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ABSTRACT

The Accurate calculation of the workspace and joint space

for 3 RPS parallel robotic manipulator is a highly addressed re-

search work across the world. Researchers have proposed a va-

riety of methods to calculate these parameters. In the present

context a cylindrical algebraic decomposition based method is

proposed to model the workspace and joint space. It is a well

know feature that this robot admits two operation modes. We are

able to find out the set in the joint space with a constant num-

ber of solutions for the direct kinematic problem and the locus of

the cusp points for the both operation mode. The characteristic

surfaces are also computed to define the uniqueness domains in

the workspace. A simple 3-RPS parallel with similar base and

mobile platform is used to illustrate this method.

INTRODUCTION

The workspace of parallel robots mainly depends upon the

actuated joint variables, the range of motion of the joints and

the mechanical interferences between the bodies of mechanism.

There are different techniques based on geometric, discretiza-

tion, numerical and algebraic methods which are used to calcu-

late the workspace of parallel robot. The main advantage of the

geometric approach is that, it establish the nature of the bound-

ary of the workspace [1]. Also it allows the computation of the

surface and volume of the workspace while being very efficient

in terms of storage space, but if the rotational motion is included,

it becomes more complex. The interval analysis based method

can be used to compute the workspace but the computation time

depends on the complexity of the robot and the accuracy re-

quested. The ALIAS library is a good implementation for the

parallel robots [2]. Discretization methods are usually less com-

plex and take into account all kinematic constraints, but require

more space and computation time for higher resolutions. The

majority of numerical methods which is used to determine the

workspace of parallel manipulators includes the discretization of

the pose parameters for the determination of workspace bound-

aries [3]. Algebraic methods are used in [4–6] to study planar

or spatial parallel robots. Two main teps are necessary to per-

form the workspace and jointspace analysis. First, the discrim-

inant variety is computed to characterize the boundaries of the

workspace and jointspace as well as the singularities. Second,

the Cylindrical Algebraic Decomposition (CAD) is used to de-

fine the connected regions where there exists a constant number

of real solutions to the inverse and direct kinematic problem and

no parallel or serial singularities [5–7].

For the design or the trajectory planning, the workspace of

the parallel manipulator is divided into singularity-free regions

[8]. The singularities divide the workspace into aspects and the

characteristic surfaces induce a partition of each aspect into a set

of regions (the basic regions) [9]. For the parallel robots with

several inverse and direct kinematic solutions, the aspects are de-
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fined as the maximal singularity-free sets in the workspace or the

cross-product of the joint space by the workspace. An assembly

mode is associated with a solution for the Direct Kinematic Prob-

lem (DKP) and a working mode for the Inverse Kinematic Prob-

lem (IKP). Practically, a change of assembly mode may occur

during the execution of a trajectory between two configurations

in the workspace which are not necessarily associated with the

same input for a given working mode. The uniqueness domains

can be defined as the maximal regions of the workspace where

all the displacements of the end-effector can be accomplished

without changing of assembly mode and working mode [5]. The

main goal of this paper is to generalize the notions of the unique-

ness domains for parallel robot with several operation modes and

a single working mode.

The outline of the paper is as follows. Firstly, the kinematic

equations of the 3-RPS parallel robot under study are introduced.

The singular configurations are written for both operation modes.

The cylindrical algebraic decomposition algorithm is presented

to explain the study of the workspace and the joint space. Then,

the characteristic surface is defined for the parallel robots with

several operations. Finally, the basic regions and the basic com-

ponents are computed to define the uniqueness domains for the

direct kinematic problem.

KINEMATICS OF 3 RPS

The robot under study is the 3-RPS parallel robot with three

degrees of freedom and has been studied by many researchers

[10, 11]. It is the assembly of two equilateral triangles (the base,

moving platform) by three identical RPS legs where R is a rev-

olute passive joint, P an actuated prismatic joint and S a passive

spherical joint. Thus, the revolute joint is connected to the fixed

base and the spherical joint to the mobile platform.
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FIGURE 1. 3-RPS parallel robot

Considering the 3-RPS parallel manipulator, as shown in fig-

ure 1, the fixed base consists of an equilateral triangle with ver-

tices A1, A2 and A3, and circumradius g. The moving platform

is another equilateral triangle with vertices B1, B2 and B3 and

circumradius h, and circumcenter P. The two design parameters

g and h are positive numbers. Connecting each of the vertices’

pairs Ai, Bi (i = 1,2,3) by a limb, a rotational joint lies at Ai and

a spherical joint lies at Bi. ρi denotes the length of each limb and

the adjustment is done through an actuated prismatic joint. Thus,

there are five parameters, namely g, h, ρ1, ρ2 and ρ3. The g and h

parameters determine the design of the manipulator whereas the

joint parameters ρ1, ρ2 and ρ3 determine the motion of the robot.

