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Compositionality Results for Quantitative

Information Flow⋆

Yusuke Kawamoto1,2, Konstantinos Chatzikokolakis2,3, Catuscia Palamidessi1,2

1INRIA, France 2École Polytechnique, France 3CNRS, France

Abstract. In the min-entropy approach to quantitative information flow,
the leakage is defined in terms of a minimization problem, which, in case
of large systems, can be computationally rather heavy. The same hap-
pens for the recently proposed generalization called g-vulnerability. In
this paper we study the case in which the channel associated to the sys-
tem can be decomposed into simpler channels, which typically happens
when the observables consist of several components. Our main contribu-
tion is the derivation of bounds on the g-leakage of the whole system in
terms of the g-leakages of its components.

1 Introduction

The problem of preventing confidential information from being leaked is a fun-
damental concern in the modern society, where the pervasive use of automatized
devices makes it hard to predict and control the information flow. While early
research focussed on trying to achieve non-interference (i.e., no leakage), it is
nowadays recognized that, in practical situations, some amount of leakage is un-
avoidable. Therefore an active area of research on information flow is dedicated
to the development of theories to quantify the amount of leakage, and of methods
to minimize it. See, for instance, [16,5,20,18,10,11,25,6].

Among these theories, min-entropy leakage [25,7] has become quite popular,
partly due to its clear operational interpretation in terms of one-try attacks.
This quite basic setting has been recently extended to the g-leakage framework
[2]. The main novelty consists in the introduction of gain functions, that permit
to quantify the vulnerability of a secret in terms of the gain of the adversary,
thus allowing to model a wide variety of operational scenarios.

While g-leakage is appealing for its generality and flexible operational in-
terpretation, its computation is not trivial. Like most of the quantitative ap-
proaches, its definition is based on the probabilistic correlation between the
secrets and the observables. Such correlation is usually expressed in terms of an
information-theoretic channel, where the secrets constitute the input and the ob-
servables the output. The channel is characterized by the channel matrix, namely
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Kinds of systems small systems large systems large unknown systems
Input distribution π known known known
Component channels Ci known known approx. statistically
Leakage of Ci with πi computable computable approx. statistically

Composed channel C computable unfeasible unfeasible
Leakage of C with π computable unfeasible unfeasible
Table 1. Computation of information leakage measures in various scenarios

the conditional probabilities of each output for any given input. The computa-
tion of the channel matrix from the system can be performed via model checking
(see, e.g., [3]), if a system is completely specified and it is not too complicated.
Once the matrix is known, the computation of the g-leakage involves solving an
optimization problem. This can be quite costly when the matrix is large.

Worse yet, in many cases it is not possible to compute the channel matrix
exactly, for instance because the system may be too complicated, or because
the conditional probabilities are partially determined by unknown factors. For-
tunately, there are statistical methods that allow to approximate the channel
matrix and the leakage [9,12]. There is also a tool, leakiEst [14], which allows
to estimate min-entropy leakage from a set of trial runs [15,13]. However, if the
cardinality of secrets and observables is large, such estimation becomes compu-
tationally heavy, due to the huge amount of trial runs that need to be performed.

In this paper we determined bounds on g-leakages in compositional terms.
More precisely, we consider the parallel composition of channels, defined on the
cross-products of the inputs and of the outputs. Then, we derive lower and upper
bounds on the g-leakage of the whole channel in terms of the g-leakages of the
components. Since the size of the whole channel is the product of the sizes of the
components, there is an evident benefit in terms of computational cost. Table 1
illustrates the situation for the various kinds of channel matrices (small, large,
unknown): the first three rows characterize the situation, and the last three
express the feasibility of computing the leakage of the components, the matrix
of the whole system, and the leakage of the whole system, respectively. This
computation is meant to be exact in the first two columns, and statistical in the
last one. The number of components is assumed to be huge. Note that the size of
the whole channel increases exponentially with the number of the components.

We evaluate our compositionality results on randomly generated channels and
on Crowds, a protocol for anonymous communication, run on top of a mobile
ad-hoc network (MANET). In such a network users are mobile, can commu-
nicate only with nearby nodes, and the network topology changes frequently.
As a result, Crowds routes can become invalid forcing the user to re-execute
the protocol to establish a new route. These protocol repetitions, modeled by
the composition of the corresponding channels, lead to more information being
leaked. Although the composed channel quickly becomes too big to compute the
leakage directly, our compositionality results allow to obtain bounds on it.
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Fig. 1. The two kinds of parallel compositions on channels, × and ‖.

The rest of the paper is organized as follows: Section 2 introduces basic no-
tions of information theory, defines compositions of channels, and presents infor-
mation leakage measures. Section 3 presents lower/upper bounds for g-leakages
in compositional terms. Section 4 instantiates these results to min-entropy leak-
ages. Section 5 introduces a transformation technique which improves the preci-
sion of our method. Section 6 evaluates our results by experiments.

All proofs can be found in Appendix of this paper.

