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Abstract The transfer of geometrical data from CAD (Computer Aided De-

sign) to FEA (Finite-Element Analysis) is a bottleneck of automated design

optimization procedures, yielding a loss of accuracy and cumbersome software

couplings. Isogeometric analysis methods propose a new paradigm, that allows

one to overcome these difficulties by using a unique geometrical representation,

yielding a direct relationship between geometry and analysis. In this study, in

the framework of linear elasticity problems, we investigate its use for sensitivity

analysis and, more specifically, shape gradient computations.
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1 Introduction

Multi-disciplinary optimization procedures are nowadays commonly used by

engineers to solve complex problems. However, the processing of the geomet-

rical data through the design loop is still a delicate issue: several different

representations of the geometry coexist and several conversions are required,

yielding additional overhead and extra difficulties from the theoretical and

practical point of view. Usually, the geometry of the engineering system of

interest is defined using CAD (Computer Aided Design) software, on the basis

of high-order representations. NURBS (Non-Uniform Rational B-Spline) basis

functions are considered as standard in this context [1]. Cubic functions are

often used, exhibiting a C2 regularity. The predominant analysis tools used

to solve PDEs, such as FEA (Finite-Element Analysis) software, rely on a

grid to describe the computational domain, which defines the geometry with

piecewise linear functions and C0 regularity only. It is remarkable that some

errors are introduced before the beginning of any physical analysis. In the con-

text of design optimization, some inconsistencies occur, since the performance

estimation is based on the approximate geometry, whereas the optimizer up-

dates the high-order NURBS representation. The same inconsistencies hold

for gradient estimates, if a gradient-based optimization method is employed.

The isogeometric analysis approach, proposed recently by Hughes et. al. [2],

promises to resolve, or at least alleviate, these issues. Therefore, this study is

devoted to the estimation of shape derivatives in this particular context and

the application to optimization problems ruled by linear elasticity equations.
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2 Isogeometric Analysis in Linear Elasticity

We consider an open domain Ω ⊂ R
d, which represents a deformable solid

subject to external forces g, in d = 2 or d = 3 dimensions. Its boundary

is composed of three disjoint parts, ∂Ω = ΓN ∪ ΓD ∪ Γ with Γ ∩ ΓD = ∅,

Γ ∩ ΓN = ∅ and ΓN ∩ ΓD = ∅. Dirichlet and Neumann boundary condi-

tions are prescribed, respectively, on ΓD and ΓN , whereas Γ is considered as

optimization variable (moving boundary). The governing equations of linear

elasticity describe the displacement field u as solution of the PDE system:















−div σ(u) = 0 inΩ, u = 0 onΓD,

σ(u) · n = g onΓN , σ(u) · n = 0 onΓ,

(1)

where n is the outward unit normal vector and σ(u) the second-order stress

tensor, defined by Hooke’s law. The variational formulation of Eq. (1) is the

starting point for isogeometric analysis. The weak form reads as follows: Find

the physical displacement field u ∈ V =
{

ϕ ∈ H1(Ω)d , ϕ = 0onΓD

}

such

that:

∫

Ω

[

2µ ǫ(u) : ǫ(v) + λ divu divv
]

dΩ =

∫

ΓN

g .v dΓ ∀v ∈ V. (2)

Isogeometric analysis [2] is aimed at a better integration of FEA and CAD

methods, by using a unique representation basis for the geometry and the

discrete solution fields. It proposes to discretize the computational domain ex-

actly, by using a NURBS basis originating from CAD. NURBS basis functions

are defined in a parametric domain Ω0. They can be represented in the physical

domain Ω by introducing the transformation F : Ω0 → Ω, ξ 7→ F (ξ) = x(ξ).
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E.g., for d = 2, any point of coordinates x = (x, y)T in the physical domain Ω

is mapped to a point of parameters ξ = (ξ, η),T in the parametric domain Ω0.

