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Abstract—Cellular operators count on the potentials of offload-
ing techniques to relieve their overloaded data channels. Beyond
standard access point-based offloading strategies, a promising
alternative is to exploit opportunistic direct communication links
between mobile devices. Nevertheless, achieving efficient device-
to-device offloading is challenging, as communication opportuni-
ties are, by nature, dependent on individual mobility patterns. We
propose, design, and evaluate DROiD (Derivative Re-injection to
Offload Data), an original method to finely control the distribu-
tion of popular contents throughout a mobile network. The idea is
to use the infrastructure resources as seldom as possible. To this
end, DROiD injects copies through the infrastructure only when
needed: (i) at the beginning, in order to trigger the dissemination,
(ii) if the evolution of the opportunistic dissemination is below
some expected pace, and (iii) when the delivery delay is about
to expire, in order to guarantee 100% diffusion. Our strategy is
particularly effective in highly dynamic scenarios, where sudden
creation and dissolution of clusters of mobile nodes prevent
contents to diffuse properly. We assess the performance of DROiD
by simulating a traffic information service on a realistic large-
scale vehicular dataset composed of more than 10,000 nodes.
DROiD substantially outperforms other offloading strategies,
saving more than 50% of the infrastructure traffic even in the
case of tight delivery delay constraints. DROiD allows terminal-
to-terminal offloading of data with very short maximum reception
delay, in the order of minutes, which is a realistic bound for
cellular user acceptance.

Index Terms—Mobile data offloading; hybrid networks; delay-
tolerant networks.

I. INTRODUCTION

We propose DROiD, a feedback based offloading scheme

to efficiently distribute popular contents to a multitude of

mobile users. DROiD helps cellular operators to relieve their

infrastructure network by exploiting direct communications

between users. The recent boom in the smart mobile devices

market calls for efficient offloading strategies, as the global

mobile traffic is expected to increase significantly (18-fold

between 2011 and 2018 as reported by Cisco [1]). Cellular

providers are already under heavy pressure, attempting to

accommodate such an amount of traffic on their networks. As

a consequence, they must intervene with major investments

to scale their access networks. Nevertheless, expenses to buy

more licensed band or to build more base stations are very

high; unfortunately, the increase in network capacity brought

by these methods will hardly keep up with traffic growth.

Recent studies disclosed an alternative solution when many co-

located users are interested in the same contents [2], [3], [4].

DROiD injects
a few copies

opportunistic propagation
keeps running

DROiD re-injects
one copy to

boost propagation

DROiD injects one last
copy to guarantee

100% dissemination

opportunistic propagation
keeps running

nodes send
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Fig. 1: DROiD functioning: the infrastructure channel initially injects
copies to kick start the dissemination process. Content is diffused
through the opportunistic communications. Upon content reception,
users acknowledge the offloading agent using the feedback channel.
The infrastructure channel may re-inject copies to boost the diffusion.
100% delivery ratio is reached through fall-back re-injections.

The idea is to benefit from node mobility and delay tolerance

of a number of content types to help the infrastructure to shift a

portion of the traffic from the primary (cellular) channel to an

alternative (terminal-to-terminal) channel. Carriers may offer

incentives and pricing discounts to motivate mobile subscribers

to offer their battery and storage resources to this end [5].

The core mechanism behind DROiD aims at alleviating the

load on the operator’s infrastructure by reducing redundant

traffic. DROiD adapts to the heterogeneous individual mobility

pattern of nodes and to the current evolution of the dissemi-

nation process. This heterogeneity is at the base of a stepwise

evolution in the content dissemination, alternating flat zones

(plateaux) to steep periods of diffusion, as we will explain in

Section II. DROiD adopts the re-injection decision analyzing

the outlook of the diffusion rather than comparing the infection

level to an objective function. In this way, DROiD detects

plateaux in the content diffusion evolution, and, if needed,

adaptively re-injects additional copies in the system to finely

control the pace at which the contents are disseminated. To

this extent, a persistent feedback channel, connecting mobile

users with the offloading coordinator, becomes instrumental,



allowing at each instant the coordinator to track the content

dissemination status and to anticipate the correct re-injection

decision. We show a high level functioning schema of DROiD

in Fig. 1. Thanks to its adaptive re-injection strategy, DROiD

leads to much better performance than existing strategies that

are bounded to an objective function that remains fixed during

the entire offloading process [6].

