
HAL Id: hal-00999432
https://hal.archives-ouvertes.fr/hal-00999432

Submitted on 3 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performances of Cryptographic Accumulators
Amrit Kumar, Pascal Lafourcade, Cédric Lauradoux

To cite this version:
Amrit Kumar, Pascal Lafourcade, Cédric Lauradoux. Performances of Cryptographic Accumulators.
The 39th IEEE Conference on Local Computer Networks (LCN), Sep 2014, Edmonton, Canada. �hal-
00999432�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49630772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00999432
https://hal.archives-ouvertes.fr

Performances of Cryptographic Accumulators

Amrit Kumar1, Pascal Lafourcade2, and Cédric Lauradoux1

1 INRIA Rhône-Alpes
Grenoble, France

firstname.lastname@inria.fr
2 LIMOS

Université d’Auvergne
Clermont Ferrand, France

pascal.lafourcade@imag.fr

Abstract. Cryptographic accumulators are space/time efficient data
structures used to verify if a value belongs to a set. They have found
many applications in networking and distributed systems since their in-
troduction by Benaloh and de Mare in 1993. Despite this popularity,
there is currently no performance evaluation of the different existing de-
signs. Symmetric and asymmetric accumulators are used likewise without
any particular argument to support either of the design. We aim to es-
tablish the speed of each design and their application’s domains in terms
of their size and the size of the values.

Keywords: Cryptographic accumulators, Bloom filter, Performance

1 Introduction

Cryptographic accumulators are space/time efficient data structures that are
used to test if a value/element belongs to a given set. They are the cryptographic
counterpart of a data structure very popular in the field of networking: the Bloom
filters [5, 7].

Similar to a one-way hash function, (asymmetric) cryptographic accumula-
tors generate a fixed-size digest representing an arbitrarily large set of values.
Interestingly, a one-way accumulator further provides a fixed-size witness for
any value of the set, which can be used together with the accumulated digest to
verify membership of a value in the set. The security requirement being that the
verification should fail for every value not in the set.

The first cryptographic accumulator by Benaloh and de Mare [2] is con-
structed using one-way RSA function xy mod N for a suitably chosen N . Se-
cure Bloom filters can be considered to be a symmetric variant of cryptographic

This is an extended and full version of the paper to appear in 39th IEEE Conference
on Local Computer Networks (LCN), 2014.
This work has been partially supported by the LabEx PERSYVAL-Lab : no ANR-
11-LABX-0025.

2 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

accumulators i.e. which do not require witness for membership testing. A more
precise and formal description, together with other constructions based on ellip-
tic curves [16] and bi-linear pairings [9, 21], are developed in the next section.

Since their first appearance as a cryptographic primitive, accumulators have
received attention in both directions: designing efficient and dynamic primi-
tives and providing novel applications in different domains. Many applications
have been found ranging from time-stamping schemes [20], search on encrypted
data [4,13] to data aggregation in sensor networks [19] and distillation codes [16]
among others. For instance, Sander et al. [26] use RSA accumulator to design
blind and auditable membership proof scheme in the context of e-cash. The idea
is that an accumulator of all the valid electronic coins is created and published.
During coins transfer, anyone can verify the validity of the exchange thanks to
the accumulator.

In many works, the choice of the accumulator is not motivated: it is therefore
hard to know if the proposed solution is the most appropriate one. For instance,
Li [19] uses a variant of HMAC based Bloom filter to securely aggregate events
from sensors. A sensor upon detecting an unexpected event informs an aggregator
station by sending a Bloom filter. The aggregator then merges the filters received
and forwards it to the base station. In an earlier work, Zachary [31] uses RSA
accumulator to detect unauthorized nodes in a sensor network. Indeed any other
accumulator can potentially replace RSA accumulator as the only goal in this
scenario is to test set-membership.

A full review of the performance of both symmetric and asymmetric accu-
mulators with varied levels of security is clearly missing and is the motivation
of our work.

Contributions Our goal is to evaluate the performances of existing cryptographic
accumulators. Our main contributions are:

– A survey of existing asymmetric and symmetric accumulators.

– Software performance evaluation to determine which accumulator offers the
best verification time. We also analyze the impact of implicit parameters (in
particular hash functions) which affect efficiency.

From our benchmarks, we observe that elliptic curve cryptography (ECC)
based accumulators have the best verification time followed by secure Bloom
filters and lastly RSA. The former two are affected by the length of the values
accumulated while RSA is immune to this. More details are provided in the
following sections of the paper.

Outline In Section 2, we recall the definitions of cryptographic accumulators and
the different existing designs proposed in the literature. In Section 3, we describe
the setting and the softwares used for our evaluations. In Section 4, we analyze
each accumulator separately and compare them.

Performances of Cryptographic Accumulators 3

2 Background on Cryptographic Accumulators

We first give cryptographic recalls concerning accumulators, then we present
existing works on asymmetric and symmetric accumulators.

