1, process i must receive a message from j at time t + 2;
exactly one of the messages from a 1-process to a 1-process is received. Since at
time t+ 1 there are (k + 2)(k + 1) messages from 1-processes to 1-processes, we
obtain: For all â ∈

⋃

[n],

P(â ❀ [N(N − 1)− 1]) >

>

N−3
∑

k=0

(

N − 2

k

)

pN(N−2)+2−#0(â)+k(1− p)N−2−k·

· pN−2−k · p · (1− p)(k+2)(k+1)−1 · ((k + 2)(k + 1))

= pN(N−1)−#0(â)+1·

·

N−3
∑

k=0

(

N − 2

k

)

((k + 2)(k + 1))(1− p)N+k2+2k−1

=: β(#0(â)) .

So we choose cII
N(N−1)−1 = β(1) and dII

N(N−1)−1 = β(0).

Finally we turn to the analysis of πn for n = 2(N − 1) + x, where 0 6 x 6

(N − 2)(N − 1) − 2. Again we bound P(â ❀ [2(N − 1) + x]), for â ∈
⋃

[n], by
analyzing the probability that â(t + 2) ∈ [2(N − 1) + x], given that â(t) = â.
Fix a row j of â with T non-diagonal entries equal to 0. Given that â(t) = â,
assume that at time t + 1, all messages to processes i 6= j from all processes i′

with Ki,i′(t) 6= 0 are received. That is, (N −1)(N −1)−#0(â)+T messages are

received. Moreover, at time t+1, k (up to N−T −2) of the remaining N−T −1
messages to j are received. Hence, all processes different from j are 1-processes
at time t + 1. At time t + 2 all remaining messages to process j are received.
From the (N − 2)(N − 1) messages sent by 1-processes to 1-processes exactly x
are not allowed to be received for â(t + 2) ∈ [2(N − 1) + x] to hold. Thus, for
fixed row j and â ∈

⋃

[n],

P(â ❀ [2(N − 1) + x] | row j) >

>

N−2−T
∑

k=0

(

N − T − 1

k

)

pk+(N−1)2−#0(â)+T

· (1− p)N−1−k−T pN−1−k−T p(N−2)(N−1)−x(1− p)x

·

(

(N − 1)(N − 2)

x

)

=

(

(N − 1)(N − 2)

x

)

(1− p)xpN(N−1)−#0(â)+(N−2)(N−1)−x

·
(

(2− p)N−1−T − 1
)

=: γ(#0(â), T, x) .

Note that γ is nonincreasing in its second and third argument. Every state â
has at least one row with T = 0 non-diagonal entries equal to 0. All other rows
must have T 6 N − 2 non-diagonal entries equal to 0, since a row must have at
least one entry equal to −1. Thus, we have

P(â ❀ [2(N − 1) + x]) >

γ(#0(â), 0, x) + (N − 1) · γ(#0(â), N − 2, x) =: γ̃(#0(â), x).

We thus choose cII2(N−1)+x
= γ̃((N − 1)(N − 2)− x, x) and dII2(N−1)+x

= γ̃(0, x).

The lower bound on λII follows from (4) and (6).

6 Discussion of Results

In this section we present the results obtained by calculating the expected round
duration λ for the four conditions on forgetting that we consider. Additionally,
we used Monte-Carlo simulations to estimate λ and the average age of data when
a process performs a round switch.

Fig. 3 shows, with varying probability p, the exact value of the expected round
duration for conditions on forgetting I–IV in a system with N = 3 processes.
As stated in Section 5.3, the figure shows the gap between the cases I, II, and
III, having an asymptotic growth in Θ(1/p) when p approaches 0, and the case
IV, which has an asymptotic growth in Θ(1/pN−1). Furthermore, as depicted in
Section 5.2, all the plots have the same slope in the point p = 1 resulting in a
good approximation for the hard to calculate cases I and II in a system with
reliable communication.

0.2 0.4 0.6 0.8 1.0
p

5

10

15

Λ

lower bound ΛI

Λ
IH3,pL

lower bound ΛII

Λ
IIH3,pL

Λ
IIIH3,pL

Λ
IVH3,pL

Fig. 3. Expected round durations for N = 3 and lower bounds for cases I and II.

In settings with unreliable communication, for which the approximation re-
sult on the derivative of λ at p = 1 is not valuable, cases I and II can be
approximated by their analytical lower bounds (Section 5.4), and bounded from
above by the λ for case III (Theorem 1). A comparison between the lower bounds
and the actual systems is illustrated in Fig. 3.

As the calculations of the exact values for the expected round duration using
the Markov chain model are computationally very expensive, we used Monte-
Carlo simulations to compare them with our calculations. To this end, we simu-
lated systems with 2 6 N 6 12 processes for 100 000 steps and averaged over 30
runs. The simulations were done using three different values for p. Fig. 4 and 5
show the obtained average round durations with the calculated lower bound and
with case III as upper bound. The average round durations for case I (where pro-
cesses never forget) is shown in Fig. 4(a) to 4(c) and the case II (where processes
forget after a local round switch) is shown in Fig. 5(a) to 5(c). Fig. 6(a) to 6(c)
depict the calculated expected round duration for case IV, i.e., the synchronizer
variant that forgets at each time step. Note that it is significantly higher than
all the other variants when message loss is considerable.

