
HAL Id: hal-01005317
https://hal.inria.fr/hal-01005317

Submitted on 12 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-based Implementation of Multiple PHY Layers of
IEEE 802.15.4 Targeting SDR Platform

Albdelbassat Massouri, Tanguy Risset

To cite this version:
Albdelbassat Massouri, Tanguy Risset. FPGA-based Implementation of Multiple PHY Layers of IEEE
802.15.4 Targeting SDR Platform. SDR-WInnComm, Apr 2014, Schaumburg, Illinois, United States.
�hal-01005317�

https://hal.inria.fr/hal-01005317
https://hal.archives-ouvertes.fr

FPGA-based Implementation of Multiple

PHY Layers of IEEE 802.15.4

Targeting SDR Platform

Abdelbassat MASSOURI and Tanguy RISSET

Université de Lyon, INRIA,

INSA-Lyon, CITI-INRIA, F-69621, Villeurbanne, France

firstname.lastname@inria.fr

Abstract—While SDR platforms become more and more
accessible to a large community of researchers with affordable
prices, open source FPGA-based implementation of wireless
communication systems are still not available. This paper presents
an open source FPGA-based design of IEEE 802.15.4 PHY
Layers developed in the context of a new SDR testbed named
FIT/CorteXlab. We propose a VHDL implementation of the
three available options of the IEEE 802.15.4 physical layer
parametrized and easily reconfigurable. We have validated our
design on Nutaq platform which combines Xilinx Virtex-6 FPGA
and tunable Radio420x RF transceiver. A tutorial style approach
is adopted to describe the multiple PHY Layers of both the
baseband TX and RX IPs of IEEE 802.15.4 standard. More focus
is given to the symbol timing/carrier recovery and considerations
for FPGA implementation are outlined. The IPs presented here
will participate to the building of an open source hardware
SDR library similar to GNU radio but targeted to FPGA-based
platforms.

Keywords—IEEE 802.15.4, Zigbee, Software Defined Radio,
Cognitive Radio, FPGA.

I. INTRODUCTION

Software Defined Radio (SDR) has been identified by
Mitola many years ago [8], but the SDR technology has been
accessible at reasonable price only recently. Based on this
technological shift, the advent cognitive radio networks is
a major research challenge as it has been pointed by NSF

in 2009 [16]. One of the recommendations of this report
concerned the lack of cognitive radio testbeds and the urge
to “develop a set of cognitive networking test-beds that can
be used to evaluate cognitive networks at various stages of
their development”.

While open source software is widely used for cooperative
academic project, open source hardware is still hard to find.
OpenCores [13] is one of the most well known organization
providing open source VHDL, but it mainly provides processors
because it does not target a particular application domain.
Providing dedicated IPs for a particular application domain,
here SDR, will help in building a common source repository.
An example of such closed community is the reconfigurable
video coding standard framework [7] supported by MPEG to
help in developping portable video coding applications. Given
that cognitive radio is foreseen as a major innovative field in
the next ten years, it will need a similar effort to help new
waveform deployement on various SDR architectures.

However, modern wireless technologies based on OFDM

(Orthongonal Frequency Division Multiplexing) such as WiFi
or LTE-Advanced suffer from a major disavantage: they re-
quire a high computing power. For instance, LTE-Advanced is
suppose to require 40Gops with a power consumption of less
than 1 Watt. Hence, dedicated hardware IPs have to be used to
meet the computing power required. This explains the fact that
no open-source library exists so far for this domain: dedicated
IPs are very specific to their target protocol and moreover their
design is very time-consuming. This situation should change
as it will become mandatory to provide re-usable code for
software defined radio as the technology is mature now. The
growing use of software radio application will improve the
development of open source hardware design for digital signal
processing and we contribute, with the design presented here,
to this developpement

In section II, we briefly review existing testbed that can be
used for SDR application and we present the FIT/CorteXlab
testbed. Section III presents the multiple PHY layers that we
provide according to the IEEE 802.15.4 standard. Finally, the
performance of the implementation of our design on Virtex 6
FPGA is presented.

II. SDR TESTBED

Recently, many testbeds have been built in the field of
wireless communications, targeted to wireless sensor or Wifi
networks. However, only a few large-scale testbeds have been
developed in the SDR and cognitive radio field (CREW [15],
TRIAL and CORNET [11] are the main ones).

We are currently building a new cognitive radio testbed in
Lyon named CorteXlab (see figure 1), as part of the Future
Internet of Things [4] french funding. Cognitive radio nodes
together with wireless sensor nodes will be deployed in a
electromagnetically isolated room so as to bring radio propa-
gation under control. The testbed will be open to the scientific
community within two years and will allow academics and
industrials to conduct real-life cognitive radio experiments.
Nodes will be remotely programmable just as if users had
them on their desk.

In [3], a survey of existing SDR architectures highlights
the fact that there is currently no accepted common execution
model for SDR platform. However, we believe that the use
of a powerful FPGA for baseband processing implementation

Electromagnetically isolated room

Internet

CR nodeWS nodeCR node

spectrum
analyzer

spectrum
generator

.....
.....
.....

.....

.....

.....