2 Preliminaries

In this section we recall the notion of information-theoretic channels, define
channel compositions, and recall some information leakage measures.

2.1 Channels

A discrete channel is a triple (X ,Y, C) consisting of a finite set X of secret input
values, a finite set Y of observable output values, and an |X |×|Y|matrix C, called
channel matrix, where each element C[x, y] represents the conditional probability
p(y|x) of obtaining the output y ∈ Y given the input x ∈ X . The input values
have a probability distribution, called input distribution or prior. Given a prior
π on X , the joint distribution for X and Y is defined by p(x, y) = π[x]C[x, y].
The output distribution is given by p(y) =

∑

x∈X π[x]C[x, y].

2.2 Composition of Channels

We now introduce the two kinds of composition which will be considered in the
paper. We assume that the channels are independent, in the sense that, given the
respective inputs, the outcome of one channel does not influence the outcome
of the other. We start with defining parallel composition with separate inputs
× (parallel composition for short). Note that the term “parallel” here does not
carry a temporal meaning: the actual execution of the corresponding systems
could take place simultaneously or in any order.

Definition 1 (Parallel composition (with distinct inputs)). Given two
discrete channels (X1,Y1, C1) and (X2,Y2, C2), their parallel composition (with

3



distinct inputs) is the discrete channel (X1×X2,Y1×Y2, C1×C2) where C1×C2

is the (|X1| · |X2|) × (|Y1| · |Y2|) matrix such that (C1 × C2)[(x1, x2), (y1, y2)] =
C1[x1, y1] · C2[x2, y2] for each x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1 and y2 ∈ Y2.

The condition (C1 × C2)[(x1, x2), (y1, y2)] = C1[x1, y1] · C2[x2, y2] is what
we mean by “the channels are independent”. Note that, although the output
distributions Y1 and Y2 may be correlated, they are conditionally independent,
in the sense that p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2).

Next, we define the parallel composition with shared input ‖.

Definition 2 (Parallel composition with shared input). Given two dis-
crete channels (X ,Y1, C1) and (X ,Y2, C2), their parallel composition with shared
input is the discrete channel (X ,Y1 × Y2, C1 ‖ C2) where C1 ‖ C2 is the |X | ×
(|Y1| · |Y2|) matrix such that (C1 ‖ C2)[x, (y1, y2)] = C1[x, y1] · C2[x, y2] for each
x ∈ X , y1 ∈ Y1 and y2 ∈ Y2.

Note that ‖ is a special case of ×. In fact, (C1 ‖ C2)[x, (y1, y2)] = C1[x, y1] ·
C2[x, y2] = (C1 × C2)[(x, x), (y1, y2)].

Fig. 1 illustrates these definitions. These two kinds of compositions are used
to represent different situations. For example, in the Crowds protocol (explained
in Section 6.1) repeated executions of the protocol with different senders are
described by the parallel composition (×), while repeated executions with the
same sender are described by the parallel composition with shared input (‖).

2.3 Quantitative Information Leakage Measures

The information leakage of a channel is measured as the difference between the
prior uncertainty about the secret value of the channel’s input and the posterior
uncertainty of the input after observing the channel’s output. The uncertainty
is defined in terms of an attacker’s operational scenario. In this paper we will
focus on min-entropy leakage, in which such measure, min-entropy, represents
the difficulty for an attacker to guess the secret inputs in a single attempt.

Definition 3. Given a prior π on X and a channel (X ,Y, C), the prior vulner-
ability and the the posterior vulnerability are defined respectively as

V (π) = max
x∈X

π[x] and V (π,C) =
∑

y∈Y

max
x∈X

π[x]C[x, y].

Definition 4. Given a prior π on X and a channel (X ,Y, C), the min-entropy
H∞(π) and conditional min-entropy H∞(π,C) are defined by:

H∞(π)= − log V (π) and H∞(π,C) = − log V (π,C)

and the min-entropy leakage I∞(π,C) and min-capacity C∞(C) are defined by:

I∞(π,C)= H∞(π)−H∞(π,C) and C∞(C) = sup
π′

I∞(π′, C).
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Min-entropy leakage has been generalized by g-leakage [2], which allows a
wide variety of operational scenarios. These are modeled using a setW of possible
guesses, and a gain function g : W ×X → [0, 1] such that g(w, x) represents the
gain of the attacker when the secret value is x and he makes a guess w on x.

Then g-vulnerability is defined as the maximum expected gain of the attacker:

Definition 5. Given a prior π on X and a channel (X ,Y, C), the prior g-
vulnerability and the posterior g-vulnerability are defined respectively by

Vg(π) = max
w∈W

∑

x∈X

π[x]g(w, x) and Vg(π,C) =
∑

y∈Y

max
w∈W

∑

x∈X

π[x]C[x, y]g(w, x).

