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Abstract

We give a formal definition to a significant subset of the Object Constraint Language (OCL) in the K framework.
The chosen subset includes the usual arithmetical, Boolean (including quantifiers), and string expressions; col-
lection expressions (including iterators and navigation); and pre/post conditions for methods. Being executable,
our definition provides us, for free, with an interpreter for the chosen subset of OCL. It can be used for free in K

definitions of languages having OCL as a component We illustrate some of the advantages of K by comparing
our semantical definition of OCL with the official semantics from the language’s standard. We also report on a
tool implementing our definition that users can try online.

Keywords: Object constraint language, Formal executable semantics, K semantic framework

1 Introduction

The Object Constraint Language (OCL) is a textual language for writing constraints

over UML models. It has been designed at IBM in the mid nineties, and has been

incorporated in the UML standard starting from UML version 1.1.

OCL is intended to be a formal specification language. It is used for adding

precision that UML models lack. Its OMG standard [15] defines the syntax of the

language, and, to some extent, its semantics. However, despite many academic
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works on OCL (some of which are referenced in the Related Works section) there is

curently no commmercial tool that offers full support for it.

Part of the problem is the standard, which is imprecise, incomplete, and flawed

in some places. This is common to many languages for which the semantics is

informally described in manuals declared as standards (see, e.g., the definition of

C [9]). Some of these problems include the nondeterministic cast operations from

unordered to ordered sets and bags, the question of whether a singleton set {a} and

the set element a should be distinct or not (answered differently in different pages

of the standard [15]), and issues due to the presence of an invalid value.

In this paper we report on work in progress towards a formal semantics of

OCL in the K framework [22]. K is a semantical framework mainly intended for

defining formal operational semantics for programming languages. K semantics is

executable, meaning that programs in the defined languages can be executed, tested,

and in the near future, formally verified 4 .

We have defined both static parts of OCL (corresponding to well-formedness con-

straints and queries on UML models) and dynamic parts (corresponding to pre/post

conditions of methods). Moreover, we allow for evaluating OCL expressions on

symbolic models, i.e., models which attributes may have symbolic values 5 . This

allows us, for example, to compute the condition (on the variables) under which a

concrete instance of a symbolic model, satisfiying given OCL constraints, exists; and

to compute the conditions under which a given sequence of method calls is feasible.

These conditions can then be passed to constraint solvers to check whether they are

satisfiable. A negative answer is a useful feedback to users: they need to revise their

models and OCL expressions in order to make them consistent with each other.

Regarding the static part, the defined OCL fragment consists of the usual arith-

metical, Boolean (including quantifiers), string operations, and collection operations

(including navigation via UML associations and iterators), along with let-in and

if-then-else constructs. Expressions may have a scalar type (integer, Boolean, string,

or UML classes) or a collection type (bags or sets). This is a significant fragment

of OCL, allowing users to write most of the useful well-formedness constraints on

UML models, and which we may extend in the future when new OCL standards

decide on some open issues and fix erroneous ones (such as “ordered sets" with an

unkown order). Regarding the dynamic part, all pre/post condition constructions

using the defined static part are also defined, as well as the specific constructions for

postconditions (for referring to values in the pre-condition and to returned values).

The main advantages of K formal semantics definitions are their expressiveness,

executability, and modularity. Each OCL construction is typically defined using one

or two K rules. We have benefited a lot from K features such as the syntactical

substitution, the automatic generation of K rules for evaluating argument of strict

4 The language-independent matching logic has been defined [20] and is being implemented.
5 To our best knowledge ours is the only approach dealing with symbolic evaluation of OCL.
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operations, and the automatic context transformers, which require users to only

provide K rules with minimal information for matching and rewriting.

We illustrate these advantages by comparing our K semantics of the let-in

OCL operation with its official semantics from the Annex A : formal semantics

(informative) of the OCL standard [15]. We also show how the symbolic OCL

evaluation is obtained in a modular way, just by extending the OCL data types

with symbolic values, without changing anything in the K semantic rules of OCL.