To simplify the equations, we will study a robot with g = h = 1,

which permits to have simple constraint equations.

Kinematic equations

Spatial rotations in three dimensions can be parametrized

using Euler angles [12], unit quaternions [13] or dual quater-

nions [10]. The quaternion representation is used for modeling

the orientation as quaternions do not suffer from singularities as

Euler angles do. Moreover, to transform the trigonometric equa-

tions to algebraic equations, we may either introduce the singu-

larity of the transformation t = tan(α/2) or replace the angle α

by two parameters cosα and sinα with cos2
α +sin2

α −1. In addi-

tion, it is easier to represent workspace sections with the quater-

nions than the dual quaternions.

A quaternion q is defined by

q = q1 + q2i+ q3j+ q4k (1)

The quaternion rotation matrix for the parallel robot is then

Q =





2q1
2 + 2q2

2 − 1 − 2q1q4 + 2q2q3 2q1q3 + 2q2q4

2q1q4 + 2q2q3 2q1
2 + 2q3

2 − 1 − 2q1q2 + 2q3q4

−2q1q3 + 2q2q4 2q1q2 + 2q3q4 2q1
2 + 2q4

2 − 1





(2)

with q2
1 +q2

2 +q2
3 +q2

4 = 1. The transformation from the moving

frame to the fixed frame can be described by a position vector

p =OP and a 3×3 rotation matrix R. Let u, v and w be the three

unit vectors defined along the axes of the moving frame, then the

rotation matrix can be expressed in terms of the coordinates of u,

v and w as:

R =





ux vx wx

uy vy wy

uz vz wz



 (3)
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The vertices of the base triangle and mobile platform triangle are

A1 =





g

0

0



 A2 =





−g/2

g
√

3/2

0



 A3 =





−g/2

−g
√

3/2

0



 (4)

b1 =





h

0

0



 b2 =





−h/2

h
√

3/2

0



 b3 =





−h/2

−h
√

3/2

0



 (5)

The coordinates of bi with respect to fixed frame reference are

obtained by Bi = P+Rbi for i = 1,2,3. Also the coordinates of

the centre of the mobile platform in the fixed reference is P =
[x y z]T . The distance constraints yields:

||Ai −Bi||= ρ
2
i with i = 1,2,3 (6)

As Ai are revolute joints, the motion of the Bi are constrained in

planes. This leads to the three constraint equations:

uyh+ y = 0 (7)

y− uyh/2+
√

3vyh/2+
√

3x−
√

3uxh/2+ 3vxh/2 = 0 (8)

y− uyh/2−
√

3vyh/2−
√

3x+
√

3uxh/2+ 3vxh/2 = 0 (9)

Solving with respect to x and y we get:

y = −huy (10)

x = h
(√

3ux −
√

3vy − 3uy+ 3vx

)√
3/6 (11)

In Equations 6, 8, 9, we substitute x,y using relations 10 and 11,

and u,v,w by quaternion expressions using 2. Then (8) and (9)

become q1q4 = 0. Thus, we have either q1 = 0 or q4 = 0. This

property is associated with the notion of operation mode. To

obtain the algebraic equations, we replace
√

3 by the variable S3

and add the equation S2
3 − 3 = 0 and the constraint s3 > 0.

Operation Modes

Notion of operation mode (OM) was introduced in [14] to

explain the behavior of the DYMO robot. An operation mode is

associated with a specific type of motion. For the DYMO robot,

there are five operation modes: translational, rotational, planar

(two types) and mixed motions. In the workspace W , for each

operation mode, WOM j is defined such that

• WOM j ⊂W

• ∀X ∈WOM j , OM is constant

For a parallel robot with several operating modes, the pose

can be defined by fixing the same number of parameters as the

degree of freedom of the mobile platform. Given an operation

mode OM j, if we have a single inverse kinematic solution, we

can define an application that maps X onto q:

g j(X) = q (12)

Then, the images in WOM j of a posture q in the joint space Q are

defined by:

g−1
j (q) = (X/(X,q) ∈ OM j) (13)

where g−1
j stands to be the direct kinematic problem for the op-

eration mode j.

