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Abstract—The analysis of massive data streams is fundamental
in many monitoring applications. In particular, for networks
operators, it is a recurrent and crucial issue to determine whether
huge data streams, received at their monitored devices, are
correlated or not as it may reveal the presence of malicious
activities in the network system. We propose a metric, called
codeviation, that allows to evaluate the correlation between
distributed streams. This metric is inspired from classical metric
in statistics and probability theory, and as such allows us to
understand how observed quantities change together, and in
which proportion. We then propose to estimate the codeviation in
the data stream model. In this model, functions are estimated on a
huge sequence of data items, in an online fashion, and with a very
small amount of memory with respect to both the size of the input
stream and the values domain from which data items are drawn.
We give upper and lower bounds on the quality of the codeviation,
and provide both local and distributed algorithms that additively
approximates the codeviation among n data streams by using
O ((1/ε) log(1/δ) (logN + logm)) bits of space for each of the
n nodes, where N is the domain value from which data items
are drawn, and m is the maximal stream’s length. To the best of
our knowledge, such a metric has never been proposed so far.

Index Terms—Data stream model; correlation metric; dis-
tributed approximation algorithm; DDoS attacks.

I. INTRODUCTION AND BACKGROUND

Performance of many complex monitoring applications, in-

cluding Internet monitoring applications, data mining, sensors

networks, network intrusion/anomalies detection applications,

depend on the detection of correlated events. For instance, de-

tecting correlated network anomalies should drastically reduce

the number of false positive or negative alerts that networks

operators have to currently face when using network manage-

ment tools such as SNMP or NetFlow. Indeed, to cope with

the complexity and the amount of raw data, current network

management tools analyze their input streams in isolation [1],

[2]. Diagnosing flooding attacks through the detection of

correlated flows should improve intrusions detection tools as

proposed in [3], [4], [5]. In the same way, analyzing the

effect of multivariate correlation for an early detection of

Distributed Denial of Service (DDoS) is shown in [6]. The

point is that, in all these monitoring applications, data streams

arrive at nodes in a very high rate and may contain up to

several billions of data items per day. Thus computing statistics

with traditional methods is unpractical due to constraints on

both available processing capacity, and memory. The problem

tackled in this paper is the on-line estimation of data streams

correlation. More precisely, we propose a distributed algorithm

that approximates with guaranteed error bounds in a single

pass the linear relation between massive distributed sequences

of data.

Two main approaches exist to monitor in real time massive

data streams. The first one consists in regularly sampling the

input streams so that only a limited amount of data items

is locally kept. This allows to exactly compute functions on

these samples. However, accuracy of this computation with

respect to the stream in its entirety fully depends on the

volume of data items that has been sampled and their order

in the stream. Furthermore, an adversary may easily take

advantage of the sampling policy to hide its attacks among

data items that are not sampled, or in a way that prevents its

“malicious” data items from being correlated [7]. In contrast,

the streaming approach consists in scanning each piece of data

of the input stream on the fly, and in locally keeping only

compact synopses or sketches that contain the most important

information about these data. This approach enables to derive

some data streams statistics with guaranteed error bounds

without making any assumptions on the order in which data

items are received at nodes. Most of the research done so

far with this approach has focused on computing functions or

statistics measures with error ε using poly(1/ε, log n) bits of

space where n is the domain size of the data items. These

include the computation of the number of different data items

in a given stream [8], [9], [10], the frequency moments [11],

the most frequent data items [11], [12], the entropy of the

stream [13], [14], [15], or the information divergence over

streams [16].

On the other hand, very few works have tackled the dis-

tributed streaming model, also called the functional moni-

toring problem [17], which combines features of both the

streaming model and communication complexity models. As

in the streaming model, the input data is read on the fly,

and processed with a minimum workspace and time. In the

communication complexity model, each node receives an input

data stream, performs some local computation, and commu-

nicates only with a coordinator who wishes to continuously

compute or estimate a given function of the union of all the

input streams. The challenging issue in this model is for the

coordinator to compute the given function by minimizing the



number of communicated bits [17], [18], [19]. Cormode et

al. [17] pioneer the formal study of functions in this model

by focusing on the estimation of the first three frequency

moments F0, F1 and F2 [11]. Arackaparambil et al. [18]

consider the empirical entropy estimation [11] and improve the

work of Cormode by providing lower bounds on the frequency

moments, and finally distributed algorithms for counting at any

time t the number of items that have been received by a set of

nodes from the inception of their streams have been proposed

in [20], [21].

In this paper, we go a step further by studying the dispersion

matrix of distributed streams. Specifically, we propose a novel

metric that allows to approximate in real time the correlation

between distributed and massive streams. This metric, called

the sketch codeviation, allows us to quantify how observed

data items change together, and in which proportion. As shown

in [22], such a network-wide traffic monitoring tool should

allow monitoring applications to get significant information

on the traffic behaviour changes to subsequently inform more

detailed detection tools on where DDoS attacks are currently

active.

We give upper and lower bounds on the quality of

this approximated metric with respect to the codeviation.

As in [6], we use the codeviation analysis method, which

is a statistical-based method that does not rely upon any

knowledge of the nominal packet distribution. We then pro-

vide a distributed algorithm that additively approximates

the codeviation among n data streams σ1, . . . , σn by using

O ((1/ε) log(1/δ) (logN + logm)) bits of space for each of

the n nodes, where N is the domain size from which items

values are drawn, and m is the largest size of these data

streams (more formally, m = maxi∈[n] ‖Xσi
‖1 where Xσi

is the fingerprint vector representing the items frequency in

stream σi). We guarantee that for any 0 < δ < 1, the maximal

error of our estimation is bounded by εm/N . To the best of

our knowledge, such a work has never been done so far.

The remaining of the paper is organized as follows. First,

Section II describes the computational model and some nec-

essary background that makes the paper self-contained. Sec-

tion III formalizes the sketch codeviation metric and studies

its quality. Section IV presents the algorithm that computes

the sketch codeviation between any two data streams, while

Section V extends it to a distributed setting. Quality of both al-

gorithms are analysed. Section VI presents some performance

evaluation results. Finally, we conclude in Section VII.