Moreover, the K modules implementing symbolic evalation that we developed OCL

can be used for other language definitions as well.

The rest of the paper is composed as follows: Section 2 provides some back-

ground on UML, OCL, and the K framework. In Section 3 we present our K definition

of OCL and illustrate it on examples. Section 4 concludes and discusses related and

future work . An online tool implementing our definition is available [1].

2 Background

2.1 UML and OCL

In this section we recall a few notions regarding UML and OCL. We consider a

minimal notion of UML class diagrams, consisting of: a set of classes with attributes

and method declarations (i.e., method names with parameter and return value types);

of unidirectional references (or associations) between classes, whose roles (or ends)

have [0..∗] multiplicities; of a generalisation partial-order between classes; and of a

set of enumerations. We assume that these concepts are known; more information

can be found in [17]. Other features of class diagrams (bidirectional referencs, roles

with multiplicities other than [0..∗], composition and aggregation associations. . . )

are not considered since they do not add any expressiveness - they can be equivalently

encoded using the basic constructions and OCL constraints as shown in [10].

We require that attributes have a basic type (Integer, Real, Boolean, String,

Enumeration), and that associations have collections-of-objects types only. This

excludes the possibility for an attribute to be, e.g., a list of integers; however, this

is not a limitation, since basic types can be wrapped in classes and attributes can

equivalently be transformed to references to those classes. We also exclude the

"ordered" qualification allowed by UML class diagrams for association ends, because

its semantics is underspecified (it generates "ordered sets" with an unspecified order).

UML object diagrams are instances of class diagrams. They consist of objects

(instances of classes, with values for the attributes) connected by links (instances of

associations). We also assume that these concepts are known.

Figure 1 shows an example of a class diagram and of an object diagram that

instantiates it. The class diagram is meant to model the situation where papers

are authored by researchers (some of which are professors, and others are PhD
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manuscript

author venue
Researcher

name:String

Paper

title:String

isSubmitted:Bool

+void submit()

context Paper::submit():void
pre: isSubmitted = false
post: isSubmitted = true

context Paper::submit():void
pre: isSubmitted = false
post: isSubmitted = true

Journal

name:String

PhDStudent

year:Integer

Professor

post:Position

<<enumeration>>

Position

fullProfessor

associatedProfessor

assistantProfessor

vlad:Researcher

name="Rusu"

andrei:PhDStudent

name="Arusoaie"

year=1

dorel:Professor

name="Lucanu"

post=fullProfessor

entcs:Journal

name="K’11"

this:Paper

title="A K semantics for OCL"

isSubmitted=b

Fig. 1. Examples of: class diagram (top) and object diagram (bottom).

students), and papers may be submitted to journals. Researchers and journals have

string-valued names, while papers have string-valued titles and Boolean isSubmitted

flags indicate whether they are submitted or not. Papers also have a submit() method,

with an empty list of parameters and void return type. The pre- and post-conditions

of this method are written in a comment next to the Paper class.

Professors have an attribute post: a value from the Position enumeration con-

taining the three usual academic ranks. PhD students are in a year of study, a

(theoretically, unbounded) integer. There are also several associations (manuscript,

author, venue) between the classes of the diagram, some of which are bidirectional

and are syntactical sugar for unidirectional ones with OCL constraints (shown below).

The object diagram at the bottom of Fig. 1 is an instance of the class diagram at

the top. Note that the Boolean attribute isSubmitted has a symbolic value, denoted by

the variable b. That is, our object diagram is symbolic, and it denotes all (concrete)
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object diagrams obtained by instantiating the variables by type-consistent values.