We now extend Definition 4 to the g-setting:

Definition 6. Given a prior π on X and a channel (X ,Y, C), the g-entropy
Hg(π), conditional g-entropy Hg(π,C), g-leakage Ig(π,C) and g-capacity Cg(C)
are defined by: Hg(π)=− log Vg(π), Hg(π,C)=− log Vg(π,C), Ig(π,C)=Hg(π)−
Hg(π,C), Cg(C)=sup

π′

Ig(π
′, C).

The min-entropy notions are particular cases of the g-entropy ones, obtained
by instantiating g to the identity function gid defined as gid(w, x) = 1 if w = x
and gid(w, x) = 0 otherwise. Then we haveH∞ = Hgid , I∞ = Igid and C∞ = Cgid .

3 Compositionality Results on g-Leakage

In this section we introduce joint gain functions for composed channels and
present compositionality results for g-leakage.

3.1 Joint Gain Functions for Composed Channels

To formalize the g-leakages of composed channels, we need to know in advance
a joint gain function g that is defined as a function from (W1×W2)× (X1×X2)
to [0, 1]. When a joint secret input is (x1, x2) ∈ X1 × X2 and the attacker’s
joint guess is (w1, w2) ∈ W1 ×W2, the attacker’s joint gain from the guesses is
represented by g((w1, w2), (x1, x2)).

For the sake of generality, we do not assume any relation between g and the
two gain functions g1 and g2, except for the following: a joint guess is worthless iff
at least one of the single guesses is worthless. Formally: g((w1, w2), (x1, x2)) = 0
iff g1(w1, x1)g2(w2, x2) = 0. 1

We say that g1 and g2 are independent if g((w1, w2), (x1, x2)) = g1(w1, x1)
g2(w2, x2) for all x1, x2, w1 and w2.

1 This property holds, for example, when g, g1, g2 are the identity gain functions.
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3.2 Jointly Supported Input Distributions

Given a joint prior π on X1 × X2, the marginal distribution π1 on X1 is defined
as π1[x1] =

∑

x2∈X2
π[x1, x2] for all x1 ∈ X1. The marginal distribution π2 on X2

is defined analogously. Note that π1[x1] · π2[x2] = 0 implies π[x1, x2] = 0 . The
converse does not hold in general, but occasionally we will assume it:

Definition 7. A prior π on X1 × X2 is jointly supported if, for all x1 ∈ X1 and
x2 ∈ X2, π1[x1] · π2[x2] 6= 0 implies π[x1, x2] 6= 0.

Essentially, this condition rules out all the distributions in which there exist
two events that happen with a non-zero probability, but that never happen
together, i.e., events that are incompatible with each other.

If π1 and π2 are independent, i.e., π[x1, x2] = π1[x1] · π2[x2] for all x1 ∈ X1

and x2 ∈ X2, then we denote π by π1×π2. Note that π1×π2 is jointly supported.

3.3 The g-Leakage of Parallel Composition

In this section we present a lower and an upper bound for the g-leakage of C1×C2

in terms of the g-leakages of C1 and C2. We first introduce some notation.

Definition 8. Let π be a prior on X1×X2, and g : (W1×W2)×(X1×X2) → [0, 1]
be a joint gain function. For w1 ∈ W1 and w2 ∈ W2, their support with respect to
g is defined as: Sw1,w2

= {(x1, x2) ∈ X1 ×X2 |π[x1, x2] · g((w1, w2), (x1, x2)) 6= 0} .

The lower and the upper bounds are based on the following two measures.

Definition 9. Let g be a joint gain function from (W1 × W2) × (X1 × X2) to
[0, 1]. Let g1, g2 be two gain functions from W1 ×X1 to [0, 1] and from W2 ×X2

to [0, 1] respectively. Given a prior π on X1 ×X2, we define Mmin
π and Mmax

π :

Mmin
π = minw1∈W1,w2∈W2

min(x1,x2)∈Sw1,w2

π1[x1]g1(w1,x1)·π2[x2]g2(w2,x2)
π[x1,x2]·g((w1,w2),(x1,x2))

Mmax
π = maxw1∈W1,w2∈W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1,x1)·π2[x2]g2(w2,x2)
π[x1,x2]·g((w1,w2),(x1,x2))

.

When π1 and π2 are independent and g1 and g2 are independent, Mmin
π =

Mmax
π = 1. In addition, for any prior π, Mmin

π is strictly positive.

We now show compositionality results for generalized information measures.

Posterior g-Entropy of Parallel Composition

Lemma 1. For any prior π on X1 × X2 with marginals π1 and π2, and two
channels (X1,Y1, C1), (X2,Y2, C2),

– Hg(π,C1 × C2) ≥ Hg1(π1, C1) +Hg2(π2, C2) + logMmin
π

– if π is jointly supported, then Hg(π,C1 × C2) ≤ Hg1(π1, C1) +Hg2(π2, C2) +
logMmax

π .

The equalities hold if the priors and the gain functions are independent:

Corollary 1. If g((w1, w2), (x1, x2)) = g1(w1, x1)g2(w2, x2) for all x1, x2, w1

and w2, then, for any π1 and π2, Hg(π1×π2, C1×C2) = Hg1(π1, C1)+Hg2(π2, C2).

