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DENSE NON-RIGID VISUAL TRACKING WITH A ROBUST SIMILARITY FUNCTION

Bertrand Delabarre, Eric Marchand

Université de Rennes 1 - IRISA/INRIA Rennes Bretagne Atlantique

ABSTRACT

This paper deals with dense non-rigid visual tracking robust

towards global illumination perturbations of the observed

scene. The similarity function is based on the sum of condi-

tional variance (SCV). With respect to most approaches that

minimize the sum of squared differences, which is poorly ro-

bust towards illumination variations in the scene, the choice

of SCV as our registration function allows the approach to

be naturally robust towards global perturbations. Moreover,

a thin-plate spline warping function is considered in order to

take into account deformations of the observed template. The

proposed approach, after being detailed, is tested in nominal

conditions and on scenes where light perturbations occur in

order to assess the robustness of the approach.

Index Terms— Visual tracking, non-rigid tracking.

1. INTRODUCTION

Visual tracking is a fundamental step of computer vision.

Its field of application is vast and includes for example

augmented reality [1], pose estimation [2] or visual servo-

ing [3]. Visual tracking approaches can be divided in several

branches. Indeed it is possible to differentiate approaches

based on visual features extracted from the images such as

keypoints or lines and dense methods also called template-

based registration methods relying on a template extracted

from a reference image. This paper deals with this latter cate-

gory. When performing such tracking, the goal is to optimize

a registration function representing the difference or simi-

larity between a reference template and the current image.

Several works have focused on different registration func-

tions from the most simple, the sum of squared differences

(SSD) [4, 5], which compares the luminance of each pixel

and is therefore poorly robust to variations of the scene to

sophisticated ones such as the mutual information (MI) [6],

very robust towards scene perturbations but quite complex to

setup. Other functions have also been considered which can

be placed in between the two previously mentioned such as

the sum of conditional variance [7] or the normalized cross

correlation (NCC) [8]. They both are easier to use than the

MI and more robust to global illumination variations than the

SSD. Those approaches lead to visual tracking algorithms

optimizing, for most of them, the parameters of a rigid dis-

placement function (translation, affine motion, homography)

in the image frame as in [4, 6, 7] but can also be based on

non-rigid displacement functions such as in [9, 10, 11, 12].

The goal of this paper is to introduce a non-rigid visual track-

ing process robust towards global scene variations such as

illumination variations. Our main contribution is to improve

the approach described in [7] to take into account non-rigid

deformations of the considered template. The use of the SCV

allows our algorithm to be naturally robust to global illumina-

tion variations which is a frequent problem when performing

visual tracking tasks while keeping it simple and fast as the

technique is nearly as computationally efficient as the classi-

cal SSD-based approach.

The paper is organized as follows. First, the main principles

of differential template tracking are recalled and the visual

tracking algorithm using the SCV is detailed. Then, the non-

rigid warping function used is defined and integrated in the

algorithm. Finally, experiments are realized that show how

our method is successful in tracking deformable objects in

light-varying conditions.

2. DENSE NON-RIGID ROBUST DIFFERENTIAL

TEMPLATE TRACKING

Differential template tracking [4] is a class of approaches

based on the optimization of an image registration function.

They aim at estimating the displacement µ of a template I∗

(that is a set of pixels) in an image sequence. To define the

template I∗, the usual method is to extract it from the very

first image of the sequence. Then, considering a dissimilarity

function f , the problem can be written as:

µ̂ = argmin
µ

f(I∗, w(I,µ)) (1)

where I is the current image of the sequence and w(I,µ)
is the template warped thanks to the estimated displacement

function (see section 2.4).

2.1. Classical dissimilarity measure: SSD

Most approaches consider the Sum of Squared Differences

(SSD) as their registration function. It is the most natural one

since it consists in a direct difference between pixel luminosi-



ties in I∗ and I . Equation (1) then becomes:

µ̂ = argmin
µ

SSD(I∗, w(I,µ))

= argmin
µ

Nx∑

k=0

[I∗(xk)− I(w(xk,µ))]
2

(2)

where Nx is the number of pixels in I∗.