2.1.1 OCL Constraints and Queries

OCL constraints and queries are defined over UML class diagrams and are evaluated

over UML object diagrams of those class diagrams. The following constraints can

be defined on the UML class diagram in Figure 1:

• every paper has at least one author and is linked to at most one venue:

Paper .allInstances()→forAll(p |p.author→size() ≥ 1 ∧ p.venue→size() ≤ 1 );

• if a paper is submitted, then it is submitted to exactly one venue:

Paper .allInstances()→forAll(p | p.isSubmitted implies p.venue→size() = 1 );

• the author and manuscript associations form a bidirectional association. This

means that for each paper, by taking each of its authors and then computing that

author’s manuscripts, one obtains a set of papers that includes the paper we started

with; and a similar constraint holds for researchers:

Paper .allInstances()→ forAll(p | p.author → forAll(r |
r .manuscript → includes(p))) ∧

Researcher .allInstances() → forAll(r | r .manuscript → forAll(p |
p.author → includes(r))).w

These constraints are satisfied by the object diagram at the bottom of Figure 1.

2.1.2 OCL Pre and Post Conditions for Methods

OCL also offers the possibility of annotating methods with pre/post conditions. As

usual, a method’s pre-condition is required to be satisfied before the method is

called, and its postcondition is guaranteed to hold when the method completes.

Pre-conditions can be any static OCL constraints, and refer to the state of an object

diagram before the method is called. Postconditions can also be any static OCL

constraints, and refer to the state of an object diagram after the method is called,

with the exception of class fields prefixed by the annotation @pre, which refer to

the pre-state. The keyword return refers to the return value of the method, if any.

The pre and post conditions for the method submit() are respectively isSubmitted

= false and isSubmitted = true. Thus, on the symbolic model shown at the bottom

of Figure 1, it should not be possible to call submit() twice on this:Paper. We use

this simple example for demonstrating symbolic evaluation and pre/post condition

execution, and show in Section 3 how these mechanisms are specified in K.

2.2 The K framework

K [22] is a framework mainly intended for defining and analysing the semantics of

programming languages. The main characteristics of K include:

5
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• expressiveness: all programming language paradigms and all their specific fea-

tures are described in a simple and uniform way;

• modularity: each language feature is described once and for all, hence the defini-

tions are scalable;

• executability: the definitions are directly executable in order to be experimented

with and analysed;

• support for program reasoning: the framework servea as a program logic with

which the programs can be verified and analysed (see, e.g., [20]).

A K definition for a language has the following main ingredients: a syntax,

which is a context-free annotated grammar of the language and from which the

computation tasks are extracted; the definition of the values over which the language

computes; a configuration, which is a structure of nested cells abstracting the state

structure of the machine on which the programs are executed; and K rules, which

describe the execution steps using minimal information (only what is needed for

matching and rewriting).

The K tool [13], the current prototype of K, takes as input a K definition and

translates it, using several complex algorithms, into a Maude [6] program. Then,

the Maude program can be used for automatically execute and/or model check K

definitions [14].

3 A K definition for OCL

In this section we show how OCL is defined in K, by taking the following steps:

• defining the syntax of OCL using an annotated context-free grammar;

• defining the values that OCL expressions can evaluate to;

• defining the K configuration for OCL;

• defining the K rules for the semantics of OCL.

3.1 Syntax

The annotated grammar of our K definition of OCL is shown in Appendix A. We

currently support the usual integer, real, and Boolean expressions (including Boolean

expressions with quantifiers) ; strings and concatenation; collection expressions,

including navigation, and iterators; and other expressions (e.g., let-in, if-then-else).

Since the K definitions are modular, we may add new expressions without changing

the old ones. Note that OCL is an evolving language and the K framework can help

in experimenting the new constructs introduced in the language.

The annotation strict following some productions specifies which arguments

must be evaluated before the evaluation of the defined operator (see [13] for details).

We shall see that this mechanism is very useful, as it relieves the user from writing
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OclAny

Primitive types

Bool

Integer

Real

String

UML types Collections

Bag〈T 〉Set〈T 〉OrderedSet〈T 〉Sequence〈T 〉

OclVoid OclInvalid

Fig. 2. OCL types

K rules for evaluating a construction’s arguments: those rules are automatically

generated by the K tool from the strictness annotations.