6



The g-Leakage of Parallel Composition

Theorem 1. Let π be a jointly supported prior on X1 × X2 with marginals π1

and π2. Let (X1,Y1, C1), (X2,Y2, C2) be two channels. Then:

Ig1(π1,C1)+Ig2(π2,C2)−log
Mmax

π

Mmin
π

≤Ig(π,C1×C2)≤Ig1(π1,C1)+Ig2(π2,C2)+log
Mmax

π

Mmin
π

Again, the equality holds if the priors and the gain functions are independent:

Corollary 2. If g1 and g2 are independent, then Ig(π1×π2, C1×C2) = Ig1(π1, C1)
+ Ig2(π2, C2).

These results can be naturally extended to the composition of n channels; see
Appendix A.

3.4 The g-Leakage of Parallel Composition with Shared Input

In this section we present compositionality results for g-leakage when two chan-
nels share the same input value.

The parallel composition with shared input corresponds to the parallel com-
position with two identical inputs values: (C1‖C2)[x, (y1, y2)] = C1[x, y1]C2[x, y2] =
(C1×C2)[(x, x), (y1, y2)]. To give the same input value x to both C1 and C2, the
prior π† on X × X is defined from a prior π on X by:

π†[x, x′] =

{

π[x] if x = x′

0 otherwise

Then Hg(π,C1 ‖ C2) = Hg(π
†, C1 × C2). In addition, π†

1[x] = π†
2[x] = π[x].

As we see in the definition, the attacker’s gain is determined solely from a
secret input x and his guess w on x (and independently of channels that receive x
as input). Let g be a gain function from W×X to [0, 1]. Since C1 and C2 receive
input from the same domain X , we use the same gain function g to calculate both
the g-leakages of C1 and C2. Since an identical input value x is given to C1 and C2

in the composed channel C1 ‖C2 and the attacker makes a single guess w on the
secret x, we define the joint gain function g† : W×W×X ×X → [0, 1] from g by:
g†((w,w′), (x, x′)) = g(w, x) if w = w′ and x = x′ and g†((w,w′), (x, x′)) = 0
otherwise. If π†[x, x′] · g†((w,w′), (x, x′)) 6= 0, then w = w′ and x = x′. Let

(W × X )+ = { (w, x) ∈ W × X | π[x]g(w, x) 6= 0 }. By π†
1[x] = π†

2[x] = π[x],
Mmin

π† = min(w,x)∈(W×X )+ π[x]g(w, x) and Mmax
π† = maxw∈W

∑

x∈X π[x]g(w, x).
Then Hg(π) = − logMmax

π† .
To describe compositionality results, we introduce the following notation.

Definition 10. For any prior π on X and any gain function g, we defineHmin
g (π)

by: Hmin
g (π) = − logmin {π[x]g(w, x) : x ∈ X , w ∈ W, π[x]g(w, x) 6= 0}.

Then, for any prior π, Hmin
g (π) = − logMmin

π† and Hmin
g (π) ≥ Hg(π).

Since π† is not jointly supported, we can instantiate compositionality results
in the previous sections only on a lower bound for the posterior g-entropy and
upper bounds for g-leakage and g-capacity.
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The posterior g-entropy Hg(π,C1 ‖ C2) of a channel composed in parallel
with shared inputs is lower-bounded by the summation of logHmin

g (π) and the
posterior g-entropies of its two components:

Theorem 2. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

Hg(π,C1 ‖ C2) ≥ Hg(π,C1) +Hg(π,C2)−Hmin
g (π).

An upper bound of the g-leakage Ig(π,C1 ‖C2) of a channel composed in par-
allel with shared inputs is described using the g-leakages of its two components:

Theorem 3. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

Ig(π,C1 ‖ C2) ≤ Ig(π,C1) + Ig(π,C2) +Hmin
g (π)−Hg(π).

We emphasize this result holds for any prior. Note that in the right-hand side
of the above inequality, Hmin

g (π)−Hg(π) is necessary as the following illustrates.

Example 1. Let us consider the channel (X ,Y, C) where X = Y = { 0, 1 } and C
is the 2× 2 matrix defined by C[0, 0] = C[1, 1] = 0.9 and C[0, 1] = C[1, 0] = 0.1.
Let g be the identity gain function gid and π be the prior on X such that
π[0] = 0.1 and π[1] = 0.9. Then Hg(π) = Hg(π,C) = − log 0.9, Hg(π,C ‖ C) =
− log 0.972. Therefore Ig(π,C ‖ C) = log 1.08 > 0 = Ig(π,C) + Ig(π,C).

Note that the inequality of Theorem 3 does not give a useful upper bound
when the prior π is far from the uniform distribution. In this example, by
Hmin

g (π) −Hg(π) = log 9, the left-hand side is log 1.08 ≈ 0.111 while the right-
hand side is log 9 ≈ 3.170.