2.1 Definitions

Informally, an accumulator is a space/time efficient algorithmic solution to the
set-membership problem, which consists in determining if a value belongs to a
set. This set of values is often represented by a compact data structure such that
for each value of the set it is possible to compute a witness that determines if
the value is incorporated in the accumulator.

The notion of cryptographic accumulator, or accumulator for short, was first
coined by Benaloh and de Mare in the seminal work [2]. The accumulators in
this work are defined as a family of one-way hash functions (Definition 1) which
satisfy an additional quasi-commutative property (Definition 2).

Definition 1 (One-way hash functions [2]). A family of one-way hash func-
tions is an infinite set of functions Hλ := {hu : Xu × Yu → Zu} having the

following properties:

1. For security parameter λ and each integer u, hu(x, y) is computable in time

polynomial in the parameter λ for all x ∈ Xu and for all y ∈ Yu.
2. For any probabilistic polynomial-time algorithm A the following probability

is negligible in λ:

Pr[hu
$
← Hλ; y, y

′ $
← Yu;x

$
← Xu;x

′ ← A(1λ, x, y, y′) : hu(x, y) = hu(x
′, y′)]

We recall that f : N → R is a negligible function in the parameter n, if for
every positive polynomial p, there exists N , such that for all n > N , we have
f(n) < 1

p(n) .

Definition 2 (Quasi-commutativity [2]). A function f : X × Y → X is

quasi-commutative if:

∀x ∈ X, ∀y1, y2 ∈ Y f(f(x, y1), y2) = f(f(x, y2), y1)

A one-way quasi-commutative function provides a primitive to design an
accumulator. A function f : X × Y → X is chosen depending on some se-
curity parameter together with an initial value x ∈ X. A set of values Y ′ =
{y1, y2, . . . , yn} ⊂ Y accumulates to a value z using the following equations
1 ≤ i ≤ n:

z0 = x
zi = f(zi−1, yi)
z = zn

A witness wi for a value yi is the accumulated value for the set Y ′ \{yi}. Clearly,
given a value yi, and its corresponding witness wi, one can easily verify if yi had
been accumulated by verifying the equality z = f(wi, yi), which holds due to the
quasi-commutativity of f .

4 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

2.2 State of the Art

We present the asymmetric accumulators before explaining the symmetric ones.

2.2.1 Asymmetric Accumulators The first accumulator proposed by Be-
naloh and de Mare [2] is asymmetric i.e. requires witness for verification. The
construction uses modular exponentiation f(x, y) = xy mod N as a one-way
quasi-commutative function since it satisfies:

f(f(x, y1), y2) = (xy1)y2 = (xy2)y1 = f(f(x, y2), y1)

For exponentiation to be used for one-way accumulators, the modulus is chosen
to be a product of two safe primes p and q of equal size. A prime p is safe if p−1

2
is also a prime number. A malicious attacker knowing the accumulated value z
may try to forge a witness w for a randomly chosen value y by finding an initial
value x verifying xy mod N = z. However, this is infeasible under the RSA

assumption, Definition 3.

Definition 3 (RSA assumption). When the modulus N is sufficiently large

and randomly generated, and the exponent y and a value z are given, it is hard

to compute x satisfying xy mod N = z.

However, as informally noticed in [2] and later recognized by Nyberg in [22],
one-wayness imposed in the definition might not suffice for certain applications
where an adversary has access to the list of values to be accumulated. To remedy,
one should consider a stronger property called strong one-wayness (Definition 4)
where the attacker is not imposed the choice of y′ as in Definition 1.

Definition 4 (Strong one-way hash functions [2]). A family of strong one-
way hash functions is an infinite set of functions Hλ := {hu : Xu × Yu → Zu}
having the following properties:

1. For security parameter λ and each integer u, hu(x, y) is computable in time

polynomial in the parameter λ for all x ∈ Xu and for all y ∈ Yu.
2. For any probabilistic polynomial-time algorithm A the following probability

is negligible:

Pr[hu
$
← Hλ; y

$
← Yu;x

$
← Xu;x

′, y′ ← A(1λ, x, y) : hu(x, y) = hu(x
′, y′)]

As recommended in [2], a value to be accumulated is either hashed or en-
crypted before taking it to the accumulator, which hence provides strong one-
wayness.

Barić and Pfitzmann in [1] noticed that for certain applications even strong
one-wayness might not suffice as the adversary might be able to choose the values
himself. Authors in [1] propose a stronger notion of collision-free accumulators
and provide a construction which is secure under strong RSA assumption (Def-
inition 5). Collision-free accumulators capture the notion that a probabilistic
polynomial-time adversary can not generate a set of values Y ′ = {y1, y2, . . . , yn}
yielding an accumulated value z for which she can generate another value y′ /∈ Y ′

and a witness w′ such that f(w′, y′) = z.