Two- or three-dimensional NURBS basis functions are defined as the bivari-

ate or trivariate tensor product of one-dimensional basis functions. The latter

have compact supports and are constructed using the so-called knot vector

Ξ = (ξ0, . . . , ξl) ∈ R
l+1, with l = n+ p+ 1, where p is the degree of the func-

tions and n the number of functions considered [1]. NURBS basis functions

are rational extensions of B-Spline basis functions Ni,p i = 0, · · · , n, that are

computed recursively by Ni,0(ξ) = 1, if ξi ≤ ξ < ξi+1, 0 otherwise, and:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3)

Note that the quotient 0/0 is defined as zero. The transformation of the para-

metric domain Ω0 to the physical domain Ω is defined by associating a control

point to each basis function. E.g., for d = 2, we have:

x(ξ, η) =
∑

i∈I

∑

j∈J

Ni(ξ)Nj(η)Xij , (4)

where Xij ∈ R
2 represents the coordinates of the control point of indices (i, j)

in the physical domain. Using such a representation, the domain Ω is described

as a single B-Spline patch, without approximation by a piecewise linear grid.

In the isogeometric paradigm, the same representation is employed for both

the geometry and the physical fields. Therefore, the discretized displacement

field uh is constructed as linear combination of the B-Splines that define the

geometry:

uh(x) =
∑

i∈I

∑

j∈J

Ni(ξ)Nj(η)Uij =
∑

i∈I

∑

j∈J

N̂ij(x)Uij , (5)
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where the basis functions N̂ij(x) are defined by N̂ij ◦ F (ξ, η) = Ni(ξ)Nj(η).

Consequently, the restriction of the variational formulation leads to a system

of linear equations KU = F:

Kij,kl =

∫

Ω

[

2µ ǫ(N̂ij).ǫ(N̂kl) + λ div(N̂ij) div(N̂kl)
]

dΩ,

Fkl =

∫

ΓN

g . N̂kl dΓ.

(6)

The entries of the stiffness matrix, and also those of the force vector F, are

computed by applying classical quadrature rules in the parametric domain, in

accordance with the evaluation process of the B-Spline functions in Eq. (3).

3 Shape Gradient Computation

As optimization problem, we consider the minimization of the compliance

functional. To be well posed, i.e. admit at least one solution, this problem

requires some smoothness or geometrical constraints [3]. Therefore, β > 0

being a positive Lagrange multiplier, we consider the minimization problem:

min
Ω∈Uad

L(Ω, β) , L(Ω, β) =

∫

ΓN

g .u dΓ + β

(
∫

Ω

dΩ − V0

)

, (7)

where V0 is the initial volume and Uad =
{

Ω ⊂ R
d,

∫

Ω
dΩ = V0

}

.

In order to solve the problem in Eq. (7) using a gradient-based method, we

introduce the concept of shape derivative [4], in the context of isogeometric

approximations. The theoretical foundations of this concept can be found in [5]

and applications in [6]. Let v : Rd → R
d denote a sufficiently smooth admis-

sible vector field, that defines the shape deformation due to the optimization

process. By differentiating Eq. (7), under the assumptions that g,u ∈ H2(Ω)d,
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it can be shown that the shape derivative of the Lagrangian, for a given shape

deformation v, is:

dL(Ω, β;V ) =

∫

Γ

(

β −
(

2µ |ǫ(u)|2 + λ |divu|2
)

)

v.n dΓ. (8)

Therefore, a possible choice to ensure a compliance decrease [3] is to consider a

shape deformation defined by v =
(

2µ |ǫ(u)|2+λ |divu|2−β
)

n on Γ , and 0 on

ΓD∪ΓN , where β is chosen to satisfy the constraint. It is convenient to extend

this definition on the whole domain Ω, in order to update the geometry as a

whole. Finally, the deformation field is defined by solving a second elasticity

problem:






























−div σ(v) = 0 in Ω,

v = 0 on ΓD ∪ ΓN ,

σ(v) · n = (2µ|ǫ(u)|2 + λ|divu|2 − β)n on Γ.