Singularities

Differentiating the constraints equations with respect to time

leads to the velocity model:

At+Bq̇ = 0 (14)

where A and B are the parallel and serial Jacobian matrices, re-

spectively, t is the velocity of P and q̇ joint velocities. The paral-

lel singularities occur whenever det(A) = 0. Let OM1 be the op-

eration mode where q1 = 0 and OM2, where q4 = 0, then SOM1

and SOM2 represent the singularity locus and are characterized

by:

SOM1 : q4(8q2q2
3q6

4 + 2q2q8
4 − 64zq6

3q4 − 96zq4
3q3

4 − 36zq2
3q5

4

−6zq7
4 − 24z2q2q2

3q2
4 − 6z2q2q4

4 − 32q2q2
3q4

4 − 10q2q6
4 + 2z3q3

4

+96zq4
3q4 + 72zq2

3q3
4 + 23zq5

4+ 16z2q2q2
3 + 10z2q2q2

4 + 8q2q4
4

−z3q4 − 36zq2
3q4 − 21zq3

4 − 4z2q2 + 4zq4) = 0

SOM2 : q2
1(6q7

1q3 + 8q5
1q3

3 − 2zq6
1 + 36zq4

1q2
3 + 96zq2

1q4
3

+64zq6
3 − 18z2q3

1q3 − 24z2q1q3
3 − 18q5

1q3 − 16q3
1q3

3 + 2z3q2
1

+3zq4
1 − 72zq2

1q2
3 − 96zq4

3 + 18z2q1q3 + 12q3
1q3 − z3

+3zq2
1 + 36zq2

3− 4z) = 0

The serial singularities occur whenever det(B) = 0 i.e ρ1ρ2ρ3 =
0. The common coordinates for the both operation modes are z,

q2 and q3. Figure 2(a) represents the singularity curve for OM1
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FIGURE 2. Singularity curves for z = 3, q1 = 0 (a) and its 2D projec-

tion under (q2,q3) (b)
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FIGURE 3. Singularity curves for z = 3, q4 = 0 (a) and its 2D projec-

tion under (q2,q3) (b)

for a fixed value of z (i.e z = 3) and Figure 2(b) shows its projec-

tion in the two dimensional coordinate space (q2 − q3).
Due to the redundancy of the quaternion representation there

exists two triplets based on these three coordinates to represent

the same pose in the same operation mode. To overcome this

problem, we set q1 > 0 and q4 > 0. We can then depict a slice

of this surface by fixing one parameter as shown in Figures 2(a)

and 3(a). Figures 2(b) and 3(b) shows the singularity curves in

the projection space z, q2 and q3, where the red curve is a real sin-

gular locus, which represents the positive values of q4 or q1 and

the green curve is a spurious singularity curve, which represents

the negative values of q4 or q1.

Cylindrical algebraic decomposition

The workspace (resp. Joint space) analysis classifies the

number of solutions of the parametric system associated with the

Inverse (resp. Direct) Kinematic Problem (IKP). This method

was introduced for parallel robots in [5]. We will recall here the

main steps of the computation and the new step for a robot with

several operation modes. For such operations, both workspace as

well as joint space is decomposed into cells C1,...,Ck, such that:

• Ci is an open connected subset of the workspace;

• for all pose values in Ci, the direct (resp. inverse) kinematics

problem has a constant number of solutions;

• Ci is maximal in the sense that if Ci is contained in a set E ,

then E does not satisfy the first or the second condition.

• The Ci are disjoint and their complementary is a set of null

measure.

The three main steps involved in the analysis are:

• Computation of a subset of the joint space (resp. workspace)

where the number of solutions changes: the Discriminant

Variety [5].

• Description of the complementary of the discriminant va-

riety in connected cells: the Generic Cylindrical Algebraic

Decomposition.

• Connecting the cells belonging to the same connected com-

ponent in the counterpart of the discriminant variety: inter-

val comparisons.

From a general point of view, the discriminant variety is de-

fined for any system of polynomial equations and inequalities.