We confirm the proper functioning of DROiD through sim-

ulation, where we mimic a location-based service; a content,

supposed of general interest, must be distributed to a multitude

of users within a given maximum reception delay (in order to

guarantee a minimal QoS on a per-content basis). We employ

a realistic large-scale vehicular trace derived from multiple

fine-grained traffic measurements in the city of Bologna (about

10,000 vehicles). We then compare DROiD’s performance un-

der tight delays with other offloading solutions proposed in lit-

erature, and with an oracle, taken as a benchmark. Simulation

results display that DROiD substantially outperforms objective

function-based offloading strategies for any considered delay

tolerance value, reducing by more than half the infrastructure

load. In addition, we show that DROiD performs very close

to the oracle. As a summary, the contributions of this paper

are threefold:

• We turn the attention to the heterogeneity of contact

patterns in opportunistic networks. This heterogeneity is

at the origin of the dynamic creation and dissolution

of clusters. We harness this property to explain why

epidemic diffusion presents a stepwise behavior.

• We propose DROiD, an offloading system that, thanks

to its derivative-based re-injection strategy, better adapts

to the contact patterns between nodes to offer enhanced

offloading efficiency.

• We compare DROiD with other objective function-based

strategies and show that DROiD outperforms them even

under tight delivery delay constraints.

The remainder of this paper is organized as follows. In

Section II, we motivate our work showing a typical stepwise

behavior of epidemic diffusion in opportunistic networks. In

Section III, we introduce DROiD and motivate the choice of a

derivative-based feedback strategy. In Section IV, we describe

the scenarios and the dataset we used to evaluate our proposal.

Several results are presented in Section V. We postpone related

work to Section VI and conclude the paper in Section VII.

II. MOTIVATING CONTEXT: STEPWISE EPIDEMIC

DIFFUSION

At the heart of DROiD is the idea of allowing the diffusion

process to adapt to the idiosyncrasies of individual mobility

patterns. To see what happens, let us take two examples

using very different datasets: the small-scale Rollernet dataset,

composed of only 62 nodes [7], and the Bologna dataset,

composed of more than 10, 000 nodes. We plot in Fig. 2 the
evolution of the content diffusion in the network. We start the

diffusion by injecting a small number of initial copies (6 and
10 respectively) to random nodes at t0, and let the epidemic
diffusion of the message progress with subsequent direct
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Fig. 2: Epidemic diffusion of the content. The diffusion behavior
alternates steep zones and flat zones that are the result of changing
encounter probability among mobile nodes.

contacts. A node that has received the message is said infected,

while a node that has not yet received the content is sane. The

instantaneous infection ratio I(t) ∈ [0, 1] follows a stepwise
pattern, alternating plateaux (flat areas) to periods of heavy

infection (steep areas) before reaching complete diffusion. We

may find a similar dissemination evolution pattern for very

different datasets such as the ones considered. This is a typical

example of the way any given diffusion process progresses

due to the randomness of contact patterns in opportunistic

networks. In particular, the plateaux correspond to periods

during which the dissemination does not make any progress,

because no sane nodes come into range of the already infected

nodes.

Let us now dig into the relationship between mobility

patterns and progress of the epidemic diffusion. The first

obvious point is that this phenomenon is intrinsically related

to the heterogeneity of contact patterns, i.e., the fact that two

different nodes do not meet on average the same number

of other nodes. If the contact process of nodes is Poisson

homogeneous and stationary, each pair of nodes meets with

intensity λ. Assuming that each contact means an opportunity
to transfer the content, neglecting the contact duration, the

resulting epidemic diffusion follows the logistics equation [8]

- the curve does not exhibit any plateau, which is in contrast

to our observation. Since for homogeneous contact process,

each pair of nodes meet with the same probability, the longer

the time that a copy has to propagate and the greatest benefit

that copy brings. This would lead us to wrongly believe that

the best offloading strategy is to inject the right amount of



copies at t0, forget about the infection evolution, and let the
opportunistic dissemination do the work for us.

To capture the heterogeneity of patterns, we adopt a Marked

Poisson Process model of node contacts [9], [10]. In this

model, the meeting times of any two nodes (i, j) follow a Pois-
son Process with rate λij = λpij . The inter-contact times Tij

are thus independent exponentials with parameter λij , and the

matrix C = (pij) captures the patterns of interactions between
nodes. In the homogeneous case, C is the identity matrix, i.e.,

all nodes can see each other with the same probability. At

any given time instant of the dissemination process, a set S
of nodes is infected. We are interested in the random plateau

duration T p
S during which the dissemination does not progress.