3.2 OCL Standard Library

The OCL Standard library [15] includes (see Figure 2):

• a set of primitive types: Bool, Integer, Real, and String;

• collection types, which are parametric in the type T : Bag〈T 〉, Set〈T 〉,
OrderedSet〈T 〉, and Sequence〈T 〉;

• a super-type OclAny such that any UML type or collection is a subtype of it;

• a "minimal" type OclVoid that is a subtype of any UML type or collection excepting

OcIInvalid and that has a unique value null;

• a "minimal" type OclInvalid that is a subtype of any UML type and collection

excepting OclVoid and that has a unique value invalid.

The OCL primitive types are implemented using the K built-in types (see Fig-

ure 3) Bool, Int, Float, and String. The values of these types are called scalars. We

also use the K built-in type Id as support for the enumerative OCL types. We have

extended all the OCL primitive types with symbolic values. In our setting, symbolic

values have the form symBool(x), symInt(x), . . . , where the argument x is of sort Id.

This simple mechanism enables the evaluation of OCL expressions on symbolic

models, without changing the K semantical rules of OCL. This is due to the fact that

K semantics is modular and the same definition can be executed on various data

domains with the same interface.

We also defined a K module that extends the above built-in types with the

following specific data types:

• a type Object as a super-type for all UML types. The values of this type are pairs

typedElt(o, C), where o is an object reference and C is a class name such that the

object referenced by o is an instance of type(C) (= the type of class C).

7
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OclAny

Collections

MagmaPrimitive types

Bool Bool

Integer Int

Real Float

String String

Object

UML types

Bag〈T 〉Set〈T 〉

OclVoid OclInvalid

Void

Fig. 3. K implementation of the OCL types. The K types are shown in color.

• a type Magma as a super-type for collections, e.g., Bag〈T 〉 and Set〈T 〉. Union is

an operation denoted by _; _ : Magma × Magma → Magma.

Objects are elements of an object diagram, and collections are, in our present

definition, lists of scalars having one common (super)type. This means that, in our

running example, collections of professors and researchers are allowed because

Professor is a subtype of Researcher, but not collections containing of papers and

journals because these belong to different types.

• a type Void with a singleton value null, used to implement OclVoid.

We do not implement the type OclInvalid. Considering invalid as a value leads to

complications since it requires specific rules for dealing with it. In our K definition,

invalid is not a value: rather, it is defined by the fact that an OCL expression does not

reduce to a value by the semantical rules. Thus, the implementation of the operation

oclIsUndefined is unnecessary. An example for this is given in Section 3.4.

We do not directly support the ordered collections Sequence〈T 〉 and

OrderedSet〈T 〉. These collections can be modelled by class diagrams such as

that given in Figure 4. The steoreotype 〈〈singleton〉〉 says that the class EmptySe-

quence has just one instance representing the empty sequence. This is actually a

more precise modelling, since, unlike ordered collections, our diagrams specify an

order. If needed, instances of such diagrams can be automaticaly generated from

user-defined models containing ordered collections by choosing an arbitrary order.

3.3 Configuration

The K configuration for OCL consists of five main cells:

• A cell 〈_ 〉k containing the computation tasks sequence; for instance, it includes

the computation tasks derived when the OCL expressions are evaluated.

• A cell 〈_ 〉metamodel storing the information about the metamodel: name, enumer-

8



Arusoaie, Lucanu, Rusu

tail

1Sequence

T

<<singleton>>

EmptySequence

NeSequence

head:T

Fig. 4. A diagram for Sequence〈T 〉

ative types and classes. For instance, the class Paper described on Page 5 is

represented by a cell structure as follows:

<class>
<classname> Paper </classname>
<constr> . </constr>
<extends> . </extends>
<methods>
<method>

<methodname> submit </methodname>
<modifies> isSubmitted </modifies>
<post> self.isSubmitted = true </post>
<pre> self.isSubmitted = false </pre>
<returntype> void </returntype>

</method>
</methods>
<attributes>

isSubmitted |-> bool
title |-> string
authors |-> collection

</attributes>
<references> . </references>

</class>

Note that association relations are represented by attributes (e.g., authors).