Fig. 7 shows Monte-Carlo simulation results of the average age of data when
a process performs a round switch, for cases I and II, both of which can be
implemented in a distributed manner. Case IV, for which the same holds, by
definition has an average age of data of 1. One immediately observes that while
the average age of both cases I and II is significantly higher than in case IV,
forgetting at each processes’ round switch only has a marginal effect on the
average age compared to not forgetting at all.

7 Conclusion

We studied the effect of actively discarding memory content on a variant of
the α-synchronizer. For practically relevant applications, e.g., in sensor fusion,
forgetting turns out to be a simple strategy to decrease the average age of data
handed over to the application layer when a process makes a round switch. In case
the accuracy of data degrades over time, e.g., data samples taken from a timed
process, a decreased average age of the samples results in an increased accuracy
of the merged data. To assess the inevitable drawback of forgetting strategies,
namely degraded performance, we analyzed four naturally chosen strategies of

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.0

1.5

2.0

2.5

3.0

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(c) p = 0.99

Fig. 4. Monte-Carlo simulation results for case I compared against the calculated lower
bound and the calculated expected round duration of case III serving as an upper
bound.

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.0

1.5

2.0

2.5

3.0

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(c) p = 0.99

Fig. 5. Monte-Carlo simulation results for case II compared against the calculated
lower bound and the calculated expected round duration of case III serving as an
upper bound.

2 3 4 5 6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ro
un

d
du

ra
tio

n

(c) p = 0.99

Fig. 6. Calculated expected round duration of case IV.

2 3 4 5 6 7 8 9 10 11 12
1.0

1.2

1.4

1.6

1.8

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(a) p = 0.5

2 3 4 5 6 7 8 9 10 11 12
1.00

1.02

1.04

1.06

1.08

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(b) p = 0.9

2 3 4 5 6 7 8 9 10 11 12
1.000

1.001

1.002

1.003

1.004

N

av
er

ag
e

ag
e

of
m

es
sa

ge
s

(c) p = 0.99

Fig. 7. Average age Monte-Carlo simulation results for case I (blue, upper) and II
(green, lower).

forgetting. We obtained analytic formulas for the behavior of the expected round
duration λ(N, p) as the probability of successful transmission p→ 0 and p→ 1,
as well as means to calculate λ(N, p) for arbitrary N and p, allowing to assess
whether the resulting loss of performance is acceptable for a specific application.
Interestingly, it turned out that the behavior of all four variants is similar for
p→ 1. For p→ 0 only two asymptotic behaviors of the expected round duration
were observed: Θ(1/pN−1) for the significantly slower variant that forgets at
each time step, and Θ(1/p) for the other variants.

References

1. Awerbuch, B.: Complexity of Network Synchronization. J. ACM 32, 804–823 (1985)
2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical

Methods. Prentice Hall, Englewood Cliffs (1989)
3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press, Cambridge, MA (1995)
4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-

Wesley, Reading, MA (1989)
5. Jayaram, M., Varghese, G.: Crash Failures Can Drive Protocols to Arbitrary

States. In: 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 247–256. ACM, New York (1996)

6. Kirschenhofer, P., Prodinger, H.: A result in order statistics related to probabilistic
counting. Computing 51 (1), 15–27 (1993)

7. Marzullo, K.A.: Tolerating Failures of Continuous-Valued Sensors. ACM Trans. on
Computer Systems 8 (4), 284–304 (1990)

8. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Hei-
delberg (1993)

9. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless
sensor networks: Methods, models, and classifications. ACM Comput. Surv. 39
(3). ACM, New York (2007). doi:10.1145/1267070.1267073

10. Nowak, T., Függer, M., Kößler, A.: On the Performance of a Retransmission-Based
Synchronizer. Theor. Comput. Sci. (2012). doi:10.1016/j.tcs.2012.04.035

11. Rajsbaum, S.: Upper and Lower Bounds for Stochastic Marked Graphs. Inform.
Process. Lett. 49, 291–295 (1994)

12. Rajsbaum, S., Sidi, M.: On the Performance of Synchronized Programs in Dis-
tributed Networks with Random Processing Times and Transmission Delays. IEEE
T. Parall. Distr. 5, 939–950 (1994)

13. Schmid, U., Schossmaier, K.: How to Reconcile Fault-Tolerant Interval Intersection
with the Lipschitz Condition. Dis. Comp. 14 (2), 101–111 (2001)

14. Szpankowski, W., Rego, V.: Yet another application of a binomial recurrence. Order
statistics. Computing 43 (4), 401–410 (1990)