(9)

One can notice that, in Eq. (9), we do not impose the deformation field v

on the boundary Γ as a Dirichlet condition. Instead, we consider a Neumann

condition for v. Indeed, the use of such a Neumann boundary condition en-

ables to increase the regularity of the deformation field v, which may suffer

from a loss of regularity [3]. This approach ensures the shape change to be a

descent direction [3]. Concluding, the problem defined by Eq. (9) is solved by

using exactly the same approach as for the linear elasticity problem given by

Eq. (1). In particular, an isogeometric approximation is employed, yielding a

deformation of the domain in terms of control point displacements. The shape

optimization procedure can be summarized by the following algorithm:

1. Initialization of the domain defined by the control points X0 and k = 0
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2. Start of optimization loop

3. Solve system (6) yielding the structural displacement Uk

4. Solve system (9) yielding the shape deformation Vk

5. Initialization of step length tk

6. Compute the multiplier βk such that Xk+1 = Xk + tkVk is admissible

7. Solve system (6) yielding the structural displacement Uk+1

8. Compute the compliance for (Xk+1,Uk+1)

9. If Goldstein-Armijo criteria not fulfilled, tk is updated and goto (6)

10. If converged then stop, else k ← k + 1 and goto (3)

11. End of optimization loop

The determination of the Lagrange multiplier βk for each domain update is

achieved by solving an internal one-parameter problem. Details regarding the

procedure can be found in [7]. We underline the fact that, according to the

isogeometric analysis paradigm, a unique basis is used to represent the geom-

etry of the domain, the structural displacement field and the deformation field

for the optimization.

4 An Application

The proposed methodology is applied to a 3D problem. The objective is to

optimize the shape of an open-spanner, as illustrated by Fig. 1. Two prob-

lems are considered successively: in a first optimization exercise, only the top

and bottom boundaries are considered as optimization variables, whereas in

a second exercise, the shape of the lateral boundaries is also optimized. The
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objective is the reduction of the compliance, subject to a constant volume

constraint. Additional constraints are also imposed to maintain the shape of

the open-spanner symmetric with respect to horizontal and vertical planes.

Fig. 1 Description of the open-spanner test-case.

The domain is parameterized using linear basis functions in the vertical and

crosswise directions, and quadratic functions in the lengthwise direction. The

net of control points counts 6×7×2 points, respectively, in horizontal, vertical

and crosswise directions. Thus, the two optimization exercises account for 48

and 192 variables. The evolution of the cost function during the optimization

procedure is displayed in Fig. 2. As seen, convergence is achieved in a few

iterations and a very low computational time. A comparison of initial and

final displacement fields is depicted in Fig. 3. The optimization procedure

yields an enlargement of the left part of the open-spanner, whereas the right

part becomes thinner to fulfill the constant volume constraint. For the second

exercise, the open-spanner is made thinner in the crosswise direction, which

enables to enlarge it significantly in the left part.
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Fig. 2 Cost function evolution for the two optimization exercises with respect to CPU time.

Fig. 3 Comparison of the initial (bottom) and final (top) displacement fields for the first

(left) and second (right) exercises.

5 Conclusions

This study has demonstrated that isogeometric analysis provides an attrac-

tive theoretical and practical framework for sensitivity analysis and shape
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derivative computations. The concept of shape derivatives has been set-up in

this context, for linear elasticity problems, and used for practical shape opti-

mization exercises. Although the current approach has been restricted to the

minimization of the compliance, it could be extended to other functionals by

solving the corresponding adjoint problem.

Nevertheless, several improvements are still required to face industrial

problems: from a practical point of view, the approach needs to be extended

to multi-patch representations. Moreover, local refinement techniques should

be introduced to improve computational efficiency. In this context, the major

challenges are the control of the regularity at the patch boundaries and the

linear independency of the refined basis functions [8].
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