• A cell 〈_ 〉constraints storing the static semantics of the metamodel represented as a

list of OCL constraints.

• A cell 〈_ 〉model containing the K representation of the object diagram on which

the OCL expressions in the K cell will be evaluated. An instance of class Paper is

represented as follows:

<instance>
<instName> paper </instName>
<ofClass> Paper </ofClass>
<fields>

isSubmitted |-> typedElt( symBool(b) , bool )
title |-> typedElt( "A K semantics for OCL" , string )
authors |-> typedElt(vlad, Researcher) ;

typedElt(dorel, Professor) ;
typedElt(andrei, PhDStudent)

</fields>
</instance>

9
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where the attribute isSubmitted has a symbolic value, b.

• A cell 〈_ 〉output, which is linked to the standard output and is used for displaying

results or error messages.

3.4 Semantics

Evaluating OCL expressions on object diagrams is done according to the semantics

of OCL, which we now define as a set of K semantical rules. We start with simple

rules for evaluating the basic arithmetic and Boolean operations.

The rule for division, shown below, reads as follows: if the top of the k cell is

a division expression A /B, where A and B are of sort Int, then that expression is

rewritten in-place with the value obtained by taking the K builtin integer division

A /Int B, provided that the rule’s condition not (B =Bool 0) holds:

〈 A / B

A /Int B

···〉k if not (B =Bool 0)

Hence, expressions of the form A / 0 are not reduced by the above rule to a legitimate

OCL value (here, an integer). Such expressions model the invalid value of the OCL

standard [15]. The advantage of our definition with respect to the standard is that

we do not need to give explicit rules saying how the invalid value is propagated:

expressions that contain an undefined value (i.e., a subexpression that is not reduced

to a value) are also undefined, because they are not reduced to a value.

Most remaining arithmetic and Boolean operations (Appendix A) have similar

rules. Below we show the rules for the forAll quantifier; the rule for the exists

quantifier is obtained by duality. The K semantical rules for forAll are:

〈( · )→forAll(Var | Exp)

true

···〉k (1)

〈 (Elt ,Rest)→forAll(Var | Exp)

if Exp[Elt/Var ] then Rest→forAll(Var | Exp) else false

···〉k (2)

The first rule describes the base case, when the first argument is an empty collection.

The second rule describes the inductive step: when the first argument is a nonempty

collection of the form (Elt ,Rest), the result depends on the value of the expression

Exp on the element Elt . This is computed by applying the K library’s substitution

operation _[_/_] to Exp, Elt , and Var . If the value is true, then the overall result is

that of the forAll operation, recursively evaluated on the collection Rest ; otherwise,

the result is false.

This relatively simple definition is possible due to several powerful mechanisms

of K. One of them is the substitution operator, which is actually implemented

10
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in K itself using a visitor pattern [22]. We shall come back to the substitution

operator later in this section when we define the semantics of the let-in expression

and compare it with the corresponding semantics in the OCL standard [15]. The

other K mechanism we use extensively here is the automatic generation of rules that

evaluate arguments of strict operators.

Remember (cf. Appendix A) that forAll is strict in its first argument. This means

that this argument will be evaluated before the forAll expression is evaluated. In

order to do this, K automatically generates rules of of the form

E1→forAll(V | E2)

E1 y �→forAll(V | E2)

by which the first computation task becomes the evaluation of the expression E1;

the “hole" � is put in place to receive the value of E1. This can generate further

tasks using the same mechanism, depending on the structure of E1.

When E1 is evaluated to a proper collection, say, L, K rules of the form

L y �→forAll(V | E2)

L→forAll(V | E2)

take over and fill the “hole” left by E1. Eventually, one of the rules (1–2) finishes

the evaluation of the forAll expression and reduces it to a Boolean.