II. DATA STREAM MODEL

A. Model

We present the computation model under which we ana-

lyze our algorithms and derive lower and upper bounds. We

consider a set of n nodes S1, . . . , Sn such that each node Si

receives a large sequence σSi
of data items or symbols. We

assume that streams σS1
, . . . , σSn

do not necessarily have the

same size, i.e., some of the items present in one stream do

not necessarily appear in others or their occurrence number

may differ from one stream to another one. We also suppose

that node Si (1 ≤ i ≤ n) does not know the length of its

input stream. Items arrive regularly and quickly, and due to

memory constraints (i.e., nodes can locally store only a small

amount of information with respect to the size of their input

stream and perform simple operations on them), need to be

processed sequentially and in an online manner. Nodes cannot

communicate among each other. On the other hand, there

exists a specific node, called the coordinator in the following,

with which each node may communicate [17]. We assume that

communication is instantaneous. We refer the reader to [23] for

a detailed description of data streaming models and algorithms.

B. Preliminaries

We first present notations and background that make this

paper self-contained. Let σ be a stream of data items that

arrive sequentially. Each data item i is drawn from the universe

Ω = {1, 2, . . . , N}, where N is very large. A natural approach

to study a data stream σ of length m′ is to model it as a

fingerprint vector (or item frequency vector) over the universe

Ω, given by X = (x1, x2, . . . , xN ) where xi represents the

number of occurrences of data item i in σ. Note that 0 ≤
xi ≤ m′. We have ‖X‖1 =

∑
i∈Ω xi, i.e., ‖X‖1 is the norm

of X . Thus m′ = ‖X‖1.

1) Codeviation: In this paper, we focus on the computation

of the deviation between any two streams using a space

efficient algorithm with some error guarantee. The extension to

a distributed environment σ1, . . . , σn is studied in Section V.

We propose a metric over fingerprint vectors of items, which is

inspired from the classical covariance metric in statistics. Such

a metric allows us to qualify the dependance or correlation

between two quantities by comparing their variations. As

will be shown in Section VI, this metric captures shifts in

the network-wide traffic behavior when a DDoS attack is

active. The codeviation between any two fingerprint vectors

X = (x1, x2, . . . , xN ), and Y = (y1, y2, . . . , yN ) is the real

number denoted cod(X,Y ) defined by

cod(X,Y ) =
1

N

∑

i∈Ω

(xi−x)(yi−y) =
1

N

∑

i∈Ω

xiyi−x y (1)

where x =
1

N

∑

i∈Ω

xi and y =
1

N

∑

i∈Ω

yi.

2) 2-universal Hash Functions: In the following, we use

hash functions randomly picked from a 2-universal hash

family. A collection H of hash functions h : {1, . . . ,M} →
{0, . . . ,M ′} is said to be 2-universal if for every h ∈ H and

for every two different items x, y ∈ [M ], P{h(x) = h(y)} ≤
1

M ′ , which is exactly the probability of collision obtained if

the hash function assigns truly random values to any x ∈ [M ].

3) Randomized (ε, δ)-additively-approximation Algorithm:

A randomized algorithm A is said to be an (ε, δ)-additively-

approximation of a function φ on σ if, for any sequence

of items in the input stream σ, A outputs φ̂ such that

P{| φ̂− φ |> ε} < δ, where ε, δ > 0 are given as parameters

of the algorithm.



III. SKETCH CODEVIATION

As presented in the Introduction, we propose a statistic tool,

named the sketch codeviation, which allows to approximate

the codeviation between any two data streams using compact

synopses or sketches. We then give bounds on the quality of

this tool with respect to the computation of the codeviation

applied on full streams.

Definition 1 (Sketch codeviation) Let X and Y be any two

fingerprint vectors of items, such that X = (x1, . . . , xN ) and

Y = (y1, . . . , yN ). Given a precision parameter k, we define

the sketch codeviation between X and Y as

ĉodk(X,Y ) = min
ρ∈Pk(Ω)

cod
(
X̂ρ, Ŷρ

)

= min
ρ∈Pk(Ω)

(
1

N

∑

a∈ρ

X̂ρ(a)Ŷρ(a)

−

(
1

N

∑

a∈ρ

X̂ρ(a)

)(
1

N

∑

a∈ρ

Ŷρ(a)

))

where ∀a ∈ ρ, X̂ρ(a) =
∑

i∈a

xi, and Pk(Ω) is a k-cell partition

of Ω, i.e., the set of all the partitions of the set Ω into exactly

k nonempty and mutually disjoint sets (or cells).

Lemma 2 Let X = (x1, . . . , xN ), and Y = (y1, . . . , yN ) be

any two fingerprint vectors. We have

ĉodN (X,Y ) = cod(X,Y )

Proof: It exists a unique partition ρN of N into exactly

N nonempty and mutually disjoint sets, such that ρN is made

of N singletons ρN = {{1}, {2}, . . . , {N}}. Thus for any cell

a ∈ ρN , there exists a unique i ∈ Ω such that X̂ρ(a) = xi.

Thus, X̂ρ = X and Ŷρ = Y .

Note that for k > N , it does not exist a partition of N into

k nonempty parts. By convention, for k > N , ĉodk(X,Y ) =

ĉodN (X,Y ).

Proposition 3 The sketch codeviation is a function of the

codeviation. We have

ĉodk(X,Y ) = cod(X,Y ) + Ek(X,Y )

where Ek(X,Y ) = min
ρ∈Pk(Ω)

1

N

∑

a∈ρ

∑

i∈a

∑

j∈ar{i}

xiyj .

Proof: From Relation (1), we have

ĉodk(X,Y )

= min
ρ∈Pk(Ω)

((
1

N

∑

a∈ρ

X̂ρ(a)Ŷρ(a)

)

−

(
1

N

∑

a∈ρ

X̂ρ(a)

)(
1

N

∑

a∈ρ

Ŷρ(a)

))

= min
ρ∈Pk(Ω)

((
1

N

∑

a∈ρ

(∑

i∈a

xi

)(∑

i∈a

yi

))

−

(
1

N

∑

i∈Ω

xi

)
 1

N

∑

j∈Ω

yj






= min
ρ∈Pk(Ω)




 1

N

∑

a∈ρ


∑

i∈a

∑

j∈a

xiyj




− xy




= cod(X,Y ) + min
ρ∈Pk(Ω)

1

N

∑

a∈ρ

∑

i∈a

∑

j∈ar{i}

xiyj .

which concludes the proof.