The union of the Discriminant variety and of the cells thus de-

fine a partition of the considered space. Let p1,...,p1 and q1,...,ql

be polynomials with rational coefficients depending on the un-

knowns X1,...,Xn, and on the parameters U1,...,Ud . Let us con-

sider the constructible set:

C =

{

v ∈Cn+d , p1(v) = 0, ..., pm(v) = 0,
q1(v) 6= 0, ...,ql(v) 6= 0

}

(15)

If we assume that C is a finite number of points for almost all

the parameter values, a discriminant variety VD of C is a variety

in the parameter space Cd such that, over each connected open

set U satisfying U ∩VD = /0, C defines an analytic covering.

In particular, the number of points of C over any point of U is

constant.

Let us now consider the following semi-algebraic set:

S =

{

v ∈Cn+d , p1(v) = 0, ...,
pm(v) = 0,q1(v)≥ 0, ...,ql(v)≥ 0

}

(16)

If we assume that S has a finite number of solutions over

at least one real point that does not belong to VD, then VD ∩Rd

can be viewed as a real discriminant variety of S ∩ R\+⌈,
with the same property: over each open set U ⊂ R

⌈ such that

U ∩VD ∩Rd = /0, C defines an analytic covering. In particu-

lar the number of real points of S over any point of U is con-

stant. Discriminant varieties can be computed using basic and

well known tools from computer algebra such as Groebner bases

(see [15], Chapter 3) and a full package computing such objects
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in a general framework is available in Maple software through

the RootFinding[Parametric] package.

The cylindrical algebraic decomposition (CAD) imple-

mented in the SIROPA library has been used to compute the

aspects into a set of cells where algebraic equations define its

boundaries and a sample point in each one [5] for the 2PRR–

RPR parallel robot. For example, the CAD can provide a formal

decomposition of the joint space in cells where the polynomials

det(A) and det(B) have a constant sign and the number for the

DKP is constant [16].

WORKSPACE AND JOINT SPACE ANALYSIS

Joint Space Analysis

The joint space analysis allows the characterization of the re-

gions where the number of real solutions for the direct kinematic

model is constant. Using CAD, we can do this study on sections

of the joint space. The calculation for the full joint space is pos-

sible, but the number of cells obtained is too large for the display

capabilities of Maple. Without taking into account the notion of

operation mode, Figure 4 depicts the regions with 4, 8, 12 or 16

solutions for the DKP. The maximum number for the DKP of

each operation mode is 8.

4 solutions
8 solutions

12 solutions
16 solutions

ρ2

ρ3

FIGURE 4. Slice of the joint space for ρ1 = 3 and the number of

solution for DKP

Figures 5 and 6 show several slices of the joint space for

OM1 and OM2, where the DKP admits four and eight real solu-

tions in the blue and red region respectively.

Cuspidal configurations are associated with second-order

degeneracies that appear for triply coalesced configurations.

These configurations play an important role in the path planning

because they are directly linked to the non-singular assembly

mode changing trajectories [6, 17–19]. A state of the art for the

computation of the cusp points is given in [20]. Here we make

use of the Jacobian criterion on the singular locus to extract the

points of multiplicity greater than or equal to three. Figures 5

and 6 show that the number of cusp points is changing according

to the value of ρ1. Figure 7 depicts the locus of the cusp points

in the joint space. These curves are obtained as the intersection

of 11 surfaces for OM1 and 8 surfaces for OM2. However, for

the 3-RPS parallel robot is very difficult to remove the multiplic-

ity greater than two by using the saturation method as introduced

in [21].

Workspace Analysis
The workspace of the robot is a cylinder in the projection

space (z, q2, q3) if there are no joint limits on the actuated joints.

The workspace analysis can be done by dividing it into a

set of aspects. The notion of aspect, previously defined in [22]

for serial robots and in [8] for parallel robot with one operation

mode can be extended for a parallel robot with several operation

modes such that:

• WA
j
i ⊂WOM j

• WA
j
i is connected

• ∀X ∈WA
j
i , det(A) 6= 0 and det(B) 6= 0

In other words, an aspect WA
j
i is the largest connected region

without any singularity of the OM j.

The analysis of the workspace is done in the projection space

(z, q2, q3). We found out four aspects as shown in Figure 8.

4 solutions
8 solutions

ρ2

ρ3 4 solutions
8 solutions

ρ2

ρ3

(a) (b)

4 solutions
8 solutions

ρ2

ρ3 4 solutions
8 solutions

ρ2

ρ3

(c) (d)

FIGURE 5. Slice of the joint space for OM1 for ρ1 = 1 (a), ρ1 = 2

(b), ρ1 = 3 (c) and ρ1 = 4 (d) and the number of solution for DKP
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