Let us now turn to the rules for collections. The select and collect operations

are quite similar to the rules (1–2), so we shall not detail them.

Instead, we show the K rule giving semantics to the query allInstances():

〈 allInstances(Cls)

collectAllInstanceNames(Cls , children(Cls ,M ) ,M )

···〉k〈M 〉model

The rule says that, in order to compute the instances of a given class Cls in an

object diagram M , a helper function collectAllInstanceNames() is called with three

parameters: the class Cls , its children children(Cls), and M itself.

A K rule may have several local rewrites in various configuration cells, and it can

use other cells for providing context for the rewrite. For example, in the above rule,

the cell 〈_ 〉model provides the diagram M . The function children() computes the

children of a given class by traversing M , and collectAllInstanceNames() traverses

the 〈_ 〉instance cells of M , collects their names, and returns them in a bag.

Another collection expression whose semantics extensively uses the 〈_ 〉instance

11
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cells is the navigation operation. Its semantic rules are:

〈( · ).atrr

·

···〉k

〈 (Elt ,Rest).attr

AttrValue union (Rest .attr )

···〉k〈〈Elt〉instName〈attr 7→AttrValue ···〉fields ···〉instance

The first rule is the base case: it computes the navigation via an attribute attr from

an empty collection; the result is empty. The second rule is the inductive step. For a

nonempty collection (Elt ,Rest), the result is the union between AttrValue and the

result of recursively applying the operation to the collection Rest . Here, AttrValue

is the value of the attr attribute, from the 〈_ 〉fields cell of the 〈_ 〉instance cell whose

〈_ 〉instName cell contains Elt .

Note that only the minimal information required from the cells was given: e.g.,

we only give a partial matching for 〈_ 〉instance cells, and do not have to say anything

about the surrounding cells of the configuration. That information is automatically

synthesized by the K context transformer mechanism [22].

We now turn to the let-in operation, and compare its K semantics with the official

semantics from the K standard [15]. The K semantics is simple:

〈let Var = Val in Exp

Exp[Val / Var ]

···〉k (3)

that is, the let-in operation is just syntactic sugar for K substitution _[_/_].

The semantics of let-in in the current standard [15] (Page 209) is given as

follows:

IJlet v = e1 in e2K(r) = IJe2K(σ, β{v/Je1K(r)})

The left-hand side is the interpretation IJlet v = e1 in e2K(r) of an expression

let v = e1 in e2 in an environment r. The latter is a pair (σ, β) consisting of the

model σ where the evaluation is performed and of an environment β - a function

mapping the free variables in e1, e2 to values. The right-hand side is the interpretation

of e2 in an environment (σ, β{v/Je1 K(r)}), where β{v/Je1 K(r)} is a notation for

the β component of r, modified such that v is bound to the interpretation of e1.

Note the additional complexity introduced by the (σ, β) pair and by the inter-

pretation of e1. In our case, we do not need to specify the model σ since K context

transformation automatically infers it, and we do not need to use an explicit variable

environment β since the builtin K syntactical substitution replaces variables with

their values. Moreover, we do not need to refer to the interpretation of e1, since the

strictness annotations for the let-in construct in the second argument ensure that this

argument is a value - denoted by Val in (3) - when the let-in is evaluated.

12
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Finally we show how to handle method calls and illustrate them on an example.

For the sake of simplicity we show only the case of methods without parameters:

〈 O.M ()

evaluate(Pre) y update(O,C,F ) y evaluate(Post)

···〉k

〈··· 〈O〉instName〈C〉ofClass〈F 〉fields ···〉instance
〈··· 〈C〉className〈··· 〈M〉methodName〈Pre〉pre〈Post〉post ···〉method ···〉class

The rule consists of evaluating the precondition, updating the model, and evaluating

the postcondition. Note that the evaluate construct is strict: its argument is already

evaluated to a (possibly, symbolic) Boolean value when the following rule is called:

〈evaluate(B)

·

···〉k〈 B′

B′ andBool B

〉constraints

There are also rules for updating model, not shown here due to lack of space.