The value Ek(X,Y ) (which corresponds to the minimum

sums over any partition ρ in Pk(Ω)) represents the overes-

timation factor of the sketch codeviation with respect to the

codeviation.

A. Derivation of Lower Bounds on Ek(X,Y )

We first show that if k is large enough, then the overesti-

mation factor Ek(X,Y ) is null, that is, the sketch codeviation

matches exactly the codeviation.

Theorem 4 (Accuracy of the sketch codeviation) Let X and

Y be any two fingerprint vectors of items, such that X =
(x1, . . . , xN ) and Y = (y1, . . . , yN ). Then ĉodk(X,Y ) =
cod(X,Y ) if

k ≥ | supp(X) ∩ supp(Y ) | +1supp(X)rsupp(Y )

+ 1supp(Y )rsupp(X)

where supp(X), respectively supp(Y ), represents the support

of distribution X , respectively Y (i.e., the set of items in Ω
that have a non null frequency xi 6= 0, respectively yi 6= 0, for

1 ≤ i ≤ N ), and notation 1A denotes the indicator function

which is equal to 1 if the set A is not empty and 0 otherwise.

Proof: Two cases are examined.

• Case 1:

Let k =| supp(X) ∩ supp(Y ) | +1supp(X)rsupp(Y ) +
1supp(Y )rsupp(X). We consider a partition ρ ∈ Pk(Ω)
defined as follows




∀ℓ ∈ supp(X) ∩ supp(Y ), {ℓ} ∈ ρ
supp(X)r supp(Y ) ∈ ρ

supp(X)∁ ∈ ρ
(2)



Then from Relation (2) we have




∀ℓ ∈ supp(X) ∩ supp(Y ),
∑

i∈{ℓ}

∑

j∈{ℓ}r{i}

xiyj = 0

∀ℓ ∈ supp(X)r supp(Y ), yℓ = 0

∀ℓ ∈ supp(X)∁, xℓ = 0.

Thus,
∑

a∈ρ

∑
i∈a

∑
j∈ar{i} xiyj = 0. From Proposi-

tion (3), we get that ĉodk(X,Y ) = cod(X,Y ).
• Case 2:

For k >| supp(X) ∩ supp(Y ) | +1supp(X)rsupp(Y ) +
1supp(Y )rsupp(X) (and k < N ), it is always possible

to split one of the two last cells of ρ as defined in

Relation (2) with a singleton {ℓ} such that xℓ = 0 or

yℓ = 0.

Both cases complete the proof.

B. Derivation of Upper Bounds on Ek(X,Y )

We have shown with Theorem 4 that the sketch codeviation

matches exactly the codeviation if k ≥| supp(X)∩ supp(Y ) |
+1supp(X)rsupp(Y ) + 1supp(Y )rsupp(X). In this section, we

characterize the upper bound of the overestimation factor,

i.e., the error made with respect to the codeviation, when

k is strictly less than this bound. To prevent problems of

measurability, we restrict the classes of fingerprint vector

under consideration. Specifically, given mX and mY any

positive integers, we define the two classes X and Y as

X = {X = (x1, . . . , xN ) such that ||X||1 = mX } and Y =
{Y = (y1, . . . , yN ) such that ||Y ||1 = mY}. The following

theorem derives the maximum value of the overestimation

factor.

Theorem 5 (Upper bound of Ek(X,Y )) Let k ≥ 1 be the

precision parameter of the sketch codeviation. For any two

fingerprint vectors X ∈ X and Y ∈ Y , let Ek be the

maximum value of the overestimation factor Ek(X,Y ). Then,

the following relation holds.

Ek = max
X∈X ,Y ∈Y

Ek(X,Y ) =





mXmY

N
if k = 1,

mXmY

N

(
1

k
−

1

N

)
if k > 1.

Proof: The first part of the proof is directly derived from

Lemma 6. Using Lemmata 7 and 8, we obtain the statement

of the theorem.

Lemma 6 For any two fingerprint vectors X ∈ X and Y ∈ Y ,

the maximum value E1 of the overestimation factor is exactly

E1 = max
X∈X ,Y ∈Y

E1(X,Y ) =
mXmY

N
.

Proof: ∀X ∈ X , ∀Y ∈ Y , we are looking for the maximal

value of E1(X,Y ) under the following constraints:




0 ≤ xi ≤ mX with 1 ≤ i ≤ N,
0 ≤ yi ≤ mY with 1 ≤ i ≤ N,∑N

i=1 xi = mX ,∑N
i=1 yi = mY .

(3)

In order to relax one constraint, we set xN = mX −∑N−1
i=1 xi. We rewrite E1(X,Y ) as a function f such that

f(x1, . . . , xN−1, y1, . . . , yN )

=

N−1∑

i=1

N∑

j=1,j 6=i

xiyj +

(
mX −

N−1∑

i=1

xi

)
N−1∑

i=1

yi.

The function f is differentiable on its domain [0..mX ]N−1 ×
[0..mY ]

N . Thus we get

df

dxi

(x1, . . . , xN−1, y1, . . . , yN ) =

N∑

j=1,j 6=i

yj −

N−1∑

j=1

yj

= yN − yi.

We need to consider the following two cases:

1) yN > yi. Function f is strictly increasing, and its

maximum is reached for xi = mX (f is a Schur-convex

function). By Relation 3, ∀j ∈ Ωr {i}, xj = 0.

2) yN ≤ yi. Function f is decreasing, and its minimum is

reached at xi = 0.

By symmetry on Y , the maximum of E1(X,Y ) is reached

for a distribution for which exactly one yi is equal to mY , and

all the others yj are equal to zero, which corresponds to the

Dirac distribution. On the other hand, if the spike element of

Y is the same as the one of X , then E1(X,Y ) = 0, which is

clearly not the maximum.

Thus, for all X ∈ X and Y ∈ Y , the maximum E of the

overestimation factor when k = 1 is reached for two Dirac

distributions Xδ and Y δ respectively centered in i and j with

i 6= j, which leads to E1 =
1

N

N∑

i=1

N∑

j=1,j 6=i

xδ
i y

δ
j =

mXmY

N
.