Performances of Cryptographic Accumulators 5

Definition 5 (Strong RSA assumption). When the modulus N is suffi-

ciently large and randomly generated, and a value z is given, it is hard to find x
and y satisfying xy mod N = z.

The authors further generalize the definition of accumulators to include ac-
cumulators that do not require the quasi-commutative property. Following the
terminology of [1], the class of accumulators as defined in [2] are referred to as
elementary accumulators. Moreover, as proved in [1], collision-resistance under
strong RSA assumption is achieved only when the values to be accumulated are
prime.

As raised by Benaloh and de Mare, one should be able to construct accumu-
lators without trapdoor. Trapdoors are redundant in an accumulator scheme.
The party who provides N during the system setup, knows also the trapdoor
p and q. Unfortunately, a party who knows p and q can completely bypass the
system’s security. Because, by knowing p and q, it is possible to recover the ini-
tial value, and then independently accumulate extra values and generate false
witnesses. A non-trapdoor solution would not rely on trusted on-line or off-line
services. A non-trapdoor accumulator is presented in [25] and is provably secure
in the standard model. The authors suggest to use generalized RSA modulus Of

Unknown complete Factorization and refer it as RSA-UFOs. A number N is
a RSA-UFO if N has at least two large prime factors p and q such that it is
infeasible for any coalition of players including those that generated N to find a
splitting of N into factors N1 and N2 such that p|N1 and q|N2. A probabilistic
algorithm is also proposed to generate such numbers. The security is proved in
the standard model under a new assumption called Strong RSA-UFO Assump-

tion. This assumption is very similar to strong RSA assumption (Definition 5),
the only difference being that the modulus N is set to be a RSA-UFO.

Unlike the previous works [1, 2, 22, 25], where the list of values to be accu-
mulated is statically defined, Camenisch et al. in [10] introduce the notion of
dynamic accumulators. A dynamic accumulator permits to dynamically add and
delete values to or from the accumulator, such that the cost of an add or delete is
independent of the number of accumulated values. The authors use the standard
RSA function based construction as proposed in [1]. To achieve constant cost of
updating the witnesses the factorization of the modulus is used as a trapdoor.
The security of the scheme relies on strong RSA assumption.

Nguyen in [21] proposes a dynamic accumulator based on bilinear pairings.
The author considers a symmetric pairing e : G × G → GT (the construction
also holds in the asymmetric case). The groups have the same order p and G

is generated by P . The values to be accumulated need not to be prime but
should only belong to the finite field Z/pZ. An initial seed x ∈ Z/pZ and a
trapdoor s ∈ Z/pZ\{0} are chosen to be used in the quasi-commutative function
f : Z/pZ× Z/pZ→ Z/pZ where f(x, y) = x · (y + s). A function g : Z/pZ→ G

where g(v) = vP is used to map the output of f to an element of G. The
accumulated value z for a set Y ′ = {y1, y2, . . . , yn} ⊂ Z/pZ \ {−s} is z =
g(f(x, Y ′)) = (x ·

∏n

i=1 (yi + s))P , and can be easily computed given access to
(P, sP, . . . , sqP), where q is the upper bound on the number of elements to be

6 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

accumulated. Witness wi corresponding to a value yi is the accumulated value
for Y ′ \ yi. Verification involves checking if wi · (yi + s) = z which can be done
using the pairing e by verifying if:

e((yi + s)P,wi) = e(z, P)

The security of the scheme is based on the q-Strong Diffie-Hellman Assump-

tion.

Definition 6 (q-Strong Diffie-Hellman assumption [6]). Given a tuple t =
(p,G, P), where p is prime, G is a cyclic group generated by P and a tuple of

values in Z/pZ of the form (P, sP, . . . , sqP), where s ∈ Z/pZ \ {0}, for any

probabilistic polynomial-time algorithm A the following probability is negligible:

Pr[A(t, P, sP, . . . , sqP) = (c,
1

s+ c
P)) ∧ (c ∈ Z/pZ)]

Authors in [27] provide an attack against collision-resistance property of the
scheme and hence refute the claim in [21] that the accumulator is collision-
resistant. The attack is based on the improperly defined security model where
the adversary has access to the functions f and g. The proposed patch consists of
providing the composite function g(f(·)) to the adversary instead of the functions
f and g separately. The patch proposed by the author however does not prevent
other kinds of attacks and it has been proven that the scheme is insecure [32].
Another dynamic pairing based accumulator is proposed in [9], which provides
a more efficient witness update algorithm.