The following simple example illustrates the use of method calls and sym-

bolic evaluation. The example consists in calling the submit method twice on the

this:Paper object (cf. Figure 1). The expected result is that this sequence of method

calls is not feasible. After the first call the contents of the constraints cell is:

symBool(b) = false andBool symBool(var0) = true

where the first equality is the precondition and the second one is the postcodition;

here, symBool(var0) is the symbolic value assigned the attribute isSubmitted by the

model-updating rules. After the second call the contents of the cell becomes

symBool(b) = false andBool symBool(var0) = true andBool

symBool(var0) = false andBool symBool(var1) = true

Since the condition evaluates to false, the sequence of method calls is not feasible.

We have implemented a satisfiability checker for such conditons in Maude,

which handles the most common cases. For more complex cases, satisfiability can

be checked by calling specialised constraint solvers. We get the following output:

$ krun test
Not feasible; the constraints are simplified to false.

4 Conclusion, Related Work, and Future Work

The initial design goals for the Object Constraint Language were to provide UML

with a clear, easy to understand, and formal specification language to complement

the less formal diagrams. Unfortunately, the realisation of the language in the current

standard lacks much of the initially envisioned qualities.
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In this paper we have focused on the better understood parts of OCL and have

provided them with a formal semantics in the K framework. Our semantics com-

pares favorably, in terms of simplicity, with the corresponding mathematical/formal

definitions from the informative Annex of the OCL standard [15]. A salient feature of

our approach is symbolic evaluation of OCL expressions, which we illustrate via an

example showing that a sequence of method calls is not feasible, due to insatisfiable

OCL constraints generated from the pre and post conditions of the methods.

We have implemented a translator from a textual format of class diagrams,

object diagrams, and OCL expressions into K code. The code is then compiled used

together with the K OCL semantics. The resulting tool is available online [1].

The definition of OCL is evolving, and we believe that using frameworks such as

K for language standards would much improve quality of the future versions.

Related Work We have already mentioned the informative Annex of the OCL

standard [15]. Despite its shortcomings, mainly due to numerous typos, the Annex

is based on solid formal ground - set-theoretical foundations [19]. We do not know

of formal tools implementing the set-theoretical semantics of the OCL standard.

Closest to our approach are several ones based on and implemented in the Maude

rewrite-based system: [21] which, according to the authors, implements the full

OCL standard; [3] which uses OCL in a metamodelling framework; and [7] that also

implements procedures, a feature that makes OCL very close to a programming

language. The authors used the experience gained while formalising their OCL

semantics to build an efficient implementation of an OCL evaluator written in

a conventional programming language [8]. Another academic tool that is close

to implementing the full standard, also written in a conventional programming

languguage, but not based on a formal semantics, is the OCL evaluator [5]. Various

other implementations of OCL exist in model transformation languages such as the

QVT standard [16], and the ATL [11], and KERMETA [18] languages.

OCL semantics have also been defined in interactive theorem provers: [2] in

KeY, [12] in PVS, [4] in Isabelle/HOL. These tools require human interaction for

evaluating OCL constraints, unlike ours and all of the above-cited ones.

Our main current contribution with respect to these works is symbolic evaluation

of OCL expressions, which, to our best knowledge, is new in this framework.

Future Work This is part of our ongoing research project for defining K-based

operational semantics for domain-specific modeling languages [23]. The symbolic

evaluation of OCL expressions will be used checking the feasability of scenarios and

performing formal verification. From a more practical point of view, we are planning

to implement tools for desugaring “real" UML models (e.g., with composition and

aggregation operations, and using ordered collection types) into our minimal notion

of constrained models. The goal is to make our work available to external users.

14



Arusoaie, Lucanu, Rusu

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable and

constructive comments and suggestions.

The research presented in this paper was supported in part by the DAK project

Contract 161/15.06.2010, SMIS-CSNR 602-12516.

