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Abstract. This paper proposes a model of brain deformation triggered
by atrophy in Alzheimer’s Disease (AD). We introduce a macroscopic bio-
physical model assuming that the density of the brain remains constant,
hence its volume shrinks when neurons die in AD. The deformation in the
brain parenchyma minimizes the elastic strain energy with the prescribed
local volume loss. The cerebrospinal fluid (CSF) is modelled differently
to allow for fluid readjustments occuring at a much faster time-scale.
PDEs describing the model is discretized in staggered grid and solved
using Finite Difference Method. We illustrate the power of the model
by showing different deformation patterns obtained for the same global
atrophy but prescribed in gray matter (GM) or white matter (WM) on
a generic atlas MRI, and with a realistic AD simulation on a subject
MRI. This well-grounded forward model opens a way to study different
hypotheses about the distribution of brain atrophy, and to study its
impact on the observed changes in MR images.

Keywords: Alzheimer’s disease, Biophysical model, Atrophy model, At-
rophy Simulation, Longitudinal modeling

1 Introduction

AD is characterized by volume loss in the brain [3]. For this reason, various seg-
mentation and registration methods in brain MR imaging have been proposed
to model and quantify volume changes in AD [6]. These methods can however
provide different results depending on the assumptions they are based on. The
estimation of brain atrophy from longitudinal images is an inverse problem since
volume changes have to be estimated from the observed data. Registration and
segmentation methods implicitly assume a backward model whose parameters
must be inferred. These parameters are usually difficult to relate to the under-
lying biophysical process. For instance, non linear registration results depend
on the regularization imposed on the transformation [1], and can therefore lead
to different atrophy patterns for the same observed follow-up MRIs. One would
wonder how sensitive such measurements are to the diverse registration or seg-
mentation assumptions, and what is the related impact on the understanding of
the dynamics of brain atrophy due to AD. This is an important issue for clinical
applications of image based computational methods in AD.
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A different approach to the problem is to define a suitable forward biophysical

model of anatomical changes that can simulate plausible atrophy patterns. By
controlling the defined parameters, the model should ideally provide simulations
that can be easily related to the biophysical assumptions. This model would
represent a valuable reference for testing clinical hypotheses on the pathological
evolution, and at the same time, can be used for the benchmarking of atrophy
measurement methods.

Atrophy simulators [9][12][15][5] have been proposed and used mostly for
the validation of registration or segmentation methods [4][13], or to estimate
uncertainty in the measured atrophy [14]. We can broadly distinguish two major
approaches used in such simulators: Jacobian based, and bio-mechanical based.

In Jacobian based methods [9][12][13], the desired level of atrophy is set at
each voxel, and the deformation that best approximates the desired level of atro-
phy is found. Regularization is used in the optimization to enforce certain desired
conditions such as topology preservation. The advantage of these methods is the
ability to define atrophy maps at the voxel level. However regularization pa-
rameters used to enforce topology preservation are generally difficult to relate
to a plausible biophysical process of AD. Moreover, it is not trivial to consider
different tissue behaviors.

Biomechanical models generate tissue deformation based on biomechanical
principles. As far as we know, the only model proposed so far for AD application
is a thermoelastic one [15][5]. The authors defined the volume changes in par-
ticular structures and tissues of a meshed brain by assigning different thermal
coefficients. Simulation of the images is done by first solving the thermoelastic
model of tissue deformatiom with Finite Element Method (FEM), and then by
interpolating the obtained displacement field from the mesh to the image. The
main problem of this type of approach is once again the difficulty to relate ther-
mal coefficients to a physical model of neuronal death. Moreover, FEM involves
moving back and forth from voxels to meshes which creates numerical difficulties
and inaccuracies in the model personalization.

In this work we combine the best of both approaches by proposing a bio-
physically plausible atrophy model based on the prescribed atrophy rate at each
voxel of the parenchyma. The model results in brain deformations which strictly
satisfy the constraints imposed by the prescribed atrophy rate. In the follow-
ing section we explain the assumptions and the mathematical formulation of
the proposed model. Section 3 provides the implementation details and the ex-
perimental setup. Simulation results for a generic atlas template and a subject
specific patient are shown in section 4.

2 Model of Deformation of the Brain with Atrophy

Brain could be seen as a deformable material that floats in the CSF enclosed by a
rigid skull. Atrophy results in the shrinkage and in the structural readjustment of
the brain tissues. The first important point to notice is that we cannot directly
apply the classical continuum mechanics formulation because conservation of
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mass does not hold due to the presence of atrophy. Secondly, the CSF volume
increases to compensate the tissue volume loss and the skull does not deform.
However, the CSF production is at a much smaller time-scale (hours) compared
to the atrophy (months). To take into account these observations, we model the
CSF and the brain parenchyma differently while fixing the skull as the boundary
condition.