In their survey on accumulators [12], Fazio and Nicolosi noted that the con-
struction in [10] is such that the time to update a witness after m changes to the
accumulator is proportional to m. They posed the question whether batch update

was possible, namely if it was possible to build an accumulator where the time
to update the witnesses is independent of the number of changes to the accumu-
lated set. Wang et al. answered in affirmative by designing an accumulator with
batch update in [29] and later improved in [28]. The scheme is based on Paillier
cryptosystem [23] and was proved to be secure under a new assumption called
extended strong RSA assumption, which is a variant of strong RSA assumption
(Definition 5) with modulus N2. However, contrary to the claim, Camacho et
al. in [8] exhibit an attack and further prove that the time to update a witness
must be at least Ω(m) in the worst case. Hence this provides an impossibility
result on batch-update capable accumulators.

The previous works only generate membership witnesses, however in certain
scenarios non-membership witnesses might be inevitable. In [18] authors provide
a dynamic accumulator which supports short witnesses for both membership and
non-membership, which they call universal accumulators. The initial value of the
accumulator has to be public to be able to verify the non-membership witnesses.
The construction is based on RSA-function and hence only prime values are
permitted to be accumulated.

Karlof et al. in [16] use elliptic curve to build an accumulator. To accumulate
the values(scalars) they are multiplied with the public-key (i.e. a scalar times

Performances of Cryptographic Accumulators 7

the base point of the curve). Witness generation follows the same algorithm but
excludes the corresponding value. Verification is simple and involves checking for
equality if the multiplication of the witness and the value equals the accumulated
value.

2.2.2 Symmetric Accumulators A symmetric cryptographic accumulator
is a trapdoor-less construction, which does not require a witness for verification.
The existing constructions are secure in the random oracle model. Symmetric
accumulators [22, 30] fundamentally consists of a one-way function f : Y → X
and a vector x ∈ X of length ℓ, which is initialized to 0. The set of values
{y1, y2, . . . , yn} is accumulated to a vector z as:

z = x ∨ f(y1) ∨ f(y2) ∨ . . . ∨ f(yn)

where ∨ is the bitwise inclusive or. Given the accumulated vector z and a value yi,
authenticating membership in the accumulated vector consists in computing v =
f(yi) and verifying that ∀k ∈ J0, ℓ− 1K, vk = 1 implies zi = 1. Authentication
is simpler in case of symmetric accumulators for it does not require computing
a witness. However they suffer from long-output of the accumulator. In fact,
the length of the accumulator depends on the number of values added to the
accumulator and not only on the security parameter.

Nyberg in [22] proposes a symmetric accumulator. The idea is to use a hash
function to generate a hashcode for values to be accumulated. Each hashcode
h is considered to be composed of r blocks h1, h2 . . . , hr each of size d bits.
Such a code is then mapped to an r bit string, by mapping each block to a
bit. A block is mapped to 0 if it is a sequence of r 0s, else it is mapped to 1.
The accumulated value z is computed as the co-ordinate-wise bit-product of the
strings corresponding to the values to be accumulated. To verify the membership
of a value y, one computes the corresponding bit string y′ of length r and checks
that, for all 1 ≤ i ≤ r, whenever y′i = 0, then zi = 0.

Bloom filters [5] by construction can be used as an accumulator. Furthermore,
Yum et al. in [30] prove that they excel over other symmetric accumulators.
Secure Bloom filter consists of k hash functions {fi : Y → X}. The functions
in fact belong to a hash family. Each hash function uniformly returns a vector
index. To add a value to the accumulator, it is fed to each of the hash functions
to obtain k indices. The bits of x at these indices are set to 1. To verify if a
given value was accumulated, the k hash functions are again applied to obtain
the vector indices. If any of the bits of the accumulated vector at these indices is
0, the value was certainly not accumulated. If all the bits at these indices are 1,
then we might obtain a false positive response. Another variant of Bloom filter
has been studied in the past, where hash functions are replaced by Hash-based
Message Authentication Code (HMAC).

We note that the size ℓ in case of symmetric accumulators increases with the
number of elements in the filter or if the false positive rate is set lower.

8 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

3 Experiments

Our aim is to evaluate the performances of existing cryptographic accumulators
in order to compare them. For this, we have implemented the original RSA-based
accumulator [1,2], ECC-based accumulator described in [16], secure Bloom filter
using cryptographic hash functions [22,30] and HMAC-SHA-1 based accumulator
mentioned in [13]. This work only considers static accumulators as they capture
the essential notion of membership testing. Furthermore, dynamic variants differ
from static accumulators only in the case when witnesses are required to be
updated in case of deletion/addition of a value from/to an accumulator. For
symmetric accumulators, we only consider Bloom filter for our evaluation as
they perform better (see [30]) over accumulator proposed by Nyberg [22].

As discussed earlier, several pairing-based accumulators have been proposed
in the past. However, due to continuous and recent attacks [15] on existing
pairing friendly curves, no officially recommended curves have been proposed
until now. We hence exclude pairing-based accumulators from our evaluation.
However, interested readers may refer to [17, 24] where older curves have been
considered for benchmarking.