References

[1] ***, ML
K - Online Tool (2011).

URL https://fmse.info.uaic.ro/tools/mlk/

[2] Beckert, B., U. Keller and P. H. Schmitt, Translating the Object Constraint Language into First-order
Predicate Logic, in: Proceedings, VERIFY, Workshop at Federated Logic Conferences (FLoC), Copenhagen,
Denmark, 2002, interactive/deductive verification in KeY.

[3] Boronat, A. and J. Meseguer, Algebraic Semantics of OCL-Constrained Metamodel Specifications, in:
TOOLS (47), Lecture Notes in Business Information Processing 33 (2009), pp. 96–115.

[4] Brucker, A. D. and B. Wolff, HOL-OCL: A Formal Proof Environment for UML/OCL, in: J. L. Fiadeiro
and P. Inverardi, editors, FASE, Lecture Notes in Computer Science 4961 (2008), pp. 97–100.

[5] Chiorean, D., M. Pasca, A. Cârcu, C. Botiza and S. Moldovan, Ensuring UML Models Consistency Using
the OCL Environment, Electr. Notes Theor. Comput. Sci. 102 (2004), pp. 99–110, one of the few attempts
at implementing the full OCL standard.

[6] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and C. L. Talcott., “All About Maude,
A High-Performance Logical Framework,” Lecture Notes in Computer Science 4350, Springer, 2007.

[7] Clavel, M. and M. Egea, ITP/OCL: A Rewriting-Based Validation Tool for UML+OCL Static Class
Diagrams, in: AMAST, Lecture Notes in Computer Science 4019 (2006), pp. 368–373.

[8] Clavel, M., M. Egea and M. A. G. de Dios, Building an Efficient Component for OCL Evaluation, ECEASST
15 (2008), a more efficient implementation of the Maude OCL semantics.
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A OCL Syntax in K

The current version of the K definition of OCL includes only a kernel of the OMG

standard. Due to the modularity of K, new instructions can be incrementally added

without changing the semantics of existing ones.

A.1 Arithmetical Expressions

SYNTAX Exp ::= #Id

| #Int

| Exp + Exp [strict]

| Exp * Exp [strict]

| Exp / Exp [strict]

| - Exp [strict]

| Exp.size() [strict]

A.2 Boolean Expressions

SYNTAX Exp ::= #Bool

| Exp < Exp [strict]

| Exp <= Exp [strict]

| Exp > Exp [strict]

| Exp >= Exp [strict]

| Exp ( Exps ) [strict(1)]

| Exp and Exp [strict(1)]

| Exp or Exp [strict(1)]

| Exp implies Exp [strict]

| not Exp [strict]
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| Exp = Exp [strict]

| Exp includes( Exp ) [strict]

| Exp includesAll( Exp ) [strict]

| Exp excludes(Exp ) [strict]

| Exp excludesAll(Exp ) [strict]

| isEmpty( Exp ) [strict]

| Exp ->forAll( #Id | Exp ) [strict(1)]

| Exp ->exists( #Id | Exp ) [strict(1)]

A.3 String Expressions

SYNTAX Exp ::= #String

| Exp ++ Exp [strict]

A.4 Methods

The syntax of methods together with pre- and postconditions:

SYNTAX Method ::= pre: Exp post: Exp method Id : Id(Params)

SYNTAX Params ::= List{Param, “”}

SYNTAX Param ::= Id Id;

A.5 Collection Expressions

We consider only a single kind of collections. The right type of a collection is

computed by an auxiliary operator oclType() (this holds in fact for all expressions).

SYNTAX Exp ::= empty

| allInstances(#Id)

| Exp . #Id [strict(1)]

| Exp union Exp [strict]

| Exp ->select( #Id | Exp ) [strict(1)]

| Exp ->collect( #Id | Exp ) [strict(1)]

| let #Id = Exp in Exp endlet [binder strict(2)]

| if Exp then Exp else Exp endif [strict(1)]
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