.....

user

user

CR : cognitive radio
WS : wireless sensor

Fig. 1: Hardware/software requirements for the CorteXlab
cognitive radio node (figure from [3]).

is currently the most promising approach for prototypes. In
CorteXlab, two types of nodes have been deployed: USRP

nodes from National Instrument [10] and picoSDR nodes from
Nutaq [12]. In this paper, we target the programming of
picoSDR nodes, but the IPs designed should be portable to
other platforms using FPGA, except for the IP implementing
the interface between the FPGA and the rest of the board which
is usually provided by the board supplier.

One objective of the CorteXlab testbed is to propose open
source reference designs as a support for remote experimenta-
tion. Particularly it aims at providing :

• Tunable single carrier reference design. We have cho-
sen the Zigbee (802.15.4) standard as defined by IEEE

[6]. This is the main contribution of this paper.

• Tunable multiple carrier reference design : SISO/OFDM

and MIMO/OFDM which are not presented in this
paper.

The software architecture and the room have been selected
to target reproducibility and control over the radio propagation
and the nodes will have the computing power to run WiFi/LTE

in real-time at standard rates and using 2x2 MIMO. The room
will contain 22 USRP nodes programmed with GNU radio, 12
2x2 MIMO and 6 4x4 MIMO picoSDR nodes fully integrated and
based on a powerful FPGA. Fig. 2 presents the current status
of the room: electromagnetic isolation has been performed.

The generic SDR execution model that we target is illus-
trated on Fig. 3. From our experience, most SDR platform using
a FPGA propose a radio control mechanism based on SPI bus,
and provide a soft core on the FPGA to handle it. However,
it is mandatory to have a direct pipelined data path from the
board to the RF front-end in order to take advantage of the
maximum throughput available for signal processing data.

Fig. 4 shows the generic architecture of application de-
ployed on Nutaq family of board. The picoSDR uses a similar
architecture for PHY layer implementation. Each picoSDR

board includes one or two Perseus 6011 advanced mezzanine
card, each of which contains a Virtex-6 FPGA connected to
two Radio420x RF front-end. The Perseus board contains a
Virtex6 FPGA connected on one side to a host processor
handling the MAC and application layers and on the other
side to the Radio420x front-end. The platform is provided with

Fig. 2: Current status of FIT/CortexLab room, SDR pltaform
will be attached to the roof, the room will has now 50 dB

isolation so as to provide reproducible experimental
environment.

Fig. 3: Targeted SDR platform architecture model, including
an FPGA containing a high bandwidth datapath between the

CPU and the RF front-end where our IP can be insterted

a reference design that includes a MicroBlaze softCore used
for configuration of the radio front-end and a high speed bus
named RTDEx (for Real Time Data Exchange). In fact, the
key to efficient SDR application is the efficient handling of
the data flow between the front-end and the host processor.
the core of the baseband processing is performed in the User
logic IP of Fig. 4, one can see that it is a particular instance
of the generic model that we have drawn in Fig. 3. Therefore,
the main objective of the Nutaq RTDEx IP core is to provide
a framework to exchange data with a host device through
the GbE or PCIe links with the highest bandwidth and lower
latency possible. In order to avoid any bottleneck in the data
throughput, the MicroBlaze processor is bypassed during data
packet transmission allowing the full data bandwidth and lower
latency due to AXI bus enhanced features compared to the PLB
one.

The picoSDR RF front-end is an FPGA Mezzanine Card
(FMC) named Radio420X. It is a powerful multimode SDR

RF transceiver module designed around the state-of-the-art,
multistandard, multiband Lime Microsystems LMS6002D RF
transceiver IC. The LMS6002D bandwidth, which is selectable
on-the-fly, makes it suitable for a large number of narrowband
and broadband applications with excellent channel selectivity.
In addition to the integrated analog filters and amplifiers
of the LMS6002D RF transceiver, the front end RF card
includes external bank of filters and amplifiers that allow better
performance.

Fig. 4: Nutaq Board Support Development Kit for SDR platforms.

picoSDR platform allows using three design flows: BSDK

(Board Support Design Kit), MBDK (Model Based Design Kit)
and GNUradio design flow. BSDK is the design flow adopted
in the context of CorteXlab testbed to enable HDL design
and implementation of open source IPs for SDR systems. The
open quality refers to the VHDL code we have developped,
Nutaq’s and Xilinx’s IPs provided with the platform (RTDEx
bus, EMAC, PCIe, Radio420 Core, etc) are free of charge
but not open source of course. The Nutaq Board Software
Development Kit (BSDK) is a complete set of tools that
includes IP cores, Frameworks, APIs as depicted on the Fig. 4.
On top of industry standard board level libraries and APIs, the
BSDK includes a complete and efficient transport layer (CCE:
Central Communication Engine) that both allows remote con-
trol and high speed data exchange between Nutaq FPGA-based
hardware and standard processor blades or remote computer.

A typical picoSDR-based design include a MicroBlaze pro-
cessor instantiated within the FPGA fabric running a commer-
cial embedded Linux distribution named Petalinux. This fabric
risk processor runs Nutaq CCE application and may also run
user-defined task/application. The CCE handles the bootloader,
the start-up sequence, the TCP-IP and PCIe communication and
configuration commands, etc. This software component is the
board interface with the host Command Line Interpreter, GUIs
or any other software running on a remote computer intended
to communicate with the Nutaq FPGA-based hardware.