In the rest of this section, we give the scenario used for our benchmarks,
the chosen cryptographic parameters, the setting of our evaluations and prelimi-
nary analysis on the memory and communication costs of accumulators we have
considered.

3.1 Scenario and Cryptographic Parameters

To benchmark the different cryptographic accumulators, we used different size
S for the accumulated values. The size S varies from 128 to 2048 bytes. The
smallest representing the acceptable RSA public-key of 1024 bits, and in general
these sizes are representative of X.509 certificates. The number n of values in an
accumulator is arbitrarily fixed to 1000.

In case of Bloom filter, if ǫ is the probability of false positive, then the number
of hash functions used is k = − log ǫ.

The respective parameters of each accumulator and the list of curves used in
our experiments (integrated in OpenSSL) are given in Table 1.

Table 1. Security and parameters used in our experiments.

Accumulator Parameters size

RSA 1024 2048 3072

ECC binary 163 283 571

ECC prime 160 256 521

Bloom (− log
2
ǫ) 128 256 512

Prime field Binary field

secp160r1 sect163r1

secp256r1 sect283r1

secp521r1 sect571r1

Performances of Cryptographic Accumulators 9

3.2 Software and Settings

All implementations are in C. RSA accumulator is implemented using GNU
multi-precision library GMP3 version 4.2.1 to handle arbitrary precision arith-
metic on integers. ECC-based accumulator uses OpenSSL (version 1.0.1) EC
library.

To ensure strong one-wayness and collision resistance required for accumu-
lators [2], we use SHA-1, HMAC-SHA-1, SHA-256 and SHA-3 [3]. The values
to be accumulated are hashed using one of these functions before adding it to
the accumulator. The OpenSSL implementation of SHA-1, HMAC-SHA-1 and
SHA-256 has been used. The optimized code of Keccak available in the version
3.2 4 for SHA-3 as well as a naive implementation have been used.

Our target platform is a 64-bit processor desktop computer powered by an
Intel i7 3520M processor at 2.90 GHz with 4 MB cache and running 3.8.0-35
Ubuntu Linux. We have used GCC 4.3.3 with -O3 optimization flag.

3.3 Memory and Communication Cost

In applications, memory and communication costs are critical. The size of the
accumulator is an inevitable memory cost. The size ℓ of a secure Bloom filter is

given by ℓ = −n log
2
(ǫ)

ln 2 with ǫ the false positive probability, see [7]. For ǫ = 2−128

and n = 1000, a secure Bloom filter (184,664 bits) is 180 times bigger than a 1024-
bit RSA accumulator and 1154 times bigger than a 160-bit ECC accumulator.
The key size for RSA and ECC determines the size of the accumulator. Therefore,
ECC-based accumulators outperform RSA-based ones.

In Fig. 1, we show the evolution of ℓ (size of the accumulator) for different
accumulators as a function of n. For n ≥ 12, even 2048-bit RSA accumulators are
smaller than secure Bloom filter. The 160-bit ECC accumulator is obviously less
expensive than RSA based accumulator and hence it is often the best solution
in terms of memory.

If secure Bloom filters are costly in memory, they are inexpensive in com-
munication: they do not require witnesses as in ECC and RSA. The drawback
of asymmetric accumulators is the need to generate and communicate the wit-
nesses. In the next section, we investigate the speed of accumulators.

4 Results

For all accumulators, we measure the time needed to verify if a value belongs
to an accumulator. The results presented in the paper are the average values
for 100000 repetitions of the same experiment. We first give individual results
on each accumulator and then make an overall comparison. We note that the
subfigures in this section are plotted in the same scale as the one used in the
leading plot of the figure.

3 http://gmplib.org/
4 http://keccak.noekeon.org/files.html

10 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

ℓ = 256

ℓ = 1024

ℓ = 2048

0 2 4 6 8 10 12 14 n

ℓ

0

256

512

768

1,024

1,280

1,536

1,792

2,048

128

256

512

Fig. 1. Memory cost of accumulators. The cost of Bloom filters is given for different
false positive rates respectively ǫ = 2−128 (black), ǫ = 2−256 (blue) and ǫ = 2−512 (red).
The horizontal dashed line represents the cost of asymmetric accumulators (ECC and
RSA).

4.1 Individual Results

4.1.1 RSA-based We use the following RSA key sizes {1024, 2048, 3072}. In
Fig. 2, we first observe that the key length has (obviously!) a big influence on the
performance. If we consider SHA-1 as deprecated, the choice of the hash function
(SHA-256 or SHA-3) has little influence. Moreover, the message size S also has no
influence on the verification time. The cost of hashing is subdued by the cost of
exponentiation. We note that this accumulator only provides strong one-wayness
as the values are only hashed before adding them to the accumulator.