This corresponds to the random time during which this set of

nodes does not meet any other nodes. Looking at the set of

links between nodes in S and its complement, one can see

that T p
S = infi∈S,j /∈S Tij . By Poisson calculus, and noting the

cut value ∂S =
�

i∈S,j /∈S pij , T
p
S is an exponential random

variable with parameter λ∂S [11]. The expected plateauing

duration, once set S has been reached, is thus 1/λ∂S.
This simple argument shows that T p

S is directly related to

the structural properties of the contact matrix C, providing
a natural connection between the community structure of the

contact graph and the progression (or lack of progression) of

the opportunistic dissemination process. Nodes in a commu-

nity have high conductance (they are well knit to one another),

and the ratio of the weight of inter-cluster edges to the total

weight of all edges is low [12]. Applying these ideas to C
(which represents the probability of two nodes to meet) means

that a community S of users will spread the message quickly
within the cluster (high conductance), but will reach a plateau

once the nodes in the group all have the message, because the

weight of inter-cluster edges and thus its cut value ∂S is low.
In practice, we observe strong dynamic clustering for the

considered datasets. As a working example, we confirm this

statement through numerical analysis of the Rollernet dataset.

Since the matrix C varies in time, we compute it for t ∈ [0, 60]
seconds. As we know the set of nodes that have been initially

infected in the realization, and how diffusion progresses, we

employ the analytical model described above to calculate the

average duration T p
S for the first plateau in Fig. 2a, starting

at t = 1.7 seconds. At that time, S contains 18 infected

nodes, 12 of which have been infected opportunistically. The
numerical analysis gives us an estimated exponential param-

eter λ∂S = 0.21, an expected plateau duration T p
S = 4.78

seconds. The observed plateau duration of the realization lasts

5.4 seconds, confirming the legitimacy of our intuitions. This
observation provides the motivation of our further investigation

of adaptive offloading strategies that are able to chase the

individual mobility of nodes, re-injecting copies when the

diffusion evolution runs into a plateau.

III. SHRINKING THE CELLULAR LOAD: A

DERIVATIVE-BASED SOLUTION

We design DROiD following the observations discussed in

Section II. We will first present the general architecture of our

content
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Fig. 3: Flowchart of the high-level operation of DROiD.

system before providing the design details.

A. High-level operation

The proposed system employs a Pub-Sub paradigm, with

users sending subscribe messages upon entering the simu-

lation area, and unsubscribe messages upon leaving it, in

order to acknowledge their interest to the offloading coordina-

tor. A subset of subscribers initially receives content through

the cellular channel and propagates it opportunistically using

the ad hoc interface. Whenever a node receives content from

a neighbor, it acknowledges the reception to the coordinator

through the infrastructure network, forming a feedback loop

in the system. This simple mechanism allows DROiD to

monitor in real time the evolution of the content dissemination

process, and possibly to account for data usage. The offloading

coordinator continually estimates the infection ratio and may

decide to re-inject additional copies of the content in order

to boost the diffusion. Since acknowledgments sent by mobile

nodes on the infrastructure channel are relatively lightweight

(compared to the size of the disseminated content), the pro-

posed system is expected to guarantee considerable reduction

of the infrastructure load.

Opportunistic communications depend heavily on the par-

ticular mobility of nodes, and only probabilistic guarantees of

successful content delivery and reception times can be given.

To solve this issue, when we approach the maximum delivery

delay D (i.e., the validity of content), and the time left is

equal to the time required to send the message through the

infrastructure, denoted as P , the offloading coordinator enters
a panic zone and pushes the content to all uninfected nodes

through the infrastructure, guaranteeing full dissemination.

Note that the feedback loop guarantees a fall-back method

to overcome various issues that may appear in the network,

such as node failures or mobile users behaving selfishly – the

occurrence of these events could heavily impact the oppor-

tunistic diffusion [13]. The high-level operation of DROiD is

illustrated in Fig. 3.

B. Derivative-based re-injection strategy

The core of DROiD resides on the intelligence of the

offloading coordination agent. This latter is in charge of

deciding when to re-inject additional copies depending on the



evolution of the opportunistic dissemination process. Every re-

injection decision is expected to bring benefit to the system,

but it depends on the re-injection time and the target node

(to which copies will be sent through the infrastructure). In

fact, there is a difficult trade-off to consider. On the one hand,

if too many copies are injected in the beginning (in general,

earlier injections have more time to diffuse), the system may

be overestimated (as we do not know in advance how nodes

will encounter). On the other hand, if the system injects too

few copies in the beginning and waits for the panic zone to

compensate for lags, many opportunistic encounters might be

wasted because of the lack of enough copies in the network.

Re-injection is beneficial when the subsequent opportunistic

transmissions save additional infrastructure pushes. Of course,

the benefit can be null if the offloading coordination agent

selects a node that would have received the message later from

another node. Finding the good trade-off is difficult, as the

offloading agent is essentially blind and the only information

available is the list of currently subscribed users and the

list of those who already received the content (inferred from

acknowledgments).

DROiD achieves high offloading efficiency by making the

re-injection decision dependent not only on the actual dis-

semination level, but also on the trend of the infection ratio.