Figure 5 shows the testbed we used for design, implementa-
tion, test and validation of the SDR open source IPs. It consists
of two picoSDR nodes: the first is a 4x4 node and the second
is a 2x2 with an embedded computer. For instance a windows
computer is used for HDL coding and synthesizing and another
computer with Debian operating system is used for software
development of C applications based on Nutaq EAPI.

III. MULTIPLE PHY LAYERS DESIGN &
IMPLEMENTATION

This part specifies the hardware TX and RX architectures
of IEEE 802.15.4 PHY layers that we have implemented. The
complete hardware design has been represented in Fig. 6.

Fig. 5: Development testbed : 2 PicoSDRs and Host
machines.

IEEE 802.15.4 standard proposes three options to implement
a compliant transmitter [6]. Such a compliant device shall
operate in one or several frequency bands using the modulation
and spreading formats summarized in Table I. For this, the
IP designed should be reconfigurable to adapt to the different
parameters (chip rate, frequency band, etc.).

Although IEEE 802.15.4 standard is intended to conform
with established regulations in Europe, Japan, Canada, and the
United States, CorteXlab testbed is shielded and electromag-
netically isolated environment that allows users to experiment
all the options regardless of regulatory constraints. One can
even transmit and receive at any frequency in the range of
0.3 - 3.8 GHz. Thus, this unique feature will help to extend
the experimentation use cases and enable exploration of further
opportunities to enhance wireless communication technologies.

Naturally according to Table I, option 1 and option 2
physical layer specifications are slightly the same except the
chip and the symbol rates. For this reason they are represented
by the same IP which can be configured to run in mode 1
or mode 2 by simply changing the input clock. The latter
is performed through a software reconfiguration that easily

Fig. 6: Block diagram of our multiple PHY layers implementation of the IEEE 802.15.4 standard.

TABLE I: IEEE 80.15.4 PHY Layer Specifications.

PHY Option Frequency

Band (MHz)

Spreading Parameters Modulation Data Parameters Filter

Parameters

Chip rate

(kcps)

Spreading

Sequence

Length

Number of

Sequence

Bit rate

(kbps)

Symbol rate

(kips)

Symbols

Option 1 868-868.6 300 16 2 BPSK 20 20 Binary Raised

Cosine Filter

Option 2 902-928 600 16 2 BPSK 40 40 Binary Raised

Cosine Filter

Option 3 2400-2483.5 2000 32 16 O-QPSK 250 62.5 16-ary

Orthogonal

Half-Sine

Filter

modify the design clock provided by the PLL of the Radio420x
transceiver. Hence, we greatly minimize the FPGA resources
needed to map this multiple mode design.

Nevertheless, option 3 physical layer specifications are
extremely different from those of option 1 and option 2.
Furthermore, option 3 physical layer specifications are more
complex to design and implement in hardware. Hence it is
natural to provide a hardware switch IP to switch between
option 1/2 and option 3 IPs as illustrated in Fig. 6. The
baseband IP (shaded on Fig. 6) is plugged to a dedicated FIFO

of the RTDEx bus (in the case of implementation on picoSDR)
and it communicates with a software API running on the host.
The latter sends the user choice (option 1/2 or 3) to the HW
switch through Gigabit Ethernet or PCI Express link to enable
the suitable IP accordingly.

In the same way as the transmitting path of the multiple
layers implementation of the IEEE 802.15.4 standard, the re-
ceiving path contains two receivers each one of them performs
data reception and decoding according to the enabled option.
The switching process is controlled by a Finite State Machine
that enables one of those receivers and configure the switch to

output the expected stream as illustrated in the Fig. 6. One can
see in this figure the software tasks that should be performed
on the computer side such as RTDEx initialization, RF front-end
tuning, PHY option selection, data transmission and reception.
Therefore, in parallel to the baseband IPs the FPGA fabric
instantiate the Microblaze softCore running the CCE (central
communication engine) and other IP cores used to configure
the RTDEx bus, to tune and to perform the suitable connection
with the RF front-end devices.

In the next subsections, we consider the transmitter and the
receiver architectures of the physical layer, first for option 1
and 2, then for option 3.

A. TX Architecture

In this section we present the baseband architecture of the
IEEE 802.15.4 transmitters we implemented in this work. The
IEEE standard [6] indicates how to form the frame, and the
performance that should be obtained by the receiver, but does
not specify exactly how the receiver should be implemented.
Hence, it is much more open and difficult to implement the
receiver part. In particular synchronization mechanism has to

be carefully designed, this is one of the contribution of this
paper.

Fig. 7: Block diagram of IEEE 802.15.4 option 2 Transmitter.

1) TX architecture of PHY Layer Option 1 & 2: The
data rates of options 1 and 2 are respectively 20 kb/s and
40 kb/s. Both of option 1 and 2 use direct-sequence spread
spectrum (DS-SS) with binary phase-shift keying (BPSK) used
for chip modulation and differential encoding used for data
symbol encoding. Each input bit shall be mapped into a 15-
chip pseudo-random sequence as specified in Table II.

TABLE II: IEEE 80.15.4 Option 1& 2 symbol-to-chip
mapping.