These compositionality results are naturally extended to n channels com-
posed in parallel; (see Appendix A). On the other hand, the result may not hold
when the composition of channels is done in a dependent way (i.e., it is not a
parallel composition). The following is a counterexample:

Example 2. Let X = Y1 = Y2 = {0, 1}, π be the uniform distribution on X and
g be the identity gain function. We consider the channel that, given an input
x ∈ X , outputs a bit y1 uniformly drawn from Y1 and the exclusive OR y2 of x
and y1. Then the g-leakage of the channel is 1 while both of the g-leakages from
X to Y1 and from X to Y2 are 0 and Hmin

g (π)−Hg(π) = 0. Hence the property
expressed by Theorem 3 in general does not hold if we replace ‖ with some other
kind of composition.

4 Compositionality Results on Min-Entropy Leakage

In this section we present compositionality results for min-entropy leakage, which
yield compositionality theorems for min-capacity.
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4.1 Leakage of Parallel Composition

In this section we derive bounds for min-entropy, which, we recall, is a particular
case of g-leakage obtained when g is the identity gain function.

We start by remarking that, when the gain functions are identity gain func-
tions, Mmin

π and Mmax
π reduce to Mmin

∞,π and Mmax
∞,π defined as:

Mmin
∞,π = min(x1,x2)∈(X1×X2)+

π1[x1]·π2[x2]
π[x1,x2]

, Mmax
∞,π = max(x1,x2)∈(X1×X2)+

π1[x1]·π2[x2]
π[x1,x2]

The next results are consequences of the results of Section 3:

Corollary 3. For any prior π on X1×X2 and channels (X1,Y1, C1), (X2,Y2, C2),

– H∞(π,C1 × C2) ≥ H∞(π1, C1) +H∞(π2, C2) + logMmin
∞,π.

– If π is jointly supported, H∞(π,C1×C2)≤H∞(π1, C1)+H∞(π2, C2)+logMmax
∞,π .

– If π = π1 × π2, then H∞(π1 × π2, C1 × C2) = H∞(π1, C1) +H∞(π2, C2).

Corollary 4. For a jointly supported prior π on X1×X2, channels (X1,Y1, C1),

(X2,Y2, C2) and F = log
Mmax

∞,π

Mmin
∞,π

,

– I∞(π1, C1)+I∞(π2, C2)− F ≤ I∞(π,C1 × C2) ≤ I∞(π1, C1)+I∞(π2, C2) + F
– If π = π1 × π2, then I∞(π1 × π2, C1 × C2) = I∞(π1, C1) + I∞(π2, C2).

The min-entropy leakage coincides with the min-capacity when the prior
π is uniform. Thus we re-obtain the following result from the literature [4]:
C∞(C1× C2)=C∞(C1) + C∞(C2).

4.2 Leakage of Parallel Composition with Shared Input

As corollaries of Theorems 2 and 3 we obtain the compositionality results for the
posterior min-entropy and the min-entropy leakage by taking g as the identity
gain function gid. For any prior π on X , let Hmin(π) = − logmin{π[x] | x ∈
X , π[x] 6= 0}. Then Hmin(π) ≥ log |X | ≥ H∞(π).

Corollary 5. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

– H∞(π,C1)+H∞(π,C2)−Hmin(π)≤H∞(π,C1‖C2)≤min{H∞(π,C1), H∞(π,C2)}
– max{I∞(π,C1), I∞(π,C2)} ≤ I∞(π,C1 ‖ C2) ≤ I∞(π,C1) + I∞(π,C2) +

Hmin(π)−H∞(π).

The min-entropy leakage coincides with the min-capacity when the prior π
is uniform. If π is uniform we have Hmin(π) = H∞(π). Thus we re-obtain the
following result from the literature [17]: C∞(C1 ‖ C2)≤C∞(C1) + C∞(C2).

The following is an example of the above inequality.

Example 3. Consider the channel (X ,Y, C) shown in Example 1. Let π be the
uniform prior on X . Then H∞(π) = 1, H∞(π,C) = H∞(π,C ‖C) ≈ 0.152. Hence
C∞(C ‖ C) = H∞(π)−H∞(π,C ‖ C) ≈ 0.848 while C∞(C) + C∞(C) ≈ 1.696.
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5 Improving Leakage Bounds by Input Approximation

The compositionality results for g-leakage shown in a previous section may not
give good bounds when the prior is far from the uniform distribution, as illus-
trated in Example 1. In particular, probabilities that are closer to 0 in priors
make our leakage bounds much worse. Since such small probabilities do not af-
fect true g-leakage values much, they can be removed from the priors while this
may cause little error on g-leakage values. In the following we present a way
of improving bad g-leakage bounds by removing small probabilities. We call it
input approximation technique. We will only consider the case of min-entropy
leakage, i.e., when g is the identity gain function.

The idea of removing small entropies is reminiscent of the notion of smooth
entropy [8], although the motivation and technicalities are different.