We now show that for any k > 1, the maximum value of

overestimation factor of the sketch codeviation between X and

Y is obtained when both X and Y are uniform distributions.

Lemma 7 Let XU and YU be two uniform fingerprint vectors,

i.e., XU = (x1, . . . , xN ) with xi =
||XU ||1

N
for 1 ≤ i ≤ N and

YU = (y1, . . . , yN ) with yi =
||YU ||1

N
for 1 ≤ i ≤ N . Then for

any k > 1, the value of the overestimation factor is given by

Ek(XU , YU ) =
||XU ||1||YU ||1

N

(
1

k
−

1

N

)
.

Proof: By definition, Ek(XU , YU ) represents for a given k
the minimum overestimation factor for all k-cell partitions of

Ω, and in particular for any regular partition for which all the k
cells of the partition contain the same number N

k
of elements.

In such a partition, all the k disjoint cells of the cross product

matrix share the same value
||XU ||1||YU ||1

N2 . Therefore each

cell a has the same weight equal to
||XU ||1||YU ||1

N2

(
N2

k2 −
N
k

)
,

leading to

Ek(XU , YU ) =
k

N

||XU ||1||YU ||1
N2

(
N2

k2
−

N

k

)

=
||XU ||1||YU ||1

N

(
1

k
−

1

N

)



which concludes the proof.

Lemma 8 Let X ∈ X and Y ∈ Y be any two fingerprint

vectors. Then the maximum value of the overestimation factor

of the sketch codeviation when k > 1 is exactly

Ek = max
X∈X ,Y ∈Y

Ek(X,Y ) =
mXmY

N

(
1

k
−

1

N

)
.

Proof: Given X ∈ X and Y ∈ Y any

two fingerprint vectors, let us denote Eρk (X,Y ) =
1
N

∑
a∈ρ

∑
i∈a

∑
j∈ar{i} xiyj . Consider the partition ρ =

argminρ∈Pk(Ω) E
ρ
k (X,Y ) with k > 1. We introduce the

operator ·̃ that operates on fingerprint vectors. This operator

is defined as follows

• If it exists a ∈ ρ such that ∃ℓ, ℓ′ ∈ a with yℓ ≥ yℓ′ and

xℓ′ > 0, then operator ·̃ is applied on the pair (ℓ, ℓ′) of

X so that we have

{
x̃ℓ = xℓ + 1
x̃ℓ′ = xℓ′ − 1

.

• Otherwise, ∃a, a′ ∈ ρ with ∃ℓ ∈ a, ∃ℓ′ ∈ a′, xℓ ≥ xℓ′ >
0. Then operator ·̃ is applied on the pair (ℓ, ℓ′) of X so

that we have

{
x̃ℓ = xℓ + 1
x̃ℓ′ = xℓ′ − 1

.

• Finally, X is kept unmodified for all the other items, i.e.,

∀i ∈ Ωr {ℓ, ℓ′}, x̃i = xi.

It is clear that any fingerprint vectors can be constructed

from the uniform one, using several iterations of this operator.

Thus we split the proof into two parts. The first one supposes

that both fingerprint vectors X and Y are uniform while the

second part considers any two fingerprint vectors.

Case 1. Let XU and YU be two uniform fingerprint vectors,

i.e., XU = (x1, . . . , xN ) with xi = ||XU ||1
N

for 1 ≤ i ≤ N

and YU = (y1, . . . , yN ) with yi =
||YU ||1

N
for 1 ≤ i ≤ N .

We split the analysis into two sub-cases: the class of

partitions in which xℓ and xℓ′ belong to the same cell a of a

given k-partition ρ, and the class of partitions in which they

are located into two separated cells a and a′. Suppose first

that the ·̃ operator is applied on XU . Then the overestimation

factor is given by

Ek(X̃U , YU ) = min(E,E′) (4)

with





E = min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a

Eρk (X̃U , YU )

E′ = min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧ℓ ∈ a ∧ ℓ′ ∈ a′

Eρk (X̃U , YU ).

Let us consider the first term E. We have

E = min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a


 ∑

b∈ρr{a}

∑

i∈b

∑

j∈br{i}

x̃iyj

+
∑

i∈a

∑

j∈ar{i}

x̃iyj




= min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a


 ∑

b∈ρr{a}

∑

i∈b

∑

j∈br{i}

mXmY

N2

+
∑

i∈ar{ℓ,ℓ′}

∑

j∈ar{i}

mXmY

N2

+
∑

j∈ar{ℓ}

(mX

N
+ 1
) mY

N

+
∑

j∈ar{ℓ′}

(mX

N
− 1
) mY

N




= min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a

(Eρk (XU , YU ))

According to the second term E′, we have

E′ = min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧ℓ ∈ a ∧ ℓ′ ∈ a′




∑

b ∈ ρ

r{a, a′}

∑

i∈b

∑

j ∈ b

r{i}

mXmY

N2

+
∑

i∈ar{ℓ}

∑

j∈ar{i}

mXmY

N2

+
∑

i∈a′
r{ℓ′}

∑

j∈a′
r{i}

mXmY

N2

+
∑

j∈ar{ℓ}

(mX

N
+ 1
) mY

N

+
∑

j∈a′
r{ℓ′}

(mX

N
− 1
) mY

N




= min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧ℓ ∈ a ∧ ℓ′ ∈ a′

(
Eρk (XU , YU ) +

mY

N
(|a| − |a′|)

)

Thus, Ek(X̃U , YU ) ≤ Ek(XU , YU ). By symmetry, we have

Ek(XU , ỸU ) ≤ Ek(XU , YU ).
Case 2. In the rest of the proof, we show that for any X and

Y , we have Ek(X̃, Y ) ≤ Ek(X,Y ). Again, we split the proof

into two sub-cases according to Relation 4. We get for the first

term,

min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a

Eρk (X̃, Y )

= min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a


Eρk (X,Y ) +

∑

j∈ar{ℓ}

yj −
∑

j∈ar{ℓ′}

yj




= min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, ℓ, ℓ′ ∈ a

(Eρk (X,Y ) + yℓ′ − yℓ) .