DROiD anticipates and avoids the insurgence of long-lasting

plateaux in the content diffusion through its reactive strategy.

This is not the case in other strategies such as Push-and-

Track, in which the offloading agent makes the re-injection

decision according to the distance between the instantaneous

infection ratio and a fixed a priori target objective function [6].

Re-injection decisions do not take into account the general

evolution of the infection, but only its instantaneous values.

Static strategies react too late when the infection ratio is above

the objective function but still not evolving, or overreact when

the infection evolves well but its instantaneous value still lies

under the objective function. Late or too brutal re-injections

result in a waste of messages pushed through the infrastructure.

Another limitation of existing static strategies is that they

do not propose a single solution, but instead a multitude of

objective functions; the problem is that different objective

functions behave differently depending on the content lifetime

and network status.

DROiD keeps in memory a short snippet of past infection

ratio values. Each content has an associated tracker that stores

the evolution of the infection ratio for a temporal sliding

window of size W (i.e., at time t the values that will be
considered are the ones between [t − W, t]). W is a design

parameter that must be a multiple of the time step used for

the evaluation of the infection ratio, τ , and smaller than D
(recall, the validity of the content). The size of the sliding

window trades off how far in time DROiD looks back and

dictates the reactivity to sudden changes in the infection ratio.

In our experiments, we found that reasonable values of W fall

in the range [2τ, 10τ ].
As illustrated in Fig. 4, at evaluation time step t, the

offloading coordinator performs a forward difference quotient

I
(t
)

0

1

∆ I
(t
)

I
(t
−

W
)

t−W DD − Pt

1
−

I
(t
)

p
a
n
ic

zo
n
e

W

time

infection ratio

Fig. 4: Discrete time slope detection performed by DROiD. For clarity
we consider the content creation time t0 = 0.

on the instantaneous infection ratio I(t) that approximates to
a discrete derivative:

∆I(t) =

�

I(t)−I(t−W )
W , t− t0 ≥ W,

I(t)
t−t0

, t− t0 < W.
(1)

Note that I(t) is not monotonically increasing, since nodes
may exit the simulation area at any time. ∆I(·) approximates
the slope of the infection ratio and is one of the parameters

that influence the re-injection decision. DROiD re-injects ad-

ditional copies of the content whenever the discrete derivative

∆I(·) is below a ∆lim threshold computed on line as the ratio

between the fraction of sane nodes and the time remaining

before the panic zone. This because a steeper slope is needed

when time gets closer to panic zone or the infection ratio lags

(different from when we are at the beginning of the infection

process). Formally speaking, we have:

∆lim(t) =
1− I(t)

(D − P ) − (t− t0)
· (2)

As a final step, the injection rate rinj(t) is computed as a
piecewise function, depending on the ratio of the current∆I(t)
value and the ∆lim threshold:

rinj(t) =











c, ∆I(t) ≤ 0,

c
�

1− ∆I(t)
∆lim(t)

�

, 0 < ∆I(t) ≤ ∆lim(t),

0, ∆I(t) > ∆lim(t).

(3)

Where c ∈ [0, 1] is a clipping value used to limit the overall
amount of re-injected copies in the case of negative values

of ∆I .
1 Finally, rinj(t), which represents the percentage of

uninfected nodes that need to be targeted, is multiplied to the

1Clipping value c represents the maximum fraction of content that can be
pushed through the infrastructure at evaluation time. Negative values of∆I(·)
may happen in the case of infected nodes leaving the system. We address this
issue in Section V.



number of uninfected nodes to find the number R(t) of copies
to re-inject at t:

R(t) = �(1 − I(t)) × |N(t)| × rinj(t)�. (4)

Where |N(t)| is the instantaneous number of nodes subscribed
to the content update.

IV. EVALUATION SETUP, SCENARIOS, AND DATASET

We evaluate DROiD considering the problem of distributing

popular content to a multitude of mobile nodes. We assume

that nodes are equipped with two wireless interfaces (e.g.,

most smartphones or infotainment systems), so that they are

able to communicate through two interfaces simultaneously.

Possible combinations involve 3G and 4G to communicate

with the cellular infrastructure and Bluetooth or Wi-Fi ad hoc

to communicate with neighboring devices.

A. Experimental Dataset

To evaluate our strategy, we use a large-scale vehicular

mobility trace representing the city of Bologna (Italy), and

consisting of 10, 333 nodes. This dataset, initially exploited to
evaluate cooperative road traffic management strategies within

the FP7 iTetris project [14], covers 20.6 km2 comprising 191
km of roads. The dataset is drawn from real traffic mea-

surements acquired by 636 induction loops deployed citywide
and inferred into a micro-mobility model through the SUMO

simulator [15]. The dataset captures real city traffic conditions,

with speed of vehicles varying from 0 to around 50 km/h
depending on road congestion. From the mobility trace, we

derive a contact trace that features contacts between nodes

when the distance between them is below a given threshold

(we consider in our analysis a range of 100 meters). The

final contact trace has duration of about one hour; in average,

3, 500 nodes are present at the same time (because some

nodes leave while others join during the observation period).