As discussed by Barić and Pfitzmann [1] a stronger notion of security called
collision-freeness is achieved when the values added to an accumulator are primes
or prime representatives of non-prime values. We also measure the cost incurred
by collision-free RSA accumulators using prime representation of input values.
The method of computing prime representatives follows the description by Barić
and Pfitzmann [1]. The prime representative p(y) for a value y is generated by
computing the digest h(y) as in the previous technique and then by finding a
t-bit number d which when appended to h(y) as p(y) = 2th(y) + d makes p(y)
prime. The authors suggest to use t = ⌈log2(2 × size of RSA modulus)⌉. The
integer d then can be found with high probability by testing for primality of
p(y) for each odd integer d satisfying 1 ≤ d < 2t. Table 2 presents the significant
overhead incurred if one wishes to achieve collision freeness instead of strong
one-wayness according to the used hash function.

SHA-1 SHA-256 SHA-3

Overhead ×23 ×85 ×78

Table 2. Overhead for using a stronger security model.

Performances of Cryptographic Accumulators 11

SHA-1

3072

2048

1024

Time (ms)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

128 728 1,328
Size (bytes)

SHA-256

Time (ms)

128 728 1,328
Size (bytes)

SHA-3

Time (ms)

128 728 1,328
Size (bytes)

Fig. 2. Verification time for RSA-based accumulators with different key size
{1024, 2048, 3072} with SHA-1, SHA-256 and SHA-3.

4.1.2 ECC-based We observe from Fig. 3 and Fig. 4 that for almost the same
security level binary elliptic curve of degree 163 performs better than elliptic
curve over 160 bit prime field. The former takes around 2 µs for verifying the
witness of a value of size 128 bytes while the later takes 10 µs in case of SHA-1.
Hence an overhead of 8 µs, if one wishes to use prime fields. We further remark
that unlike in RSA accumulator where hash function has no impact, in case of
elliptic curve, the impact of hash functions (SHA-1 and SHA-256) appears visible
for larger size of the values. This phenomenon appears because for large values
cost of hashing is comparable to the cost of point multiplication on elliptic curve.
Unlike other hash functions, SHA-3 does not influence the verification time as
we use the optimized version of Keccak.

4.1.3 Symmetric Accumulators In Fig. 5, we analyze the verification time
for different size of values for SHA-1, HMAC-SHA-1, SHA-256 and two imple-
mentations of SHA-3 (a naive one and the optimized code) with ǫ ∈ {2−128, 2−256, 2−512}.
If k is the number of calls to the cryptographic hash function. We have k =
− log2(ǫ) (see [7]). Any effect or artifact on the performance of the hash function
is amplified k times on the verification using a secure Bloom filter. It explains
why the verification time grows linearly for SHA-1, HMAC-SHA-1, SHA-256
and the naive implementation of SHA-3. For the optimized implementation of
SHA-3, we observe a step-wise progression. The size of the step is 1000 bytes.

12 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

SHA-1

521

256

160

Time (µs)

0

3

6

9

12

15

18

21

24

27

30

128 728 1,328
Size (bytes)

SHA-256

Time (µs)

128 728 1,328
Size (bytes)

SHA-3

Time (µs)

128 728 1,328
Size (bytes)

Fig. 3. ECC prime

SHA-1

571

283

163

Time (µs)

0

3

6

9

12

15

18

21

24

27

30

128 728 1,328
Size (bytes)

SHA-256

Time (µs)

128 728 1,328
Size (bytes)

SHA-3

Time (µs)

128 728 1,328
Size (bytes)

Fig. 4. ECC binary

4.2 Overall Comparison

In Figure 6, we compare all accumulators for a security level of 128 bits and a
value of 128 bytes using SHA-1 and SHA-3. Each time, ECC-based accumulators
are the most efficient and hence the best of all, then we have Bloom filter and
at the bottom the RSA-based accumulators.

We note that building a RSA-based accumulator with n elements would
cost n-times the cost of a verification. This is due to the fact that building an
accumulator would involve n modular exponentiations. The same holds for ECC-
based accumulator, where the point multiplication is computed n times. Bloom
filter too behaves in the same manner, where hash would be computed for all
the n values. However, as Bloom filter is witness free, cost of adding a new value
would be the cost of computing the k hashes corresponding to the new value
i.e. cost of a verification. While, in case of non-dynamic RSA and ECC-based

Performances of Cryptographic Accumulators 13

Time (µs)

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750
SHA-1

512

256

128

128 728 1,328
Size (bytes)

HMAC-SHA-1
Time (µs)

128 728 1,328
Size (bytes)

Time (µs)
SHA-256

128 728 1,328
Size (bytes)

SHA-3
Time (µs)

128 728 1,328
Size (bytes)

Naive SHA-3
Time (µs)

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

27,500

128 728 1,328
Size (bytes)

Fig. 5. Verification time for secure Bloom filter as a function of the value’s size and
for different false positive values ǫ ∈ {2−128, 2−256, 2−512}.

accumulators, the cost of adding a new value would entail updating each of the
previous n witnesses. A representative result for build and add time is presented
in Table 3.