For the second term, we have

min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧ℓ ∈ a ∧ ℓ′ ∈ a′

Eρk (X̃, Y )

= min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧ℓ ∈ a ∧ ℓ′ ∈ a′


Eρk (X,Y ) +

∑

j∈ar{ℓ}

yj −
∑

j∈a′
r{ℓ′}

yj


 .

By definition of the operator, if it exists a ∈ ρ such that

∃ℓ, ℓ′ ∈ a, then yℓ ≥ yℓ′ and so Eρk (X̃, Y ) ≤ Eρk (X,Y ).
Otherwise, ℓ and ℓ′ are in two separated cells of ρ, implying

that xℓ ≥ xℓ′ . We then have
∑

j∈ar{ℓ} yj ≤
∑

j∈a′
r{ℓ′} yj .

Indeed, suppose that by contradiction

xℓ

∑

j∈a′
r{ℓ′}

yj+xℓ′

∑

j∈ar{ℓ}

yj < xℓ

∑

j∈ar{ℓ}

yj+xℓ′

∑

j∈a′
r{ℓ′}

yj .

Let ρ′ be the partition corresponding to the partition ρ in which

ℓ and ℓ′ have been swapped. Then we obtain Eρ
′

k (X,Y ) <

Eρk (X,Y ), which is impossible by assumption on ρ. Thus,

in both cases we have Ek(X̃, Y ) ≤ Eρk (X̃, Y ) ≤ Eρk (X,Y ) =

Ek(X,Y ). By symmetry, we also have Ek(X, Ỹ ) ≤ Ek(X,Y ).
Thus we have shown that the maximum of any overesti-

mation factor is reached for the uniform fingerprint vector.

Lemma 7 concludes the proof.

So far, we have demonstrated that for any k ≥ 1, the

maximum value Ek of the overestimation factor of the sketch

codeviation is less than or equal to mXmY/N . We finally

show that, given X and Y , the overestimation factor Ek(X,Y )
is a decreasing function in k.

Lemma 9 Let X and Y be any two fingerprint vectors. We

have:

E1(X,Y ) ≥ E2(X,Y ) ≥ . . . ≥ Ek(X,Y ) ≥ . . . ≥ EN (X,Y ).

Proof:

• Case k = 1. By assumption, |P1(Ω)| = 1, i.e., there

exists a single partition which is the set Ω itself. Thus

we directly have

E1(X,Y ) =
1

N

∑

i∈Ω

∑

j∈Ωr{i}

xiyj . (5)

• Case k = 2. For any partition {a1, a2} ∈ P2(Ω), we

have

E1(X,Y )

=
1

N


∑

i∈a1

∑

j∈a1r{i}

xiyj +
∑

i∈a1

∑

j∈a2

xiyj

+
∑

i∈a2

∑

j∈a1

xiyj +
∑

i∈a2

∑

j∈a2r{i}

xiyj




= Eρ2 (X,Y ) +
1

N


∑

i∈a1

∑

j∈a2

xiyj +
∑

i∈a2

∑

j∈a1

xiyj




≥ E2(X,Y ).

• Case 2 < k < N. Let ρ = argminρ∈Pk(Ω) E
ρ
k (X,Y ),

i.e., partition ρ minimizes the overestimation factor for a

given k. Then, there exists a partition ρ′ ∈ Pk+1(Ω) that

can be obtained by splitting a cell of ρ in two cells, and

constructed as follows
{
∃a0 ∈ ρ, ∃a1, a2 ∈ ρ′, such that a0 = a1 ∪ a2
∀a ∈ ρ, a 6= a0 ⇒ ∃a

′ ∈ ρ′, such that a = a′.

By using an argument similar to the previous one, we

have

Ek(X,Y )

= Eρ
′

k+1(X,Y ) +
1

N


∑

i∈a1

∑

j∈a2

xiyj +
∑

i∈a2

∑

j∈a1

xiyj




≥ Ek+1(X,Y ).

Lemma 2 concludes the proof.

IV. APPROXIMATION ALGORITHM

In this section, we propose a one-pass algorithm that

computes the sketch codeviation between any two large input

streams. By definition of the metric (cf. Definition 1), we need

to generate all the possible k-cell partitions. The number of

these partitions follows the Stirling numbers of the second

kind, which is equal to S(N, k) = 1
k!

∑k
j=0(−1)

k−j
(
k
j

)
jN .

Therefore, S(N, k) grows exponentially with N . We show in

the following that generating t = ⌈log(1/δ)⌉ random k-cell

partitions, where δ is the probability of error of our randomized

algorithm, is sufficient to guarantee good overall performance

of the sketch codeviation metric.

Our algorithm is inspired from the Count-Min Sketch algo-

rithm proposed by Cormode and Muthukrishnan [24]. Specif-

ically, the Count-Min algorithm is an (ε, δ)-approximation

algorithm that solves the frequency-estimation problem. For

any item v in the input stream σ, the algorithm outputs an es-

timation x̂v of v such that P{|x̂v−xv| > ε(||X||1−xv)} < δ,

where ε, δ > 0 are given as parameters of the algorithm.

The estimation is computed by constructing a two-dimensional

array C of t× k counters through a collection of 2-universal

hash functions {hℓ}1≤ℓ≤t, where k = e/ε and t = ⌈log(1/δ)⌉.
Each time an item v is read from the input stream, this causes

one counter per line to be incremented, i.e., C[ℓ][hℓ(v)] is

incremented for all ℓ ∈ [t].
To compute the sketch codeviation of any two streams σ1

and σ2, two sketches σ̂1 and σ̂2 of these streams are con-

structed according to the above description (i.e., construction

of two arrays Cσ1
and Cσ1

of t × k counters through t 2-

universal hash functions {hℓ}1≤ℓ≤t). Note that there is no

particular assumption on the length of both streams σ1 and σ2

(their respective length m1 and m2 are finite but unknown). By

properties of the 2-universal hash functions {hℓ}1≤ℓ≤t, each

line ℓ of Cσ1
and Cσ2

corresponds to the same partition ρℓ
of Ω, and each entry a of line ℓ corresponds to X̂ρℓ

(a) (cf.