Input symbol (bits) Chip values c0c1 · · · c14
0 111101011001000
1 000010100110111

The block diagram of the TX chain is provided in Fig. 7,
it basically corresponds to the corresponding IP implemented.
The IEEE 802.15.4 frame arrives splitted in 32 bit word from
the RTDEx FIFO bus, each bit is encoded with respect to the
previous bit in the differential encoding IP. The symbol to chip
IP multiply the sample rate by 15 using table II. Modulation
is performed using BPSK, then upsampling and pulse shaping
are performed before digital to analog conversion which is
performed in the RF front-end.

Configuration switching between Option 1 and 2 is simply
done by reconfiguring the design clock provided by the PLL of
the RF front-end. This reconfiguration process uses the Nutaq
API to send a command with the sampling frequency of the
ADC and DAC to the CCE through the gigabit ethernet link. The
CCE running on the MicroBlaze SoftCore decodes the value
of the sampling frequency and uses it to configure the PLL

on the Radio420x through an SPI interface. This configuration
allows the generation of the reference clock of the baseband
IPs which is two times the sampling frequency.

Fig. 8: Block diagram of IEEE 802.15.4 option 3 Transmitter

2) TX architecture of PHY Layer Option 3: The spec-
ification of the third option of IEEE 802.15.4 PHY layer

supports data rate of up to 250kb/s. It uses DS-SS with O-QPSK

(offset quadrature phase shift keying) as modulation type.
Each O-QPSK symbol is one of 16 orthogonal pseudo-random
sequences. Each symbol is 32 chip long and corresponds to
one of 16 possible combinations of four bits as partly depicted
in Table III. The resulting chip rate is 2 Mchips/s. Fig. 8
illustrates a typical block diagram of the implemented IP of
a transmitter conform to the option 3 specifications.

TABLE III: IEEE 80.15.4 Option 3 symbol-to-chip mapping.

Data symbol Data symbol Chip values

(sk)10 (sk)2 c0c1 · · · c31
0 0000 11011001110000110101001000101110
1 0001 11101101100111000011010100100010
2 0010 00101110110110011100001101010010

. . .

14 1110 10010110000001110111101110001100
15 1111 11001001011000000111011110111000

B. RX Architecture

As indicated in Fig. 9, a typical digital receiver receives
the digitized complex baseband signal from RF front-end
transceiver. Then it applies a matched filter in order to max-
imize the signal to noise ration (SNR). The received signal
contains not only the data symbols that should be decoded but
also unknown parameters such as frequency and phase offsets
and the sampling time. Therefore, an accurate estimation of
these parameters is vital for reliable data detection. The dis-
cussion below outlines some possible methods for estimating
carrier offset and sampling time. Once the compensation for
distortion and timing recovery are performed, the gathered
symbols are then processed by a detector. Detection processing
can be a very simple device that makes decision of either a
symbol is 0 or 1. However, in communication standards data
are formatted in a specific way to help easy decoding procedure
as it is the case of IEEE 802.15.4 standard. For instance,
preamble and start of frame delimiter (SFD) are added to the
frame to help symbol time synchronization and enable the data
decoding. Thus, the detector module of Fig. 9 must perform
complex baseband processing including preamble correlation,
SFD correlation, and a bank of symbol correlators to detect the
correct symbols as it will be outlined later in this section.

Fig. 9: Block diagram of a coherent receiver.

This section will provide a useful and understandable way
to implement most of the receiver functionalities such as
energy detection, carrier and phase recovery, clock recovery,
symbol correlation, preamble correlation, SFD correlation, etc.
The receiver is also duplicated for option 1/2 and option 3. In
fact, we implemented two receivers one for each option as
illustrated inn Fig. 6. Those receivers share the same structure

as illustrated in Fig. 9. However, they are little bit different
from an implementation point of view since in the case of
option 3 the baseband digital processing is performed on both
I and Q signals whereas in the case of option 1/2 BPSK

modulated signal is simple to demodulate. For instance, the
major difference between the two receivers is naturally the
decoder IP where massive correlations are performed to detect
the preamble and the SFD in addition to decoding procedure
of symbols.

Fig. 10 presents our implementation of option 3. The
detector bloc includes two correlators, one used for preamble
detection and the other used for frame delimiter detection,
a small controller (FSM for finite state machine), and the
symbol bank correlation. The symbol bank correlation is in
charge of comparing blocs of 32 chips against data symbol
in a bank to recover the coded data symbols (reverse work as
the one presented in table III). Before that, the frame has to
be synchronized. When the FSM is informed by the preamble
correlation IP that a preamble has been detected, it launches the
start frame delimiter detection (SFD correlation). When SFD

is detected, data are send bloc by bloc to the symbol bank
correlator.

The rest of the section focus on the implementation of
synchronization and correlation functions in the receiver which
are the main technical difficulties of this IP.

1) Carrier and Phase Recovery: In a typical wireless
communication system, imperfect up-conversion and down-
conversion caused by non-ideal transmitter and receiver local
oscillators result in a carrier offset at the receiver. This offset
causes a continuous rotation of the signal constellation, and
must be corrected in order to achieve reliable demodulation of
the received signal.