Table 3. Time to build accumulator (for 1000 values) and add a new value using
SHA-1 for 128 bytes’ values.

Time (µs)

Accumulator Param. Verif. Build Add

ECC binary 163 2 2000 2200

ECC prime 160 10 10000 10100

Bloom (− log
2
ǫ) 128 49 49000 49

RSA 1024 1100 1100000 1102000

5 Related Work

The most potentially relevant work on performance of cryptographic accumula-
tors is presented by Papamanthou et al. [24]. The authors first use accumulators
to design authenticated hash tables, where a user queries a hash table held by a
server and wishes to verify the correctness of the response received. The authors
then benchmark the authenticated hash table scheme using RSA accumulator
and pairing based accumulator. In practice, RSA accumulator based scheme
performs better than the pairing based accumulator scheme. However, RSA ac-
cumulator has a logarithmic advantage over pairing in the asymptotic case. We
note that the evaluation is restricted to 1024 bits RSA modulus and Type A pair-
ings. Furthermore, the values to be accumulated are generated using arbitrarily
chosen SHA-256. In a later work, Lapon et al. [17] benchmark accumulator based

14 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

2ECC binary (163)

10ECC prime (160)

49Bloom (128)

1100RSA (1024)

0 200 400 600 800 1000 1200

Verification time with SHA-1 (µs)

3ECC binary (163)

16.5ECC prime (160)

250Bloom (128)

1900RSA (1024)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Verification time with SHA-3 (µs)

Fig. 6. Summary of different accumulators for 128 bytes’ values.

credential revocation schemes. However, only pairing-based schemes are consid-
ered for performance evaluation. Another relevant work is an extensive study
of the real-world performance of authenticated dictionary schemes by Crosby
and Wallach [11]. The authors use an authenticated dictionary based on RSA
accumulators as one of their test systems, and conclude that the RSA accumula-
tors introduce a significant performance overhead that makes this authenticated
dictionary too slow for practical use compared to digital signatures. However,
the results do not show the specific amount of time taken by RSA accumula-
tor operations because they are formatted in terms of authenticated dictionary
operations such as inserts and updates.

The previous works in general only consider certain accumulators coupled
with an arbitrarily chosen hash function and fixed security parameters in cer-
tain cases. In this perspective, our work fills this gap by providing a complete
evaluation of different schemes using varied security levels, achieving different
security notions and studying impact of other implicit parameters such as hash
functions.

6 Conclusion

After a survey of existing cryptographic accumulators, we evaluate their merits.
Our work considers rather big-size data ranging from 128 bytes (1024 bits) to
2048 bytes. These sizes are appropriate for Certificate Revocation Lists (CRL)
which are widely used in PKI infrastructure. It is important to notice that

Performances of Cryptographic Accumulators 15

CRL file size can become very large, for example CRLs issued by VeriSign5

can be a megabyte in size. In order to efficiently store such sensitive data non-
cryptographic Bloom filters are often used as a space efficient data structure.
Our analysis demonstrates that for such application scenarios ECC can reduce
the memory footprint and improve the verification at the cost of a witness.

References

1. N. Bari and B. Pfitzmann, “Collision-Free Accumulators and Fail-Stop Signa-
ture Schemes Without Trees,” in Advances in Cryptology - EUROCRYPT ’97.
Springer, 1997.

2. J. C. Benaloh and M. de Mare, “One-Way Accumulators: A Decentralized Al-
ternative to Digital Sinatures,” in Advances in Cryptology - EUROCRYPT ’93.
Springer, 1993.

3. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Keccak reference,”
2011, http://keccak.noekeon.org/.

4. J. Bethencourt, D. X. Song, and B. Waters, “New Techniques for Private Stream
Searching,” ACM Transactions on Information and System Security, vol. 12, no. 3,
2009.

5. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, 1970.
6. D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” in Advances in

Cryptology CRYPTO 2004, ser. Lecture Notes in Computer Science, M. Franklin,
Ed. Springer Berlin Heidelberg, 2004, vol. 3152, pp. 41–55.

7. A. Z. Broder and M. Mitzenmacher, “Survey: Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, 2003.

8. P. Camacho and A. Hevia, “On the Impossibility of Batch Update for Crypto-
graphic Accumulators,” in Progress in Cryptology LATINCRYPT 2010, ser. Lec-
ture Notes in Computer Science, vol. 6212. Springer Berlin Heidelberg, 2010, pp.
178–188.

9. J. Camenisch, M. Kohlweiss, and C. Soriente, “An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials,” in Proceedings of the

12th International Conference on Practice and Theory in Public Key Cryptography:

PKC ’09, ser. Irvine. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 481–500.
10. J. Camenischn and A. Lysyanskaya, “Dynamic Accumulators and Application

to Efficient Revocation of Anonymous Credentials,” in Proceedings of the 22Nd

Annual International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’02. London, UK, UK: Springer-Verlag, 2002, pp. 61–76.