Differently from other datasets available, we have a clear high

turnover rate and no apparent social links between nodes. The

distribution of contact duration is exponential. Most contacts

are very short [6], confirming the highly dynamic nature of the

dataset. Only few contacts last for more than a few minutes.

B. Scenario variations

Without loss of generality, we consider location-based traffic

information service, where a centralized server issues a new

content update every tP seconds. DROiD must guarantee

the delivery of each of the updates to all nodes interested

in the content within a maximum delay D. Contents are
issued periodically, with the previous one expiring when a

new one is created (so tP = D, and a single content is
active in the system at a time). Possible contents of interest

include popular geo-relevant data, such as localized traffic

and roadwork alerts, generalized public utility information

or geographic advertising; nevertheless, the proposed system

also supports the efficient distribution of software updates.

The choice of which content to offload is made in advance,

depending on its delay-tolerant characteristics. The content

may be delivered directly through the infrastructure network or

retrieved from a neighboring node in an opportunistic fashion.

Despite this work considers all users as interested in the

content, the combined use of the Pub-Sub paradigm and ack

messages makes the system easily extensible in the case of

multiple contents and non uniform nodes’ interest.

Since nodes may enter and leave the target area during the

lifetime of the content (and this impacts the results, as we will

see later), we consider two different scenarios in our analyses.

Scenario 1: Partial population. In this scenario, target recip-

ients are nodes that remain in the target area during the whole

update content lifetime (i.e., during the period [t0, t0 + D]).
Initial recipients of the traffic update are the users already

subscribed to the update service (e.g., mobile nodes within

the interest area). Users subscribing during the distribution

period are served on a best-effort way (they may receive the

update but have to wait for the next update to be sure to

be served). Nodes that leave the target area are no further

concerned with the content and lose their status of potential

recipient. Nevertheless, latecomers and nodes leaving before

t0 +D can still participate in the opportunistic dissemination,

concurring to increase the delivery capacity of the system.

Formally speaking, we denote with N(t) the set of subscribed
users at time t ∈ [t0, t0 + D], S = N(t0) the set of potential
target recipients of the message (i.e., the subscribed nodes

when the update is issued), and K = N(t0 + D) ∩ S the

subset of potential target nodes that remained until t0 + D
(the nodes that must receive the update).

Scenario 2: Full population. In this scenario, we target the

distribution of updates to any node that are part of the network

for any period of time within [t0, t0 + D]. We define the set
of all target nodes for the content as K =

�

t N(t), ∀t ∈
[t0, t0 + D].

C. Simulation setup

No network simulators among those publicly available today

perform well in scenarios with several thousand nodes at the

same time [16], [17]. Therefore, we built a streamlined event

based simulator heavily inspired by the ONE simulator [16].

In our implementation, we consider a simple contact-based ad

hoc MAC model, where a node may transmit only to a single

neighbor at a time. Transmission times are deterministic since

we do not take into account complex phenomena that occur

in the wireless channel such as fading and shadowing (we are

not really interested here on the exact physical evolution of

communications taking place during the offloading process).

Communications consist of two different classes of messages

(content and control). All transfers, including ack messages,

may fail due to nodes moving out of each other’s transmission

range or exiting the simulation area. In addition, it is possible

that the same message be concurrently received through the

two interfaces. In that case, we consider the one that is

processed first. The ad hoc routing protocol employed by

nodes to disseminate the content is the epidemic forwarding.



Parameters in simulation are set to mimic the functioning of

communication technologies currently available to consumers.

In each simulation run, the downlink bit-rate for the infras-

tructure network is set to 100 KB/s, while uplink is fixed at
10 KB/s. These values are in line with the average bit-rate
experienced by users of a typical HSPA network. The bit-

rate for the ad hoc link is set to 1 MB/s, also in line with
the advertised bit-rate of the IEEE 802.11p standard. The

size of each content update is set at 100 KB. The size of
the acknowledgment messages is 256 bytes, as it carries very
little information (content and node identifiers). For the other

parameters, we use τ = 1 seconds, c = 0.05, and W = 5τ .
The panic time duration P is fixed at 1 second.