Fig. 11: Basic block diagram of a Digital Phase
Locked-Loop (DPLL) used for carrier offset

There are many ways to implement carrier synchronization
in a digital communication system. We present here a method
that tune together the frequency and phase, hence carrier
and phase are simultaneously recovered. At the heart of all
synchronizers is the phase-locked loop (PLL). A basic block
diagram is shown in Fig. 11. This DPLL consists of three
modules : the phase detector, the loop filter and the digital
controlled oscillator. It employs proportional and integral loop
filters formed by a scaled digital integrator and a scaled direct
path. The filter coefficients control the PLL bandwidth and
damping factor. In the PLL digital implementation, the DCO

takes the form of a direct digital synthesizer (DDS). The phase
detector can be implemented using the arctangent operation
which can be performed by a CORDIC IP in vectoring mode
[1].

The schematic view of the DPLL IP we implemented is
given in Fig. 12. It contains a phase detector, an error generator
and a loop filter. The purpose of the phase detector and DCO

is to detect the phase of the input signal then rotate it by
the estimated phase at the output of the loop filter. Therefore,
those functions (of the Phase detector and the DCO) can be
combined and simply implemented by a CORDIC module in
rotation mode as illustrated in Fig. 12. In the next section we
will present the functional description of the CORDIC algorithm
in rotation mode and we will describe some aspects related to
its HDL implementation.

Fig. 12: Block diagram of the implemented second-order
DPLL

a) CORDIC in Rotation Mode: In the rotation mode,
the angle accumulator is initialized with the desired rotation
angle. The rotation decision at each iteration is made to
diminish the magnitude of the residual angle in the angle
accumulator. The decision at each iteration is therefore based
on the sign of the residual angle after each step. For rotation
mode, the CORDIC equations are [1] :

xi+1 = xi − yi · di · 2
−i

yi+1 = yi − xi · di · 2
−i

zi+1 = zi − di · tan
−1(2−i)

where

di = −1 if zi < 0 , + 1 otherwise

which provide the following result :

xn = An · (x0 · cos z0 − y0 · sin z0)

yn = An · (y0 · cos z0 + x0 · sin z0)

zn = 0

An =

n
∏

i=1

√

1 + 2−2i

The CORDIC algorithm can be implemented either in an
iterative way or as a pipelined architecture. Iterative CORDIC

implementation takes more than a clock cycle for each output
value. It is useful when the FPGA resources are limited and the

Fig. 10: Block diagram of IEEE 802.15.4 option 3 Receiver

design speed is not high. However, pipelined implementation
provides an output values each clock cycle after pipeline stages
propagation. Therefore, it is more suited for high speed design.
Nevertheless it takes more FPGA resources than the iterative
CORDIC implementation.

In order to reduce the number of clock cycle, the
pipelined CORDIC architecture was implemented and it uses
a generic number of stages. For better performance, a 16-
stages pipelined CORDIC was synthesized to make accurate
phase rotation in the DPLL IP.

2) Symbol Timing Recovery: There exist different way and
techniques allowing time recovery such as Mueller and Müller
[9], Gardner [5], Early-Late-Gate algorithms (ELG) [14]. In
the case of our implementation ELG algorithm is used to find
optimal sample instance of the chip. Fig. 13 shows the structure
of block diagram of the ELG algorithm. It consists of three
main sub-blocks : 1- the absolute value of the real part of the
input signal, 2- a down sampling module controlled by the
decision logic unit which is the third sub-block.

The sampling control block, which is based on a digital
implementation of the classical early-late gate technique[14]
adjusts the sampling instant to move towards the peak or
dithers around the peak if it has already been found. The
operation of the early-late gate synchronizer is explained in
[14], the functional description of the theory behind the early
late gate algorithm can be found in the authors paper [2]. The
algorithm found here is modified with respect to the original
version. In fact the insertion of the real part operator is made
to allow O-QPSK (Option 3) to be included.

3) Decoder: The proposed decoder performs three levels of
correlation to detect the preamble, the start of frame delimiter
(SFD) and symbols. Therefore, a FSM was implemented to
control this complex hardware processing. If the preamble
correlation is greater to some threshold, the FSM moves to
SFD correlation state and compares the correlation to a certain
threshold to determine if an IEEE 802.15.4 packet was actually
present or not. If a valid packet was detected, the FSM moves
to symbol decoding state and enable the bank of symbol
correlator to perform parallel correlations and pick up the index
of the symbol correlator that gives the highest correlation value
as illustrated in Fig. 10.

Fig. 13: Bloc diagram of timing estimation module
implementing the early-late-gate algorithm.

Naturally, the decoder consists of many instances of cor-
relators which have in common a correlation algorithm. The
latter can be mathematically formulated as follows :

Ccy(n) =
N−1
∑

k=0

c(k) · y(n− k) (1)

Where N is the number of chips in the spreading sequence,
c is the spreading reference sequence, and y is the received
signal after carrier/phase recovery and timing synchronization.
Both c and y samples are NRZ encoded using 1 bit to maximize
the correlation value.

From now we will consider only the decoder description
of the option 3 PHY layer specifications to illustrate how its
IPs are implemented. The same structure was implemented for
option 1 and 2 PHY layer with lower complexity because of
BPSK modulation.

Preamble and SFD correlations are performed on complex
baseband signals at the chip level for 1 byte of data. The
correlator structure is illustrated in Fig. 14. It consist of two
reference sequences representing the I and Q components,
two long shift registers to memorize the I and Q chips, a
matrix of multipliers, and a sum module to compute the I and
Q correlation values according to formula (1). For instance,
complex operations were added to compute the real and the
imaginary parts of the correlation product. Finally, the square

of the module of the complex correlation value is calculated
as shown in Fig. 14.