5.1 Bounds for Known Channels

We first consider the case in which the channel components are known. Let π be a
prior on X . Let X ′ be a non-empty proper subset of X such that maxx′∈X ′ π[x′] ≤
minx∈X\X ′ π[x]. Then maxx∈X\X ′ π[x] = maxx∈X π[x]. Let ǫ =

∑

x′∈X ′ π[x′]. We
define a function π|X\X ′ from X to [0, 1] by:

π|X\X ′ [x] =

{

0 if x ∈ X ′

π[x] otherwise

Then π|X\X ′ is not a probability distribution, as it does not sum up to 1; i.e.,
∑

x∈X π|X\X ′ [x] < 1. However, the results in previous sections do not require π
to be a probability distribution, and neither do the definitions of entropy and
leakage. Errors caused by the above input approximation are bounded as follows:

Theorem 4. For any prior π on X and channel (X ,Y, C),

I∞(π|X\X ′ , C) ≤ I∞(π,C) ≤ I∞(π|X\X ′ , C) + log(1 + ǫ
V (π|X\X′ ,C) ).

So, the idea is to remove very small probabilities in priors and then apply our
compositional approach to derive bounds illustrated in a previous section. This
will allow to obtain better bounds, as small probabilities affect dramatically the
precision of our approach, while removing them produces only relatively small
errors as shown in Theorem 4.

More precisely, the technique works as follows. Consider a channel C com-
posed of C1 and C2 in parallel and a joint prior π on X1×X2. We take X1×X2 as
X in the input approximation procedure and Theorem 4. Recall that the prior
must be jointly supported in order to apply our compositional approach, there-
fore we take a X ′ ⊆ X1 ×X2 so that π|X\X ′ is jointly supported. Then we apply
Corollary 4 to obtain a lower and an upper bound for I∞(π|X\X ′ , C). Finally we
apply Theorem 4 to obtain bounds for the original I∞(π,C).
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Example 4. Consider the channel (X ,Y, C) for X = {x0, x1, x2}, Y = {y0, y1, y2}

y0 y1 y2

x0 0.50 0.23 0.27
x1 0.20 0.40 0.40
x2 0.21 0.43 0.36

Fig. 2. Channel matrix

and C is given in Fig. 2. We assume the prior π such that
π(x0) = 0.01, π(x1) = 0.49 and π(x1) = 0.50, is shared
among channels. Then the min-entropy leakage of the
channel C10 composed of ten C’s in parallel is 0.1319,
while our upper bound is 0.7444 when ǫ = 0.01. On
the other hand, the upper bound obtained using min-
capacity [4] is 4.114, which is much larger than ours.

5.2 Bounds for Channels Composed of Unknown Channels

In some situations an analyst may not know the channel matrices C1, C2 and
therefore cannot calculate I∞(π|X\X ′ , Ci) or V (π|X\X ′ , Ci) (necessary to ap-
ply Corollary 4), while he may know the information leakages I∞(π1, C1) and
I∞(π2, C2). Our input approximation technique allows us to obtain bounds also
in this case, although less precise than in the case of known channels. Hereafter
we let π′ = π|X\X ′ . From Theorem 4:

Theorem 5. I∞(π1, C1)+I∞(π2, C2)−log
Mmax

∞,π′

Mmin

∞,π′
−log V (π1,C1)

V (π1,C1)−ǫ
−log V (π2,C2)

V (π2,C2)−ǫ

≤ I∞(π,C1×C2)≤I∞(π1, C1)+I∞(π2, C2)+log
Mmax

∞,π′

Mmin

∞,π′
+log max(V (π1,C1),V (π2,C2)

max(V (π1,C1),V (π2,C2))−ǫ
.

Theorem 6. I∞(π,C1‖C2)≤I∞(π1, C1)+I∞(π2, C2)+log max(V (π1,C1),V (π2,C2))
max(V (π1,C1),V (π2,C2))−ǫ

+Hmin(π′)−H∞(π′).

When ǫ = 0 these theorems coincide with Corollaries 4 and 5.
Note that V (π1, C1) and V (π2, C2) are calculated from V (π1), V (π2), I∞(π1, C1)

and I∞(π2, C2). So it is sufficient for an analyst to know only π, I∞(π1, C1) and
I∞(π2, C2) to calculate the above leakage bounds.

It is easy to see that these bounds are not as good as those in Section 5.1.
Also they are more sensitive to the choice of ǫ. If we take a very small ǫ, the input

approximation does not improve substantially, as neither
Mmax

∞,π′

Mmin

∞,π′
nor Hmin(π′)−

H∞(π′) decreases much. If we take a very large ǫ, then the error caused by the

input approximation is also very large, while
Mmax

∞,π′

Mmin

∞,π′
and Hmin(π′)−H∞(π′) are

close to 0. We will later present experiments on the input approximation and
illustrate that we should take ǫ as a value less than max{V (π1, C1), V (π2, C2)}.