V. RESULTS

A. Comparison with existing strategies

We investigate how our system performs under tight delivery

constraints, when the maximum delivery delay D lies in the

range [30, 180] seconds. This contrasts with what is done
in most approaches in the literature that consider long time

scales for content reception (up to some hours). Instead, we

are interested in very short maximum reception delays, in the

order of minutes, as otherwise users would not realistically

accept to trade-off reception delays for cellular capacity. State-

of-the-art solutions, benefiting from more relaxed reception

constraints, can take advantage of a sort of stochastic reg-

ularity in contact patterns of users [2], [3], [4]. Centralized

optimization frameworks based on Monte Carlo sampling [2]

or temporal reachability graphs [18] require the complete

contact graphs among users, and are known to have high com-

putational complexity. Therefore, they are unable to evaluate

the offloading strategy on large-scale datasets in real-time.

Indeed, if the mobility patterns of subscribers change, the

selected strategy might not be optimal anymore. In addition,

none of the proposed strategies deal with nodes entering or

leaving the system. These considerations make it difficult to

compare existing approaches with DROiD, which targets the

microscopic mobility of users and the unpredictable contact

dynamics on small time intervals.

B. Reference strategies and evaluation

We use two reference strategies for evaluation purposes:

“infrastructure only” (Infra) and “connected component ora-

cle” (Oracle). In the Infra strategy, there is no offloading at all,

and the infrastructure represents the only means of distributing

content. In the Oracle strategy, the coordinator has a real-time

picture of the ad hoc connectivity of the entire network (un-

realistic assumption, but useful to provide an upper bound on

performance). The coordinator pushes the content to a random

node within each existing connected component. Singleton

nodes are targeted as well. The underlying idea is to push only

one copy per connected component in order to get close to

the minimal number of infrastructure copies. Oracle achieves

near-optimal performance because of its perfect knowledge

of the system connectivity; however, it does not account for

transmission times and future movements of nodes.
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Fig. 5: Partial population scenario: infrastructure vs. ad hoc load per
message sent using the Infra, the Oracle, and the DROiD strategies.
Different maximum reception delays for messages are considered.

In addition to these two baseline cases, we compare DROiD

with Push-and-Track, which represents nowadays the offload-

ing alternative that offers 100%-delivery ratio guarantees with
tight delivery times. Since it offers primarily a methodology

rather than a specific offloading strategy, it is difficult to

state a priori which target objective function gives the best

results [6]. To be as fair as possible, we compare DROiD

with the objective function that gives, for each scenario, the

best results, namely the linear and the slow start objective

functions.

All the results presented in this section are averages over 10
simulation runs. We focus primarily on the aggregate load that

flows through the infrastructure and across the ad hoc links.

Load measurements take also into account ack messages

as well as failed and aborted transfers. Ack, subscribe,

and unsubscribe messages constitute the infrastructure

overhead. The offloading efficiency metric depends on the

amount of traffic flowing on the infrastructure link when we

use the offloading process, denoted with L, and the traffic on
the infrastructure in the absence of any offloading strategy (i.e.,

Infra strategy), denoted with Lref . Formally, the offloading

efficiency is computed as 1− L/Lref .

C. Partial population scenario

DROiD performs very well in terms of reduced infrastruc-

ture load, by delivering the majority of traffic through device-

to-device communications even in the case of tight delays.

Fig. 5 displays the average amount of traffic per message

that flows through the infrastructure and ad hoc interfaces.

In this picture, we compare DROiD to reference strategies

only, to show how DROiD approaches Oracle. An interesting

phenomenon appears: while the sum of the infrastructure and

ad hoc load for both the oracle and DROiD increases with

the message lifetime, the reference load for the Infra strategy

slightly decreases. This particular effect depends on the sce-

nario under consideration, as we target nodes that remain in

the system for the entire lifetime of the content. Intuitively,

an increase in the maximum reception delay makes nodes

more likely to exit the simulation area before the deadline,



TABLE I: Partial population scenario: infrastructure overhead (%) for
different strategies and reception delays.

30s 60s 90s 120s 150s 180s

Oracle 0.43 0.48 0.51 0.55 0.59 0.64

DROiD 0.43 0.47 0.51 0.54 0.58 0.62

Static Linear 0.42 0.45 0.46 0.48 0.51 0.54

Static Slow Start 0.40 0.45 0.47 0.48 0.49 0.53
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Fig. 6: Partial population scenario: average offloading efficiency.
Different maximum reception delays for messages are considered.
95% confidence intervals are plotted.

reducing the number of reference infrastructure messages. Ad

hoc load increases, instead, because nodes that are not direct

targets still participate in the opportunistic dissemination. This

ad hoc overuse is not particularly worrisome, since direct

transmissions have no monetary costs associated; nevertheless

this may result in congestion in dense networks. On the

other hand, the overhead caused by ack messages on the

cellular channel is kept at minimum level. Thanks to the small

size of the ack messages, the feedback mechanism is never

responsible for more than 0.64% of the infrastructure load

(values in Table I). As expected, there is a linear relationship

between the overhead and the number of contents received

through ad hoc links (and the resulting ack messages).