Definition 1). Therefore, when a query is issued to compute

the sketch codeviation ĉod between these two streams, the



Algorithm 1: sketch codeviation algorithm

Input: Two input streams σ1 and σ2; δ and ε precision

settings;

Output: The sketch codeviation ĉodk(σ1, σ2) between

σ1 and σ2

1 t← ⌈ln 1
δ
⌉; k ← ⌈ e

ε
⌉;

2 Choose t functions h : Ω→ [k], each from a 2-universal

hash function family;

3 Cσ1 [1..t][1..k]← 0;

4 Cσ2 [1..t][1..k]← 0;

5 for i ∈ σ1 do

6 for ℓ = 1 to t do

7 Cσ1
[ℓ][hℓ(i)]← Cσ1

[ℓ][hℓ(i)] + 1;

8 for j ∈ σ2 do

9 for ℓ = 1 to t do

10 Cσ2 [ℓ][hℓ(j)]← Cσ2 [ℓ][hℓ(j)] + 1;

11 On query ĉod(σ1, σ2) return

min1≤ℓ≤t cod(Cσ1 [ℓ][−], Cσ2 [ℓ][−])

codeviation value between the ℓth line of Cσ1
and Cσ2

for

each ℓ = 1 . . . t is computed, and the minimum value among

these t ones is returned. Figure 1 presents the pseudo-code of

our algorithm.

Theorem 10 The sketch codeviation ĉod(X,Y ) returned by

Algorithm 1 satisfies, with Ecod = ĉod(X,Y )− cod(X,Y ),

Ecod ≥ 0 and

P

{
|Ecod| ≥

ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}
≤ δ.

Proof: The first relation holds by Proposition 3. Regard-

ing the second one, let us first consider the ℓ-th line of both

Cσ1 and Cσ2 . We have

ĉod[ℓ](X,Y ) = cod(Cσ1
[ℓ][−], Cσ2

[ℓ][−])

=
1

N

k∑

a=1

Cσ1
[ℓ][a]Cσ2

[ℓ][a]

−

(
1

N

k∑

a=1

Cσ1 [ℓ][a]

)(
1

N

k∑

a=1

Cσ1 [ℓ][a]

)
.

By construction of Algorithm 1, ∀1 ≤ ℓ ≤ t, ∀i, j ∈ σ1 such

that hℓ(i) = hℓ(j) = a, we have

Cσ1 [ℓ][a] = xi +
∑

j 6= i

xj .

Similarly, ∀1 ≤ ℓ ≤ t, ∀i, j ∈ σ2 such that hℓ(i) = hℓ(j) = a,

we have

Cσ2
[ℓ][a] = yi +

∑

j 6= i

yj .

Thus,

ĉod[ℓ](X,Y ) =
1

N

k∑

a=1




N∑

i = 1
hℓ(i) = a

xi







N∑

i = 1
hℓ(i) = a

yi




−
1

N

k∑

a=1




N∑

i = 1
hℓ(i) = a

xi




1

N

k∑

a=1




N∑

i = 1
hℓ(i) = a

yi




=
1

N

N∑

i=1

xiyi +
1

N

∑

i 6= j
hℓ(i) = hℓ(j)

xiyj

−

(
1

N

N∑

i=1

xi

)(
1

N

N∑

i=1

yi

)

= cod(X,Y ) +
1

N

∑

i 6= j
hℓ(i) = hℓ(j)

xiyj

We have

E

[
ĉod[ℓ](X,Y )

]

= E [cod(X,Y )] +
1

N

∑

i 6=j

xiyjP{hℓ(i) = hℓ(j)}

By linearity of the expectation, we get

E

[
ĉod[ℓ](X,Y )− cod(X,Y )

]

=
1

N

∑

i 6=j

xiyjP{hℓ(i) = hℓ(j)}

By definition of 2-universal hash functions, we have

P{hℓ(i) = hℓ(j)} ≤
1
k

. Therefore,

E

[
ĉod[ℓ](X,Y )− cod(X,Y )

]
≤

1

Nk

∑

i 6=j

xiyj

=
1

Nk
(‖X‖1‖Y ‖1 − ‖XY ‖1)

By definition of k (cf. Algorithm 1), we have

E

[
ĉod[ℓ](X,Y )− cod(X,Y )

]

≤
ε

eN
(‖X‖1‖Y ‖1 − ‖XY ‖1)

Using the Markov inequality, we obtain

P

{
|ĉod[ℓ](X,Y )− cod(X,Y )| ≥

ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}

≤
1

e

By construction ĉod(X,Y ) = min1≤ℓ≤t ĉod[ℓ](X,Y ). Thus,

by definition of t (cf. Algorithm 1) we obtain

P

{
|ĉod(X,Y )− cod(X,Y )| ≥

ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}

≤

(
1

e

)t

= δ



that concludes the proof.

Lemma 11 Algorithm 1 uses O
(
( 1
ε
) log 1

δ
(logN + logm)

)

bits of space to give an approximation of the sketch codevia-

tion, where m = max(‖X‖1, ‖Y ‖1).

Proof: Both matrices Cσi
for i ∈ {1, 2} are composed

of t× k counters, where each counter uses O (logm) bits of

space. With a suitable choice of hash family, we can store

each of the t hash functions above in O(logN) space. This

gives an overall space bound of O (t logN + tk logm), which

proves the lemma with the chosen values of k and t.

V. DISTRIBUTED CODEVIATION APPROXIMATION

ALGORITHM

In this section, we propose an algorithm that computes the

codeviation between a set of n distributed data streams, so that

the number of bits communicated between the n sites and the

coordinator is minimized. This amounts for the coordinator to

compute an approximation of the codeviation matrix Σ, which

is the dispersion matrix of the n data streams. Specifically,

let X = {X1, X2, . . . , Xn} be the set of fingerprint vectors

X1, . . . , Xn describing respectively the streams σ1, . . . , σn.

We have

Σ̂ =
[
ĉod(Xi, Xj)

]
1≤i≤n,1≤j≤n

.

The algorithm proceeds in rounds until all the data streams

have been read in their entirety. In the following, we denote

by σ
(r)
i the substream of σi received by Si during the round

r, and by dr the number of data items in this substream.