2.1 Loss of Volume and Conservation Equation

It is well known that neurons die as AD progresses. In diseases like Creutzfeldt-
Jakob disease, no gross brain shape changes are reported and the imaging only
shows hyperintense signals on T2-weighted images [8]. However, this is not the
case in AD and longitudinal MRIs show a significant decrease of brain volume
instead [6]. We assume that after the death of cells, remodeling of the tissue
occurs such that the density remains constant. In other words, abstracting the
events of AD to macroscopic level, we assume that the volume loss corresponds
to the reduction of the brain mass. This assumption of incompressible material
but with mass loss leads us to the conservation law given by: ∇ · v = −ã, where
v is a velocity field corresponding to the deformation of the brain and ã is the
atrophy rate at any given time. The atrophy rate ã(x, t) at any position x at
time t for a representative elementary volume of Vxt is defined as the negative
rate of change of volume per unit volume: ∂Vxt

∂t
= −ãVxt.

Starting from initial configuration with zero displacement, for a small time
∆t, using v = u/∆t, we have

∇ · u = −ã∆t = −a, (1)

where u is the displacement and a is the amount of atrophy during the time ∆t.

2.2 Constrained Minimization of the Elastic Energy

We do not explicitly model the neuronal loss and tissue remodeling at the mi-
croscopic level which requires biochemical and cellular physiological knowledge
in detail. We abstract the phenomenon that evolves over several months or years
in the brain. The model is based on the assumption that atrophy creates inter-
nal stress which results in the deformation minimizing a strain energy. Thus the
brain parenchyma deforms with the prescribed atrophy by minimizing the strain
energy.

Using Saint Venant-Kirchoff model for an elastic material, this can be ex-
pressed as the minimization of:

R(u, p) =

∫

µtr(E(u)2) +
λ

2
(tr(E(u)))2 −

∫

p (∇ · u + a) (2)

where p is a Lagrange multiplier, µ and λ are Lamé constants, and E is Lan-
grangian Green strain defined as: E = 1

2

(

∇u + ∇u
T + ∇u

T
∇u

)

.
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By taking a sufficiently small time step ∆t, this deformation could be rea-
sonably modelled as being of linear elastic in nature. For example, for a 2%
global atrophy per year, we have ∆t = 1 year, and the atrophy during the year
as a = 0.02. This linear elastic assumption is done for a small time step only be-
cause remodelling occurs to eliminate (or at least attenuate) the internal stress
after this deformation, thus leading to a creep flow. The partial attenuation only
would lead to residual stress and plastic behavior.

Under linear elastic assumptions, minimizing the energy in equation (2) is
equivalent to solving set of equations on the left in (3). In CSF region the me-
chanical behavior is different: the internal stress due to atrophy is not present.
Thus we modify the equation on left of (3) to include the CSF region and get a
combined equation as shown on the right. We set (k = 1, f = 0) in CSF region
and (k = 0, f = a) in gray and white matter (GM/WM) regions.

By imposing k = 1 and f = 0 in CSF, we remove the force term of the
momentum equation and we allow CSF to expand as required at any place. This
is reasonable because CSF gets produced every hour while the brain deformation
due to atrophy takes place in months and years.

µ∆u −∇p = (µ + λ)∇a

∇ · u = −a,

µ∆u −∇p = (µ + λ)∇f

∇ · u + kp = −f,
(3)

where ∆u is a component-wise Laplacian of u.

3 Implemenation and Experimental Setup

3.1 Discretization with Finite Difference Method

For the problem sizes typical in our application, direct solvers are impractical
for solving equation (3). It needs a suitable combination of an iterative solver
and a preconditioner to solve it. Furthermore, the pressure and velocity variables
must be properly discretized to ensure stability. For discretization we use Finite
Difference Method (FDM) with staggered grid. We chose FDM instead of FEM
to avoid brain meshing and transporting computed variables from mesh to image
at each iteration. This also allows us to solve the system in a grid that is of the
same size as the input image where the grid fits naturally to the image. Tho solver
is implemented with PETSc library [2], and the system is solved by distributed
computing in the locally available cluster.