The input approximation techniques illustrated in Sections 5.1 and 5.2 can be
extended to n-ary channel parallel composition. See Appendix A for the details.

6 Experimental Evaluation

In this section we evaluate our bounds in two use-cases: first, on the Crowds
protocol for anonymous communication, running on a mobile ad-hoc network
(MANET), and second, on randomly generated channels.
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6.1 Crowds Protocol on a MANET

Crowds [22] is a protocol for anonymous communication, in which participants
achieve anonymity by forwarding messages through other users. A group of n
users, called the Crowd, participate in the protocol, and one of them, called the
initiator decides to send a message to some arbitrary recipient in the network,
called the server. The protocol works as follows: first the initiator selects ran-
domly (with uniform distribution) a member of the crowd, called the forwarder,
and forwards the message to him. A forwarder, upon receiving a message, throws
a (biased) probabilistic coin: with probability pf (a parameter of the system) he
randomly selects a new forwarder and advances the message to him, and with
probability 1 − pf he delivers the message directly to the server. Replies from
the server follow the inverse path to arrive to the initiator and future requests
use the already established route, to avoid repeating the protocol.

The goal of the protocol is to provide sender anonymity w.r.t. an attacker
who does not control the whole network, but controls only some of the nodes
and can only see traffic passing through them. Still, if the attacker controls some
members of the crowd, strong anonymity is not satisfied. A forwarding request
from user i is evidence that i is the initiator of the message. However, some
anonymity is still provided since user i can always claim that he was in fact only
forwarding a message from user j. If the number of corrupted users is relatively
small, it is more likely that i is innocent (i.e. the initiator is user j 6= i) than
guilty, offering a notion of anonymity called probable innocence [22].

In this section we consider an instance of Crowds running on a mobile ad-hoc
network, in which users are mobile and can communicate only to neighbour-
ing nodes hence the network topology changes frequently. Due to the network
changes, routes become invalid and the initiator needs to rerun the protocol
to establish a new route, which causes further information leakage. Our goal is
to measure how quickly the leakage increases as a function of the number of
re-executions. Concerning the attacker model, we assume that the attacker (i)
knows the network topology (this could be achieved using known protocols for
MANETs, e.g. [21]), (ii) controls some members of the crowd and (iii) controls
the server. For a given network topology, the system is modeled by a channel
with inputs initi, meaning that user i is the initiator. The observable events
are forwj,k, meaning that user j forwarded the message to the corrupted node
k (possibly the destination server). A matrix element C[initi, forwj,k] gives the
probability that forwj,k happens when i is the initiator. Finally, for channels
C1, C2 modeling the protocol under different network topologies, the repetition
of the protocol is modeled as C1 ‖ C2.

As anonymity metric, we use g-leakage with the 2-tries gain function gW2
,

modeling an attacker who can guess the initiator twice. Formally, W2 is the set
of all subsets of X with #X = 2, and gW2

(w, x) is 1 if x ∈ w and 0 otherwise.
We evaluate our compositionality results on a Crowds instance with 25 users,

of which one is corrupted, and with pf = 0.7. The network topology is generated
by randomly adding a connection between any two users with probability 0.4.
For a given topology, the matrix is computed by the PRISM model checker [19],
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using a model similar to one of [24]. Although executions in Crowds can be
infinite, a finite state model can be employed, keeping track of only the current
forwarder instead of the full route. Then each element of the channel matrix can
be computed by PRISM as the probability of reaching the corresponding state.
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Fig. 3. Numbers of observations and bounds

The g-leakage of a single exe-
cution can be directly computed
from the channel; however, for
multiple executions, the channel
quickly becomes too big to be of
practical use (already at 5 rep-
etitions). On the other hand, g-
leakage can be bounded using the
results in Section 4. The obtained
bounds for up to 9 protocol repe-
titions are shown in Fig. 3. Three
variations are given in which the
topology changes every 2 execu-
tions, every 3 executions or always
stays the same. All bounds are computed using a uniform prior and some ran-
domly generated channels. The experiments show that the compositionality tech-
nique allows us to obtain meaningful bounds when the system is too big to
compute exact values.

Note that the assumption of uniformly chosen forwarders is standard for the
Crowds protocol, however it would be interesting to study how our results would
change if we considered non-uniform distributions. For instance, we could have a
non-uniform distribution if the possible forwarders were equipped with a notion
of trust, like in [23]. We leave this for future work.

6.2 Evaluation on Randomly Generated Channels

In this section we evaluate our bounds on min-entropy leakage using randomly
generated channels. In particular, we evaluate the improvement on the bounds
due to the input approximation technique, and the efficiency of our approach,
which we have implemented as a library in leakiEst version 1.3 [1].