In order to reduce the number of propagation cycles a
tree topology of 15 comparators was implemented to pick up
the index of the symbol correlator which have the maximum
correlation value. In fact, the index of each correlator is a 4 bit
binary code that matches a unique 32 bits spreading sequence
according to the table III for the option 3 PHY layer. A structure
view of the implemented symbol bank correlator and the tree
topology of comparators to find maximum value of correlation
that match the decoded symbol is illustrated in Fig. 15.

Fig. 14: Bloc diagram of the hardware implementation of the
correlation algorithm.

Fig. 15: Structure view of the implemented symbol bank
correlator and the tree topology of comparators to find
maximum value of correlation that match the decoded

symbol.

IV. IMPLEMENTATION RESULTS

This section presents the performance of the IPs imple-
mented. Table IV gives a summary of the resource utilization
spent by our IEEE 802.15.4 IPs on the Xilinx FPGA. Tables V
and VI present a detailed description of resource utilization
for transmitter option 1/2 and option 3 IPs while Table VII
and VIII present resource utilization for the receivers for both
option 1/2 and option 3. One can see that Table VII for option
1/2 does not contain all the IPs of the proposed architecture.
This is simply due to the fact that many modules are shared
between both options. Therefore, to avoid duplication of results
we presented the resource utilization for the shared modules
only in the Table VIII related to option 3 receiver.

As already explained, the design has been implemented on
Nutaq picoSDR platform which is based on the Perseus 6011
digital domain board with a Virtex-6 XC6VSX315T FPGA. Our
contribution consists in the design of a multiple PHY layers
design of the IEEE 802.15.4 standard, in addition to the TX
and RX IPs, the FPGA fabric contains a Microblaze processor
running a PetaLinux operating system aimed to configure
EMAC, EDMA and RTDEx busses and to tune the RF Front-
End Radio420 transceiver.

The design methodology was the following: a first Matlab
version of the TX and RX flow was functionally validated
by Matlab simulation. Then, the IPs where written in register
transfer level VHDL, different clock rate could be obtained
with a systematic clock enable input for each IP. The net
listing process of the IPs was done on Xilinx Platform Studio
(XPS), the synthesis place and route were done with Xilinx
Synthesis Technology (XST). Simulation was first realized with
matlab version of each IP, then the VHDL was simulated using
Modelsim and checked with chipscope.

The total user logic IP (i.e. the shaded area on Fig. 6)
uses less than 5% of the FPGA. According to table VII we
can notice that most of the resource are spent by the receiver.
We can observe also that DSP48 resources are mainly used as
multipliers to compute energy of preamble, SFD, and symbols
inside the decoder. The proposed multiple layer implementa-
tion of the IEEE 802.15.4 standard requires only fewer number
of slices and multipliers compared to the available resources
and it does not make use of Block-RAM memories which can
be left to more complex design. The higher clock frequency
that can be achieved by the implemented IPs is up 200 MHz.
Whereas, as explained before, the input clock of this design
is provided by the Radio420 front-end receiver in the case
of picoSDR node where the maximum sampling frequency is
40 MHz. Therefore, our design can run at least at 80 MHz or
higher frequency complying to Shannon theorem. Furthermore,
it can be used with RF front-end transceiver which had larger
bandwidth up to 100 MHz.

The resource utilization of the implemented IPs shows
that designers can think to parallel implementation of much
more complex SDR designs on FPGA such as single and
multiple carrier baseband communication systems and MIMO

processing.

V. CONCLUSION

The continuing need for high data rate RF technologies and
cognitive radio systems pushed a very wide research activities

TABLE IV: Device Utilization Table Summary.

IP Core Logic

Utilization

Used Available Utilization

Transmitter Slice Registers 150 393600 0.038%

Option 1 & 2 Slice LUTs 140 196800 0.071%

Occupied Slices 72 49200 0.146%

Transmitter Slice Registers 269 393600 0.068%

Option 3 Slice LUTs 230 196800 0.117%

Occupied Slices 115 49200 0.234%

Receiver Slice Registers 1499 393600 0.381%

Option 1 & 2 Slice LUTs 1709 196800 0.868%

Occupied Slices 652 49200 1.325%

DSP48s 23 1344 1.711%

Receiver Slice Registers 1879 393600 0.477%

Option 3 Slice LUTs 1758 196800 0.893%

Occupied Slices 697 49200 1.417%

DSP48s 57 1344 4.241%

IEEE 802.15.4 Slice Registers 3797 393600 0.964%

TX/RX total Slice LUTs 3837 196800 1.949%

Occupied Slices 1536 49200 3.122%

DSP48s 80 1344 5.958%

TABLE V: Device Utilization Table Summary of the option
1 and 2 transmitter.