In terms of saved infrastructure load, DROiD pays only a

small penalty compared to the reference oracle. For instance,

in the 30-seconds scenario DROiD performs nearly as well as

Oracle. When the delay tolerance increases, the performance

of Oracle improves, as the opportunistic dissemination has

more time to propagate the message to the entire network.

Oracle is able to choose the most favorable nodes at t0,
resulting, in average, in fewer re-injections during panic time.

DROiD always obtains better performance than static strate-

gies. In Fig. 6, DROiD always outperforms the static linear

and slow-start strategies in terms of offloading efficiency. Note

that the results would have been even better if we had picked

another objective function. The gap between DROiD and static

strategies increases when the tolerance to the delay increases,

suggesting a better adaptation to the diffusion evolution. This

curve shows also a well-known phenomenon: an increase

in the reception delay corresponds to an increase in the
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Fig. 7: Partial population scenario: average amount of latecomer users
served in best-effort service. 95% confidence intervals are plotted.

offloading efficiency. If we translate the offloading efficiency

into aggregate infrastructure traffic savings, for a one-hour-

long simulation with 30-seconds reception delay, DROiD saves

around 420 MB if compared to the linear strategy and 1.2 GB
if compared to the slow start strategy (numbers not shown

in the figure). These values, although not really sound in

absolute terms, give an idea on the potential savings that the

network operator would be able to obtain when it has to handle

multiple parallel requests. Fig. 6 also confirms that objective

function-based strategies strongly depend on content lifetime

and network status, with a relative performance that varies with

the delay. DROiD, on the other hand, consistently offers better

performance. Even if we can tolerate only a small maximum

reception delay as short as of 30 seconds, DROiD offloads

more than 50% of the infrastructure traffic.

We also confirm the advantages of DROiD by analyzing the

number of infected latecomer nodes. Recall that latecomers

are served in a best-effort fashion. They also participate in

the ad hoc diffusion of the content, increasing the overall

network delivery capacity. Fig. 7 presents the average number

of latecomer nodes infected in a best effort service. Also in this

case, DROiD obtains much better dissemination ratios than the

two fixed objective functions, especially with longer delays. It

is worth noting that DROiD can even lead to better levels of

infection of latecomers than Oracle when the delay tolerance is

120 seconds. The number of latecomers hints at the dynamics
of the considered dataset.

D. Full population scenario

DROiD performs even better in the full population scenario.

Recall that, in this scenario, all nodes entering the target area

are expected to receive the content, regardless of their dwell

time in the system. Therefore, unlike in previous scenario, the

load in the Infra strategy increases with the message lifetime.

Simulation results, plotted in Fig. 8, show that DROiD uses

roughly the same infrastructure load of the oracle to guarantee

100%-delivery ratio. Sudden variations in the infection ratio,
due to nodes that dynamically enter and leave, are well

handled by the feedback mechanism of DROiD. While the

load in the Infra strategy increases linearly (as a longer
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Fig. 8: Full population scenario: infrastructure vs. ad hoc load per
message sent using the Infra, the Oracle, and the DROiD strategies.
Different maximum reception delays for messages are considered.

TABLE II: Full population scenario: infrastructure overhead (%) for
different strategies and reception delays.

30s 60s 90s 120s 150s 180s

Oracle 0.43 0.48 0.50 0.54 0.57 0.64

DROiD 0.43 0.48 0.51 0.54 0.57 0.61

Static Linear 0.42 0.44 0.47 0.50 0.52 0.56

Static Slow Start 0.40 0.45 0.47 0.50 0.52 0.55

content lifetime implies a major number of nodes entering the

system), the infrastructure loads for Oracle and DROiD remain

always nearly the same, translating in an increased offloading

efficiency. The ad hoc transmissions overuse is significantly

less pronounced in this scenario, and is dominated by failed

and aborted transfers due to nodes moving out of each other’s

transmission range, or messages concurrently received on both

interfaces. Table II compares the infrastructure overhead due to

control messages. Similarly to the previous case, infrastructure

overhead results negligible, accounting for at most 0.64% of

total cellular traffic.

Compared to static strategies, DROiD always leads to better

results, as shown in Fig. 9. In this scenario, DROiD saves

between 55% and 63% of traffic for different message delays.

In terms of aggregate savings, for a one-hour-long simulation

and 30-seconds tolerance to delay, DROiD saves around 360-
MB compared to the linear strategy, and 1.44-GB compared
to the slow start strategy. These numbers are again very

motivating if we consider the total amount of cellular traffic

that an operator could save in the case of a real deployment.