3.2 Data Preprocessing

The model requires to describe the atrophy in GM and WM of the brain at the
level of MRI resolution. Thus we first need a segmentation of the desired regions.
First the input image is skull stripped using ROBEX [7]. The computational
domain for the solution of the PDE is obtained by finding the smallest cuboid
region that completely encloses the skull stripped mask. In the current setting,
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we set the Dirchlet boundary of zero displacement on all the walls of this cuboid.
For the regions lying on and outside the skull but inside the cuboid, we set k = 0
and f = 0 so that there is no volume loss or gain and no external force term to
drive the deformation. The experiments show that there is no significant motion
in the skull with this approach. The implementation will be extended in the
future to impose Dirichlet boundary condition on the boundary of the skull
itself by utilizing the skull stripped mask. We use FSL FAST [17] to segment the
skull stripped image into GM, WM and CSF; and FSL FIRST [11] to segment
hippocampi and amygdalae.

3.3 Subject Specific Atrophy Map

Skull stripping and tissue segmentation can be done directly in a subject specific
MRI. This allows prescribing desired atrophy on the segmented regions of the
subject MRI. For the regions that cannot be segmented directly on the subject
MRI, if they are are available in atlases, we can propagate the required labels
to the specific subject MRI by using non-rigid registration of the template atlas
to the subject.

4 Simulation Results and Discussion

Investigation of differential brain atrophy dynamics in GM and WM:

We used OASIS-30 atlas and the template brain image [10] to experiment with
differential patterns of atrophy in GM and WM. Figure 1 shows displacement
fields obtained when prescribing 2% global atrophy in two different ways. The
left column shows the field when all of the atrophy is uniformly distributed in
the GM only, while the middle column shows the field when all of the atrophy
is uniformly distributed in the WM only. The right column shows the difference
between the fields in these two cases i.e. GM-atrophy and WM-atrophy cases.
We can see that the deformations are localized only on the cortical areas in
the GM-atrophy case. In the WM-atrophy case, deformations are similar on the
cortical surface but are much pronounced internally in WM areas and at the
WM-GM interface.

Towards a Realistic Subject-Specific Model of AD: Figure 2 shows a
simulation example for a subject brain MRI where 20% hippocampal atrophy
(magnified hippocampal atrophy is prescribed here for illustrative purpose) is
prescribed in addition to the uniform global 2% atrophy. One of the coronal slices
is superimposed with the obtained deformation field on the left column. The
right column shows the difference between the original image and the simulated
image. The difference is mostly localized in the GM-WM interface and the CSF-
GM interface. The deformation field shows the expected large shrinkage of the
hipoccampi that was prescribed.
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Fig. 1. Displacement fields superimposed over two views of the template MRI. Pre-
scribed atrophy is the two percent of the total brain volume. Left: Atrophy only in
the GM. Middle: Atrophy only in the WM. Right: Difference between displacement
fields obtained in the first two cases.

These examples illustrate how we can use the proposed framework to explore
the association of different atrophy patterns and their resulting deformation
patterns with the image appearance in structural MRI.

The proposed model obtains deformation for one time step. The question
remains on how we can further deform the brain by updating the atrophy map.
This requires the knowledge of the evolution of atrophy over time. Here we take
the simple approach of updating the atrophy map using the deformation field
obtained in the first step and re-solving the system of equations (dissipating all
the strain energy from the previous step).

5 Conclusions

We have proposed a new biologically plausible model of brain atrophy that
provides a deformation with exactly the prescribed atrophy at any desired voxel
of the image. The model is described by a PDE that is solved directly in the grid
of the image resolution without the need of brain meshes. It allows to simulate
anatomical changes of the brain based on specified atrophy patterns. We showed
that this well-grounded forward model of the brain deformation in AD allows
us to test hypotheses about the distribution of brain atrophy, and to study its
impact on the observed changes in MR images.
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Fig. 2. Left: A coronal slice of a subject brain MRI superimposed with the obtained
displacement field. Middle: Prescribed atrophy map of 2 % global atrophy where GM
and WM conribute 80% and 20% respectively and an additional 20% hippocampal
atrophy. Right: Difference between the original and the simulated image.

We have provided a preliminary example towards the development of a re-
alistic and biologically plausible subject-specific model of AD. Further devel-
opments of the present work will extend the personalization by including pa-
rameters concerning structural and biochemical information (from respectively
diffusion weighted and PET imaging), and clinical/sociodemographical factors.
The model opens a way to the development of novel instruments to be used in
clinical trials for monitoring longitudinal brain changes with respect to simulated
scenarios of pathological evolutions.

A biomarker serving as a ground truth for the model validation is challeng-
ing since there is no universally accepted biomarker for atrophy. One possible
biomarker could be the pattern of accumulation of neurofibrillary tangles (NFTs)
in the brain [3]. In future, imaging data based on novel tau aggregrating tracers
[16] that provides the pattern of NFTs could be used as patient-specific prior for
the initial atrophy map in the model, and then we could compare the outcome
with the real images in order to establish the stage of the pathology.
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