11. S. A. Crosby and D. S. Wallach, “Authenticated dictionaries: Real-world costs and
trade-offs,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 2, 2011.

12. N. Fazio and A. Nicolosi, “Cryptographic Accumulators : Defintions, Constructions
and Applications,” Technical Report, 2002.

13. E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive, Report 2003/216, 2003,
http://eprint.iacr.org/2003/216/.

14. J. Haas, Y.-C. Hu, and K. Laberteaux, “Efficient certificate revocation list orga-
nization and distribution,” Selected Areas in Communications, IEEE Journal on,
vol. 29, no. 3, pp. 595–604, 2011.

5 http://crl.verisign.com

16 Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux

15. T. Hayashi, T. Shimoyama, N. Shinohara, and T. Takagi, “Breaking pairing-based
cryptosystems using t pairing over gf(397),” in Advances in Cryptology - ASI-

ACRYPT 2012. Springer, 2012.
16. C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D. Tygar, “Distillation Codes and Ap-

plications to DoS Resistant Multicast Authentication,” in Network and Distributed

System Security Symposium - NDSS 2004. The Internet Society, 2004.
17. J. Lapon, M. Kohlweiss, B. Decker, and V. Naessens, “Performance analysis of

accumulator-based revocation mechanisms,” in Security and Privacy Silver Lin-

ings in the Cloud. Springer Berlin Heidelberg, 2010.
18. J. Li, N. Li, and R. Xue, “Universal Accumulators with Efficient Nonmembership

Proofs,” in Proceedings of the 5th International Conference on Applied Cryptogra-

phy and Network Security, ser. ACNS ’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 253–269.

19. Z. Li, “Efficient Authentication, Node Clone Detection, and Secure Data Aggre-
gation for Sensor Networks,” Ph.D. dissertation, University of Waterloo, 2010.

20. H. Massias, “La certification cryptographique du temps,” Ph.D. dissertation, Uni-
versité catholique de Louvain, 2000.

21. L. Nguyen, “Accumulators from Bilinear Pairings and Applications,” in Proceedings

of the 2005 International Conference on Topics in Cryptology, ser. CT-RSA’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 275–292.

22. K. Nyberg, “Fast Accumulated Hashing,” in Fast Software Encryption - FSE 1996.
Springer, 1996.

23. P. Paillier, “Public-Key cryptosystem based on composite degree residuosity
classes,” in Advances in Cryptology - EUROCRYPT ’99, ser. Lecture Notes in
Computer Science 1592. Springer, 1999, pp. 223–238.

24. C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated hash ta-
bles,” in Proceedings of the 15th ACM Conference on Computer and Communica-

tions Security. ACM, 2008.
25. T. Sander, “Efficient Accumulators Without Trapdoor Extended Abstracts,” in

Proceedings of the Second International Conference on Information and Commu-

nication Security, ser. ICICS ’99. London, UK, UK: Springer-Verlag, 1999, pp.
252–262.

26. T. Sander, A. Ta-Shma, and M. Yung, “Blind, auditable membership proofs,” in
Financial Cryptography, ser. Lecture Notes in Computer Science, Y. Frankel, Ed.
Springer Berlin Heidelberg, 2001, vol. 1962, pp. 53–71.

27. C. Tartary, S. Zhou, D. Lin, H. Wang, and J. Pieprzyk, “Analysis of bilin-
ear pairing-based accumulator for identity escrowing,” IET Information Security,
vol. 2, no. 4, pp. 99–107, 2008.

28. P. Wang, H. Wang, and J. Pieprzyk, “Improvement of a Dynamic Accumulator at
ICICS 07 and Its Application in Multi-user Keyword-Based Retrieval on Encrypted
Data,” in Asia-Pacific Services Computing Conference, 2008. APSCC ’08. IEEE,
2008, pp. 1381–1386.

29. ——, “A New Dynamic Accumulator for Batch Updates,” in Proceedings of the

9th International Conference on Information and Communications Security, ser.
ICICS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 98–112.

30. D. H. Yum, J. W. Seo, and P. J. Lee, “Generalized Combinatoric Accumulator,”
IEICE Transactions, vol. 91-D, 2008.

31. J. Zachary, “A decentralized approach to secure management of nodes in dis-
tributed sensor networks,” in Military Communications Conference, 2003. MIL-

COM ’03. 2003 IEEE, vol. 1, 2003.

Performances of Cryptographic Accumulators 17

32. F. Zhang and X. Chen, “Cryptanalysis and Improvement of an ID-based Ad-hoc
Anonymous Identification Scheme at CT-RSA 05,” Inf. Process. Lett., vol. 109,
no. 15, pp. 846–849, 2009.