Although DROiD and Oracle show more or less the same

trend in the offloading efficiency curve, this result is achieved

through two completely different strategies. On the one hand,

Oracle, exploits its perfect knowledge of the connectivity

status in the network, pushing the content to specific high

potential nodes. On the other hand, DROiD has a much less

complete, and slightly out of sync, view of the system, and

employs its advanced derivative-based re-injection algorithm

to guess when additional copies of the content are required.

In addition, Oracle presents always larger confidence interval
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Fig. 9: Full population scenario: offloading efficiency. Different max-
imum reception delays for messages are considered. 95% confidence
intervals are plotted.

than DROiD (and static strategies in general). This is related to

the mobility and turnover of nodes: the resulting connectivity

changes in time influencing the Oracle prediction performance.

A mobility and connectivity agnostic framework such as ours

is less sensitive to this issue.

VI. RELATED WORK

Recent mobile data explosion fostered the interest in alterna-

tive methods to relieve the load on the wireless infrastructure.

Mobile data offloading is seen as a simple and inexpensive

method to improve the capacity of mobile networks. The

mobility of users and the delay tolerance of some contents

has been the subject of a number of papers in the literature.

Balasubramanian et al. propose Wiffler, a system to augment

the capacity of a cellular network by exploiting opportunistic

associations with Wi-Fi APs [19]. Yetim et al. consider the

decision of waiting for Wi-Fi hotspot encounters rather than

using cellular connectivity as a linear programming scheduling

problem [20]. Lee et al. present a quantitative study on the

benefit of data offloading through APs [21]. Dimatteo et al.

propose MADNet, an architecture that integrates cellular, Wi-

Fi APs, and mobile-to-mobile communications to offload the

cellular network [22]. Trestian et al. propose to upgrade the

network capacity only at a selected number of locations, called

Drop Zones, in the movement patterns of a large number of

users [23].

A more recent approach exploits device-to-device com-

munications, mobility of end-nodes, and the popularity of

certain contents to offload data through opportunistic com-

munications. It is noteworthy to point out that also 3GPP

is focusing on device-to-device communication technology

as a viable offloading solution [24]. Han et al. identify the

opportunity to offload data exploiting the social ties between

users, proposing a subset selection mechanism based on the

history of contacts [2]. Similarly, Li et al. mathematically

formulate the problem of DTN-based traffic offloading of

multiple contents. Under the assumption of Poisson contact

rates between nodes, they study the optimal subset selection

as a problem of utility function maximization under multiple



constraints [4]. Barbera et al. analyze contacts between end-

nodes in order to select a subset of seed VIP users that

are socially important in terms of centrality for the network.

The main idea is to turn these few central VIP nodes into

data forwarders between other nodes and the Internet [3].

Ioannidis et al. assume that the cellular infrastructure has a

fixed bandwidth that should be allocated between different

end-users. Mobile users share opportunistically any stored

content with other users, in order to improve the overall

network capacity [25]. Unlike these optimization frameworks,

our system continues in the footsteps of Push-and-Track [6],

not requiring any training period, or knowledge of the mobility

patterns of users. We developed a simpler reactive strategy able

to make up for this lack of knowledge through the use of the

cellular channel to control content dissemination.

VII. CONCLUSION

In this paper, we first described the stepwise behavior of

the epidemic diffusion in opportunistic network, demonstrating

that it depends on the dynamic clustering of nodes. We

also offered an analytical explanation of this behavior. To

obtain efficient offloading in such a context, we proposed and

evaluated DROiD, an offloading strategy that adapts to the

varying opportunistic dissemination evolution to improve the

distribution of popular contents throughout a mobile network.

By leveraging on opportunistic communications between mo-

bile nodes, DROiD relieves the congestion of the infrastructure

network. The system tracks the evolution of content diffusion

through user-sent acknowledgments and, thanks to its smart re-

injection algorithm, guarantees better offloading performance

than other offloading strategies. DROiD’s enhanced delivery

system takes into account not only the actual infection value,

but also its trend. DROiD perceives when the evolution of

the content diffusion stagnates, and reacts in advance with

respect to traditional strategies that considers only the actual

infection rate. We confirmed through simulations that the pro-

posed strategy consistently does better than existing offloading

systems, performing very close to an oracle that has the real-

time picture of the ad hoc connectivity of the entire network.

Future work is manifold. First, we want to push the charac-

terization of the epidemic diffusion further, especially in real

scenarios. We also intend to investigate an analytical model

that predicts the impact of intermittent connectivity on the

dynamic formation and dissolution of clusters. Finally, as an

ongoing work, we are defining all the protocols involved in

DROiD’s process in order to experiment it in a real scenario.
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