2.2. Considered dissimilarity measure: SCV

Recently, it has been proposed a tracking algorithm based on

the sum of conditional variance [7]. The SCV is a template-

based dissimilarity function but rather than using the raw tem-

plate I , as it is the case for the SSD, it is adapted, at each new

frame, to match the illumination conditions of the template

image I∗, creating an adapted patch Î thanks to an expecta-

tion operator E :

Î(x) = E(I∗(x) | I(x)). (3)

This operator computes, for each grey level in I , an adapted

one which reflects the changes the current template needs to

undergo to match the illumination conditions of I∗:

Î(j) =
∑

i

i
pII∗(i , j )

pI(j )
(4)

where pI and pII∗ are respectively the probability density

function and joint probability density function of I and I∗:

pII∗(i, j) = P (I∗(x) = i , I(x) = j ) (5)

=
1

Nx

Nx∑

k=1

α(I∗(xk)− i)α(I(xk)− j )

where α(u) = 1 if and only if u = 0. From this, the proba-

bility density function of I is given by:

pI(i) =
∑

j

pII∗(i, j). (6)

Finally, the difference function is given by:

SCV =

Nx∑

k=1

[
I∗(xk )− Î(w(xk,µ))

]2
(7)

which can be expressed within a differential template tracking

task:

µ̂ = argmin
µ

Nx∑

k=0

[
I∗(xk)− Î(w(xk,µ))

]2
. (8)

2.3. Displacement computation

To solve this problem, a classic way to proceed is to adopt

an inverse compositional scheme. It consists in searching an

increment of displacement ∆µ for each new frame and using

it to update the global displacement µ:

∆̂µ = argmin
∆µ

Nx∑

k=0

[
I∗(w−1(xk,∆µ))− Î(w(xk,µ))

]2

(9)

where w−1 represents the inverse warping function which is

defined for two points y and z by:

y = w(z,µ)

z = w−1(y,µ) = w(y,µ−1).

Given equation (9), a Taylor expansion leads to:

SCV (∆µ) ≃
[
I∗ − w(̂I,µ) + J(∆µ)∆µ

]2
(10)

where I∗ and Î are the vectors composed of every points

in I∗ and Î . J(∆µ) is the Jacobian matrix associated to

SCV (∆µ), which is defined as:

J(∆µ) = ∇I∗
∂w

∂∆µ
(11)

where ∇I∗ is the gradient of I∗. Let us note that the inverse

composition scheme allows us to compute J(∆µ) only once

since it is constant throughout the tracking phase. From equa-

tion (10), a simple optimization step can be iterated where

first an increment is computed:

∆̂µ = −J+(∆µ)
[
I∗ − w(̂I,µ)

]
(12)

and then the current displacement parameters are updated

thanks to:

µ← µ ◦∆µ
−1 (13)

where ◦ is the composition operator (which depends on the

warp function). Let us also precise that more evolved opti-

mization schemes such as ESM [13] or Levenberg-Marquardt

optimizations can also be considered.

2.4. Warping functions

Several warping functions have been considered over the

years. From the simplest translation with two parame-

ters [14, 4] to more complex transformations such as affine

transformations [5] which adds more freedom of displace-

ment or homographies which traduce the displacement of a

plane [15, 14, 4]. The limit of those approaches is that they

consider the displacement of a rigid object. If the consid-

ered template undergoes deformations, they are not defined

to cope with them. To prevent these drawbacks, we propose

to use a deformable motion warp. Several warping functions

can be considered such as Free Form Deformations [9] or

Radial Basis Functions [10, 11]. In this work we propose to

use a Thin-plate Spline warp [12].



2.5. Thin-plate Spline warp

Thin-plate spline(TPS) warps belong to the radial basis func-

tions warps. They minimize the bending energy of the surface

they parameterize based on a set of control points inducing

space coherency constraints. They are based on a thin-plate

kernel:

φTPS(x) =
x(4−p) log(x)

α
(14)

where α and p are parameters that control the freedom given

to the deformation. In the remainder of this work, we consider

α = 2 and p = 2, leading to:

φ(x) =
x2 log(x)

2
. (15)

The TPS warp can be seen as an extension of an affine trans-

formation. It is composed of such a warp but adds the possi-

bility of a deformation thanks to the TPS kernel. The consid-

ered warping function for our algorithm is then:

w(x,µ) =

(
a0 a1
a3 a4

)
x+

(
a2
a5

)
+

Np∑

k=1

(
wk

x

wk
y

)
φ(d(x, ck)).

(16)

where Np is the number of considered control points c, wk
x

is the weight of the kth control point along the x axis and

d(x,y) is the euclidean distance between two points x and y.