In a bootstrap phase corresponding to round r = 1 of

the algorithm, each site Si computes a single sketch Cσi

of the received data stream σi as described in lines 5–7 of

Algorithm 1. Once node Si has received d1 data items (where

d1 should typically be set to 100 [18]), then node Si sends

C
σ
(1)
i

to the coordinator, keeps a copy of C
σ
(1)
i

, and starts a

new round r = 2. Upon receipt of C
σ
(1)
i

from any Si, the

coordinator asks all the n − 1 other nodes Sj to send their

own sketch C
σ
(1)
j

.

Once the coordinator has received all C
σ
(1)
i

, for 1 ≤ i ≤ n,

it sets ∀i ∈ [n], Cσi
← C

σ
(1)
i

. The coordinator builds the

sketch codeviation matrix Σ̂ =
[
ĉod(Xi, Xj)

]
1≤i≤n,1≤j≤n

such that the element in position i, j is the sketch codeviation

between streams σi and σj . As the codeviation is symmetric,

the codeviation matrix is a symmetric matrix, and thus only

the upper-triangle and the diagonal need to be computed.

At round r > 1, each node Si computes a new sketch

C
σ
(r)
i

with the sequence of data streams received since the

beginning of round r. Let dr = 2dr−1 be an upper bound on

the number of received items during round r. When node Si

has received at least dr−1/2 data items, it starts to compute the

sketch codeviation between C
σ
(r−1)
i

and C
σ
(r)
i

as in line 11 of

Algorithm 1. Once node Si has received dr data items since

the beginning of round r, then it sends its current sketch C
σ
(r)
i

to the coordinator and starts a new round r+1. Note that during

round r, Si regularly computes cod
(
σ
(r−1)
i , σ

(r)
i

)
to detect

whether significant variations in the stream have occurred

before having received dr items. This allows to inform the

coordinator as quickly as possible that some attack might be

undergoing. Si might then send its current sketch C
σ
(r)
i

to the

coordinator once cod
(
σ
(r−1)
i , σ

(r)
i

)
has reached a sufficiently

small value. An interesting question left for future work is the

study of such a value. Upon receipt of the first C
σ
(r)
i

from

any Si, the coordinator asks all the n − 1 other nodes Sj to

send it their own sketch C
σ
(r)
j

. The coordinator locally updates

the n sketches such as Cσi
← Cσi

+ C
σ
(r)
i

and updates the

codeviation matrix Σ̂ on every couple of sketches.

Theorem 12 The approximated codeviation matrix Σ̂ returned

by the distributed sketch codeviation algorithm satisfies Σ̂ ≥ Σ
and

P

{∣∣∣Σ̂− Σ
∣∣∣ ≥ ε

N
max
i,j∈[n]

(‖Xi‖1‖Xj‖1 − ‖XiXj‖1)

}
≤ δ.

Proof: The statement is derived from Theorem 10 and the

fact that the expectation of a matrix is defined as the matrix

of expected values.

Lemma 13 The distributed sketch codeviation

algorithm gives an approximation of matrix Σ, using

O ((1/ε) log(1/δ) (logN + logm)) bits of space for each n
nodes, and O (n logm (1/ε log(1/δ) + n)) bits of space for

the coordinator, where m is the maximum size among all the

streams, i.e., m = maxi∈[n] ‖Xi‖1.

Proof: From the algorithm definition, each node main-

tains two sketches with space describes in Lemma 11. The

coordinator maintains n matrices of t × k counters and the

n×n codeviation matrix which takes O(n2 logm) bits, where

m = maxi∈[n] ‖Xi‖1. One can note that the coordinator does

not need to maintain the t hash functions.

Lemma 14 The distributed sketch codeviation algorithm

gives an approximation of matrix Σ by sending

O (rn(1 + (1/ε) log(m/2) log(1/δ))) bits, where r is

the number of the last round and m is the maximum size of

the streams.

Proof: Suppose that the number of rounds of the algo-

rithm is equal to r. At each round, the size of the substream

on each node is at most doubled, and then lower or equal to
‖Xi‖1

2 . An upper bound of number of bits sent by any node

during a round r is trivially given by (1/ε) log(m/2) log(1/δ)
where m = maxi∈[n] ‖Xi‖1. Finally, at each end of round, the

coordinator sends 1 bit to at most n− 1 nodes.

VI. PERFORMANCE EVALUATION

We have implemented the distributed sketch codeviation

algorithm and have conducted a series of experiments on

different types of streams and for different parameters settings.

We have fed our algorithm with both real-world data sets and

synthetic traces. Real data give a realistic representation of

some existing monitoring applications, while the latter ones

allow to capture phenomenons which may be difficult to obtain

from real-world traces, and thus allow to check the robustness
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Figure 1. Synthetic traces – The isopleth on the left has been computed with all the items in memory, while the one on the right has been computed by the
distributed algorithm from sketches of length k = logN .
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Figure 2. Real datasets – The isopleth on the left has been computed with all the items in memory, while the one on the right has been computed by the
distributed algorithm from sketches of length k = logN .

of our metric. Synthetic traces of streams have been generated

from 13 distributions showing very different shapes, that is

the Uniform distribution (referred to as distribution 0 in the

following), the Zipfian or power law one with parameter α
from 1 to 5 (referred to as distributions 1, . . . , 5), the Poisson

distribution with parameter λ from N/21 to N/25 (distribu-

tions 6, . . . , 11), and the Binomial and the Negative Binomial

ones (distributions 12 and 13). All the streams generated from

these distributions have a length of around 100, 000 items,

and contain no more than 1, 000 distinct items. Real data

have been downloaded from the repository of Internet network

traffic [25]. We have used 5 large traces among the available

ones. Two of them represent two weeks logs of HTTP requests

to the Internet service provider ClarkNet WWW server –

ClarkNet is a full Internet access provider for the Metro

Baltimore-Washington DC area – the other two ones contain

two months of HTTP requests to the NASA Kennedy Space

Center WWW server, and the last one represents seven months

of HTTP requests to the WWW server of the University of

Table I
STATISTICS OF THE FIVE REAL DATA TRACES.

Data trace Trace # items (m) # distinct (n) max. freq.