IP Core Logic Utilization Used Available Utilization

SERDES Slice Registers 73 393600 0.019%

32 to 1 LUTs 69 196800 0.035%

Occupied Slices 28 49200 0.057%

Tx Slice Registers 11 393600 0.003%

Clock LUTs 31 196800 0.016%

Generator Occupied Slices 9 49200 0.018%

Differential Slice Registers 1 393600 0.000%

Encoder LUTs 1 196800 0.001%

Occupied Slices 1 49200 0.002%

Bit Slice Registers 9 393600 0.002%

to LUTs 7 196800 0.004%

Chip Occupied Slices 5 49200 0.010%

BPSK Slice Registers 0 393600 0.000%

Mapping LUTs 1 196800 0.001%

Occupied Slices 1 49200 0.002%

Tx Slice Registers 27 393600 0.007%

Filter LUTs 58 196800 0.029%

RRCF Occupied Slices 21 49200 0.043%

IQ Slice Registers 40 393600 0.010%

MUX LUTs 26 196800 0.013%

LMS6002D Occupied Slices 11 49200 0.022%

to enhance SDR communication systems. Up to very recently,
SDR technology was only accessible to restricted communi-
ties and nowadays, it becomes more and more affordable.
In addition, FPGAs provide flexibility to achieve SDR signal
processing and RF tuning, simultaneously with high levels of
performance and cost efficiency. Even if GNUradio community
is opening-up new opportunities to implement SDR design,
there is still further needs to make open source hardware
designer to re-use their own IPs for digital-up and digital-down
conversion. Therefore, new SDR and cognitive radio testbeds
should give an open access supported with open source HDL

design for scientific community. This is the main objective of
CorteXlab testbed in which context the present work is carried
out.

This paper has provided an tutorial approach of how the
baseband part of IEEE 802.15.4 standard can be implemented
on FPGA target. A multiple PHY layer design was presented
to allow experimentation, in CorteXlab testbed, of all the
possibilities offered by the standard regardless of regulatory

TABLE VI: Device Utilization Table Summary of the option
3 transmitter.

IP Core Logic Utilization Used Available Utilization

Bit Slice Registers 74 393600 0.019%

to LUTs 65 196800 0.033%

Symbol Occupied Slices 21 49200 0.043%

Tx Slice Registers 16 393600 0.004%

Clock LUTs 22 196800 0.011%

Generator Occupied Slices 7 49200 0.014%

Symbol Slice Registers 73 393600 0.019%

to LUTs 63 196800 0.032%

Chip Occupied Slices 23 49200 0.047%

O-QPSK Slice Registers 7 393600 0.002%

Mapping LUTs 5 196800 0.003%

Occupied Slices 6 49200 0.012%

Tx Slice Registers 27 393600 0.007%

Filter LUTs 59 196800 0.030%

I Path Occupied Slices 23 49200 0.047%

Tx Slice Registers 27 393600 0.007%

Filter LUTs 59 196800 0.030%

Q Path Occupied Slices 23 49200 0.047%

IQ Slice Registers 64 393600 0.016%

MUX LUTs 50 196800 0.025%

LMS6002D Occupied Slices 24 49200 0.049%

limits. The design flow and the proposed architecture are
generic and hence they can be applied to implement an FPGA-
based single carrier communication system on Nutaq and other
SDR platforms with minor adaptations. We have presented the
FPGA resources occupied by the proposed IPs (less than 5% of
the FPGA all together). These IPs can ebe re-used by designers
to build an open source HDL library for SDR systems.

As short term perspectives to the proposed receiver archi-
tectures, we plan to add an LQI (stands for Link Quality Indica-
tion) IP which purpose aims to compute a measurement char-
acterizing the strength and/or quality of a received packet. This
measurement may be implemented using receiver ED (Energy
Detection), a signal-to-noise ratio estimation, or a combination
of these methods. The LQI IP should help performing tests
of ACM-based (for Adaptive Coding & Modulation) scenario
where modulation switching criteria is based on continuous
estimation and monitoring of SNR. This will allows the system
to switch PHY options before errors are detected by the user.
Besides, to make our multiple layer HDL implementation fully
compatible with the IEEE 802.15.4 standard, a MAC layer
must be co-designed and implemented on both FPGA and the
host machine. Currently, we have a very light MAC layer that
performs packet building and we are studying the adaptation
of TKN15.4, Open-ZB or OpenMAC which are open-source
implementations of the IEEE 802.15.4/ZigBee protocol stack
targeted tinyos platforms.

Finally, in the context of CorteXlab testbed development,
future work will focus on multiple carrier and multiple antenna
systems which will bring more open-source design to scientific
community. This will enable more understanding of FPGA

implementation of baseband blocks of PHY layer and will take
advantage of the open access to CorteXlab testbed to test and
develop new design while reusing available IPs.

REFERENCES

[1] R. Andraka, “A survey of cordic algorithms for fpga based computers,”
in Proceedings of the 1998 ACM/SIGDA sixth international symposium

TABLE VII: Device Utilization Table Summary of the
option 3 receiver.