From equation (16), we can deduce a warp parameter vector

of dimension 2Np + 6:

µ
⊤ = (a0 a1 a2 a3 a4 a5 w⊤

x w⊤

y ). (17)

Those parameters can be computed thanks to the following

system [12]:

(
K+ λId P

P⊤ 03×3

)(
Ω

A⊤

)
=

(
P′

03×2

)
. (18)

A is the matrix composed of the affine transformation param-

eters:

A =

(
a0 a1 a2
a3 a4 a5

)
. (19)

Ω is the matrix composed of the weights associated to the

control points:

Ω⊤ =

(
w0

x ... wp
x

w0
y ... wp

y

)
. (20)

K is given by Ki,j = φ(d(ci, cj)), P =
(
cxj c

y
j 1

)
and

P′ =
(
c′

x
j c′

y
j 1

)
where c′k is the kth control point once

displaced. Let us add that λId is a regularization term and

that the null matrices are added in order to ensure side con-

ditions. The bigger λ is, the closer the TPS is to an affine

transformation. Then, to be able to use this displacement in

our algorithm, let us express how the inverse warp parameters

are computed. The transfer matrix used in equation (18) is

invertible by blocs, leading to:
(

Ω

A⊤

)
= EλP

′ (21)

where Eλ is the matrix resulting of the invert of the transfer

matrix expressed in equation (18) which is given by:

Eλ =

(
K−1

(
Id−P

(
P⊤K−1P

)−1
P⊤K−1

)

(
P⊤K−1P

)−1
P⊤K−1

)
. (22)

We can revert the warp from the current control points set P0

to P as in [16] giving a new set P′ thanks to the following

system:

P′ = (OpEλ)
−1P0. (23)

In this case Op is a transfer matrix which ith line Opi
is given

by:

Opi
=
(
φ(d2(Pi,P

0
0))...φ(d

2(Pi,P
0
Np−1))P

⊤

i 1
)
. (24)

Finally, let us express the derivative of the warp result with

relation to its parameters as needed to compute the Jacobian

of our task in equation (11):

∂wTPS

∂∆µ
=
(
JA JΩ

)
(25)

where:

JA=

(
x y 1 0 0 0
0 0 0 x y 1

)

JΩ=

(
φ(x, c0) ... φ(x, cNp

) 0 ... 0
0 ... 0 φ(x, c0) ... φ(x, cNp

)

)

3. EXPERIMENTAL RESULTS

To validate our approach, several experiments were realized.

For each sequence, a rectangular template is defined on the

very first image of the sequence to be registered all along the

video sequence. A number of control points is determined

and a regular grid matching that number is generated. As-

sumption is made that all the pixels of the template belong

to the same plane, which can be relatively inexact in some

cases. The SCV is computed on the current and template im-

ages quantified over 64 histogram bins so as to smooth the

cost function without losing image information [5, 17].

3.1. Tracking in nominal conditions

A first experiment was done to validate our approach in nom-

inal conditions. The template is here represented on a piece

of paper which is deformed and moved all along the sequence

(see figure 1a). We can see that even with a consequent bend-

ing of the template the TPS warp matched correctly the defor-

mation and displacement of the paper. Then, the tracking was

performed on a sequence where a shirt is deformed. Figure 1b

shows that there again, the TPS warp allows our algorithm to

cope with that non-rigid displacement.



Frame 0 Frame 31

Frame 42 Frame 95

(a) Results of the tracking algorithm in nominal conditions using 256

points. We can see that the shape of the template is correctly matched

by the grid of control points.

Frame 0 Frame 74

Frame 284 Frame 330

(b) Results of the tracking algorithm in nominal conditions using 196

points. We can see that the template is correctly deformed when the

shirt is moved.

Fig. 1: Results of the proposed algorithm in nominal conditions.

Frame 0 Frame 72

Frame 95 Frame 139

(a) Results of the tracking algorithm in changing conditions using 100

points. We can see that the shape of the template is correctly matched by

the grid of control points even when the current illumination is totally

different from the reference.
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Fig. 2: Results of the proposed algorithm in changing conditions.

3.2. Tracking in changing conditions

Our last experiment was realized in order to evaluate our

choice of the SCV as a registration function. To do that, we

changed the luminosity conditions during the sequence by

switching on and off the light of the room. In those condi-

tions, a SSD version of the algorithm was lost as soon as the

light changed at iteration 92 (see figure 2b) whereas the SCV

completed it without any problems even when brutal changes

were applied to the illumination conditions (see figure 2a).

We can see on figure 2a the effects of the regularization term

on the edges of the template. When the bending is too im-

portant, the registration loses in precision along the borders

temporarily to keep bending energy low but when the de-

formation decreases the precision is recovered without any

problem. It is also possible to see it on figure 2b where the

SCV increases at iteration 95 when bending is too important

but gets back to a small value as the bending decreases.

4. CONCLUSION

In this paper we proposed a visual tracking approach that al-

lows to track a deformable template throughout scenes with

changing lightning conditions. It consists in an optimization

of the sum of conditional variances, which is by definition ro-

bust in these conditions. The optimization is done over the

parameters of a thin-plate spline warping function to allow

non-rigid deformations to happen during the sequence. Fu-

ture works could consider more robust similarity measures

such as for example the mutual information which would al-

lows more robustness towards local variations of the scene.
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