NASA (July) 0 1,891,715 81,983 17,572

NASA (August) 1 1,569,898 75,058 6,530

ClarkNet (August) 2 1,654,929 90,516 6,075

ClarkNet (September) 3 1,673,794 94,787 7,239

Saskatchewan 4 2,408,625 162,523 52,695

Saskatchewan, Canada. In the following these data sets will be

respectively referred to as ClarkNet, NASA, and Saskatchewan

traces. We have used as data items the source hosts of the

HTTP requests. Table I presents some statistics of these five

data traces, in term of stream size (cf. “# items”), number of

distinct items in each stream (cf. “# distinct”) and the number

of occurrences of the most frequent item (cf. “max. freq.”).

A. Experimental evaluation of the Sketch codeviation

Figures 1 and 2 summarize the results obtained by feeding

our distributed codeviation algorithm with respectively syn-
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(a) With E(ΣN ) computed on “normal” traffic behavior
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Figure 3. Distance between the codeviation matrix and the mean of the past ones when all the 10 synthetic traces follow different distributions as a function
of the rounds of the protocol, with δ = 10−5.

thetics traces and real datasets. The isopeths on the left of

respectively Figures 1 and 2 represent the n × n codeviation

matrix computed by storing in memory the streams in their

entirety. The isopeths on the right of respectively Figures 1

and 2 correspond to the n × n sketch codeviation matrix

returned by the distributed algorithm based on sketches of size

k = logN . Both the x-axis and the y-axis represent the 13

synthetic streams on Figure 1, and the 5 real data sets on

Figure 2, while the z-axis represents the value of each cell

matrix in both figures.

These results clearly show that our distributed algorithm is

capable of efficiently and accurately quantifying how observed

data streams change together and in which proportion whatever

the shape of the input streams. Indeed, by using sketches of

size k = logN , one obtains isopeths very similar to the ones

computed with all the items stored in memory. Note that the

order of magnitude exhibited by the sketch codeviation matrix

is due to the overestimation factor and remains proportional

to the exact one. Both results from synthetic traces and

real datasets lead to the same conclusions. The following

experimental results focus on the detection of attacks.

B. Detection of different profiles of attacks

Figure 3 shows how efficiently our approximation dis-

tributed algorithm detects different scenarii of attacks in real

time. Specifically, we compute at each round of the distributed

protocol, the distance between the codeviance matrix Σ con-

structed from the streams under investigation and the mean of

covariance matrices E(ΣN ) computed under normal situations.

This distance has been proposed in [6]. Specifically, given two

square matrices M and M ′ of size n, consider the distance as

follows:

‖M −M ′‖ =

√√√√
n∑

i=1

n∑

j=1

(Mi,j −M ′
i,j)

2.

We evaluate at each round r, the variable dr defined by

dr = ‖Σr − E(ΣN )‖.

Interestingly, Jin and Yeung [6] propose to detect abnormal

behaviors with respect to normal ones as follows. First they

analyze normal traffic-wide behaviors, and estimate at the end

of analysis, a point c and a constant a for dr satisfying |
dr − c |< a, ∀r ∈ N

∗. The constant a is selected as the upper

threshold of the i.i.d | dr − c |. Then when investigating the

potential presence of DDoS attacks over the network, they

consider as abnormal any traffic pattern that shows for any

r, | dr − c |> a. Because we think that it is not tractable to

characterize what is a normal network-wide traffic a priori, we

adapt this definition by considering the past behavior of the

traffic under investigation. Specifically, at any round r > 1, the

distance is computed between the current codeviance matrix

Σr and the mean one E(Σr) corresponding to previous rounds

1, . . . , r − 1, r. That is E(Σr) = ((r − 1)E(Σr−1) + Σr)/r.

As shown in Figure 3(b), this distance provides better results

than the ones obtained with the original distance [6], which is

depicted in Figure 3(a).

Based on these distances, we have fed our distributed algo-

rithm with different patterns of traffic. Specifically, Figure 3

shows the distance between the codeviance matrix and the

mean ones (respectively based on normal ones for Figure 3(a)

and on past ones for Figure 3(b)). These distances are depicted,

as a function of time, when the codeviance is exactly com-

puted and when it is estimated with our distributed algorithm

with different values of k. What can be seen is that, albeit

there are up to two orders of magnitude between the exact

codeviance matrix and the estimated one, the shape of the

codeviance variations are for most of them similar, especially

in Figure 3(b). Different attack scenarii are simulated. From

round 0 to 10, all the 10 synthetic traces follow the same

nominal distribution (e.g., a Poisson distribution). Then from

round 10 to 20 a targeted attack is launched by flooding a

single node (i.e., one among the ten traces follows a Zipfian



distribution with α = 4). This gives rise to a drastic and

abrupt increase of the distance. As can be shown, the estimated

covariance exactly follows the exact one, which is a very

good result. Then after coming back to a “normal” traffic,

half of the traces are replaced by Zipfian ones (from round

30 to 40), representing a flooding attack toward a group of

nodes. As for the previous attack, the covariance matrices are

highly impacted by this attack. From round 50 to 60, traces

follow a Zipfian distribution with α = 1 which represents

unbalanced network traffic but should not be completely

representative of attacks. On the other hand, in the fourth and

fifth attack periods, all the traces follow a Zipfian distribution

with different values of α ≥ 2, which clearly shows a flooding

attack toward a group of targeted nodes.

From these experiments, one could extract the value of the

upper threshold a. For instance, a should be set to 1, 000 for

the exact codeviation and for the sketch codeviation with k =
50, which lead to detect all the DDoS attacks. Considering the

sketch codeviation with k = 10 (respectively k = 5), a should

be set to 10, 000 (respectively 50, 000) in order to detect all

these attacks.

The main lesson drawn from these results is the good

performance of our distributed algorithm whatever the pattern

of the attack.

VII. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a novel metric, named the

sketch codeviation, that allows to approximate the deviation

between any number of distributed streams. We have given

upper and lower bounds on the quality of this metric, and have

provided an algorithm that additively approximates it using

very little space. Beyond its theoretical interest, the sketch

codeviation can be exploited in many applications. As dis-

cussed in the introducing, large scale monitoring applications

are quite straightforward application domains, but we might

also use it in publish-subscribe applications, where it must be

interesting to track the temporal and spatial correlations that

may exist between the different attributes of such applications.

This study is planned for future work.
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