IP Core Logic Utilization Used Available Utilization

IQ Slice Registers 64 393600 0.016%

DEMUX LUTs 50 196800 0.025%

LMS6002D Occupied Slices 24 49200 0.049%

Rx Matched Slice Registers 264 393600 0.067%

Filter LUTs 116 196800 0.059%

(8 Taps) Occupied Slices 58 49200 0.118%

I Path DSP48s 8 1344 0.595%

Rx Matched Slice Registers 264 393600 0.067%

Filter LUTs 116 196800 0.059%

(8 Taps) Occupied Slices 58 49200 0.118%

Q Path DSP48s 8 1344 0.595%

CORDIC Slice Registers 74 393600 0.019%

ROTATION LUTs 65 196800 0.033%

MODE (DPLL) Occupied Slices 21 49200 0.043%

Error Slice Registers 73 393600 0.019%

Generator LUTs 63 196800 0.032%

DPLL Occupied Slices 23 49200 0.047%

DSP48s 1 1344 0.074%

Loop Slice Registers 7 393600 0.002%

Filter LUTs 5 196800 0.003%

DPLL Occupied Slices 6 49200 0.012%

DSP48s 2 1344 0.149%

Carrier Slice Registers 773 393600 0.196%

Phase LUTs 1071 196800 0.544%

Recovery Occupied Slices 343 49200 0.697%

DSP48s 3 1344 0.223%

CORDIC Slice Registers 565 393600 0.144%

VECTORING LUTs 1014 196800 0.515%

MODE Occupied Slices 312 49200 0.634%

Preamble Slice Registers 34 393600 0.09%

& SFD LUTs 18 196800 0.009%

Correlator Occupied Slices 17 49200 0.035%

DSP48s 2 1344 0.149%

Symbol Slice Registers 34 393600 0.009%

LUTs 18 196800 0.009%

Correlator Occupied Slices 13 49200 0.026%

DSP48s 2 1344 0.149%

Bank of Slice Registers 429 393600 0.109%

Symbol LUTs 339 196800 0.172%

Correlator Occupied Slices 161 49200 0.327%

DSP48s 32 1344 2.381%

FSM Slice Registers 4 393600 0.001%

for LUTs 8 196800 0.004%

Decoder Occupied Slices 5 49200 0.010%

Slice Registers 456 393600 0.116%

Decoder LUTs 335 196800 0.170%

Occupied Slices 180 49200 0.366%

DSP48s 36 1344 2.679%

on Field programmable gate arrays, New York, NY, USA, 1998, pp.
191–200.

[2] K.-C. Chen and J.-M. Lee, “A family of pure digital signal processing
bit synchronizers.” IEEE Transactions on Communications, vol. 45,
no. 3, pp. 289–292, 1997.

[3] M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer, “Software
Defined Radio Architecture Survey for Cognitive Testbeds,” in Wireless

Communications and Mobile Computing Conference (IWCMC), 2012

8th International, Limassol, Cyprus, Sep. 2012.

[4] “Equipex FIT: Future Internet of Things,” http://fit-equipex.fr, French
National Research Agency, ANR.

[5] F. M. Gardner, “Interpolation in digital modems. I. Fundamentals,”
Communications, IEEE Transactions on, vol. 41, no. 3, pp. 501–507,
Aug. 1993.

[6] “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs),” IEEE Computer Society, 2006, iEEE Std 802.15.4-2006.

[7] M. Mattavelli, I. Amer, and M. Raulet, “The reconfigurable video
coding standard [standards in a nutshell],” Signal Processing Magazine,

TABLE VIII: Device Utilization Table Summary of the
option 1 & 2 receiver.

IP Core Logic Utilization Used Available Utilization

Preamble Slice Registers 6 393600 0.002%

& SFD LUTs 6 196800 0.003%

Correlator Occupied Slices 4 49200 0.008%

DSP48s 1 1344 0.074%

Symbol Slice Registers 33 393600 0.008%

LUTs 95 196800 0.048%

Correlator Occupied Slices 31 49200 0.063%

Bank of Slice Registers 60 393600 0.015%

Symbol LUTs 266 196800 0.135%

Correlator Occupied Slices 122 49200 0.248%

FSM Slice Registers 4 393600 0.001%

for LUTs 8 196800 0.004%

Decoder Occupied Slices 5 49200 0.010%

Slice Registers 76 393600 0.019%

Decoder LUTs 286 196800 0.145%

Occupied Slices 135 49200 0.274%

DSP48s 2 1344 0.149%

IEEE, vol. 27, no. 3, pp. 159–167, 2010.

[8] J. Mitola III, “The software radio,” in IEEE National Telesystems

Conference, 1992.

[9] K. H. Mueller and M. Müller, “Timing recovery in digital synchronous
data receivers.” IEEE Transactions on Communications, vol. 24, pp.
516–531, 1976.

[10] “Universal software radio peripheral (USRP),” http://www.ettus.com,
National Instrument.

[11] T. Newman, S. Shajedul Hasan, D. DePoy, T. Bose, and J. Reed,
“Designing and deploying a building-wide cognitive radio network
testbed,” Communications Magazine, IEEE, vol. 48, no. 9, pp. 106–
112, 2010.

[12] “PicoSDRmake cognitive radio,” http://nutaq.com/en/products/picosdr,
Nutaq.

[13] “Opencores: Open source hardware IP cores,” http://opencores.org,
OpenCores.

[14] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000.

[15] A. Sanchez, I. Moerman, S. Bouckaert, D. Willkomm, J. Hauer,
N. Michailow, G. Fettweis, L. Dasilva, J. Tallon, and S. Pollin, “Testbed
federation: an approach for experimentation-driven research in cognitive
radios and cognitive networking,” in Future Network & Mobile Summit

(FutureNetw), 2011. IEEE, 2011, pp. 1–9.

[16] P. Steenkiste, D. Sicker, G. Minden, and D. Raychaudhuri, “Future
Directions in Cognitive Radio Network Research,” 2009, nSF Workshop
Report.