We first compare the exact leakage values with their upper bounds calculated
using the input approximation technique in the case of shared input. Fig. 4 shows
the average upper bounds obtained from Theorem 4, that can be applied when
we know the channel matrix. Fig. 5 shows those obtained from Theorem 6 that
we can apply when we do not know it. For both experiments we use randomly
generated 10 × 10 channel matrices C and a prior π that contains some input
with very small probabilities. We set ǫ = 0.1 in the first case and ǫ = V (π,C)/3
in the second one. We calculated the min-entropy leakage I∞(π,C ‖ C ‖ C ‖ C ‖
C ‖C) (composition of six C’s), and its lower and upper bounds, using the n-ary
generalizations of Theorems 4 and 6 (see Appendix for the precise formulations.)

These cases give similar upper bounds as shown in Figs. 4 and 5. The x-
axis represents noise levels of randomly generated matrices, which we define as
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the maximum values (over rows of C) of the summations of the differences of
probabilities from the uniform distributions. For instance, when the noise level
is 0.10, the average upper bound is 1.699 in the first case (Fig. 4) while it is
1.701 in the second (Fig. 5).

These upper bounds depend on how we choose the parameter ǫ for the input
approximation technique. In particular upper bounds strongly depend on ǫ in
the case of unknown channels. In Fig. 5 we chose ǫ = V (π,C)/3 which gives a
relatively good upper bound. On the other hand, if we choose an ǫ too large we
may obtain useless bounds. Indeed, if we set for instance ǫ = 0.2, then we obtain
upper bounds above the maximum possible leakage, which is the min-entropy,
and is always log 10 ≈ 3.322 (as shown in Fig. 6) since the input is shared.

Fig. 7 shows average upper bounds of min-entropy leakages of randomly
generated 100 × 100 channels, with randomly generated priors, noise level 0.1,
and ǫ = 0.005. As we can see from the figure, the gap between the lower and
upper bounds increases with the number of components.
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Finally we evaluate the efficiency of our method. We consider here the min-
entropy leakage. Fig. 8 shows the execution time on a laptop (1.8 GHz Intel
Core i5) for leakiEst to compute the exact min-entropy leakages of the channels
composed of randomly generated 10 × 10 component channels, in comparison
with the time to compute their upper bounds. To compute the exact leakages,
we used leakiEst with an option that calculates the leakages from exact matrices.
As we can see, the execution time for the exact values increases rapidly. In
fact, the size of composed channel increases exponentially with the number of
components, so the complexity of this computation is at least exponential.

For a large number of components, the time to calculate upper bounds in-
creases linearly as shown in Fig. 9. As for the computation of the exact values
with leakiEst, we expected an exponential blow-up, but we could not check it
since we run out of memory because of the size of the matrices.

7 Conclusion and Future Work

We have investigated compositional methods to derive bounds on g-leakage. To
improve the precision of the bounds, we have proposed a technique based on the
idea of approximating priors by removing small probabilities up to a parameter
ǫ. From our experimental results we have found that the dependency of the
precision on ǫ is not straightforward. We leave for future work the problem of
determining optimal values for ǫ. We also want to explore a possible relation
between our technique and the notion of smooth entropies from the information
theory literature [8]. This could allow us to develop a more principled approach
to the input approximation technique.
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A Extension to n Channels Composed in Parallel

A.1 The g-Leakages of Channels Composed in Parallel

Compositionality results on the parallel composition of two channels are ex-
tended to the case of n channels composed in parallel. The definitions of Mmin

π

and Mmax
π are extended to n channels as follows.

Definition 11. Let W = W1 × · · · × Wn, X = X1 × · · · × Xn and g be a joint
gain function from W ×X to [0, 1]. For i = 1, 2, · · · , n, let gi be a gain function
from Wi ×Xi to [0, 1]. Given an input distribution π on X , we define Mmin

π and
Mmax

π :

Mmin
π = minw∈W minx∈Sw

π1[x1]g1(w1,x1)·...·πn[xk]gn(wn,xn)
π[x]·g(w,x)

Mmax
π = maxw∈W

∑

x∈Sw

π1[x1]g1(w1,x1)·...·πn[xn]gn(wn,xn)
π[x]·g(w,x) .

where w = (w1, w2, · · · , wn) and x = (x1, x2, · · · , xn).

Then we obtain the following compositionality results.

Theorem 7. For any jointly supported input distributions π on X and k chan-
nels (X1,Y1, C1), · · · , (Xn,Yn, Cn),

∑

i=1,2,··· ,n

Igi(πi, Ci)− log
Mmax

π

Mmin
π

≤ Ig(π,C1 × · · · × Cn) ≤
∑

i=1,2,··· ,n

Igi(πi, Ci) + log
Mmax

π

Mmin
π

.

A.2 The g-Leakage of Channels Composed in Parallel with Shared
Input

Compositionality results on the parallel composition of two channels in the case
of share input are also naturally extended to the case of n channels composed in
parallel. For example, an upper bound of the g-leakage of a composed channel
is given by:

Theorem 8. For any input distribution π on X and k channels (X ,Y1, C1),
· · · , (X ,Yn, Cn),

Ig(π,C1 ‖ · · · ‖ Cn) ≤
∑

i=1,2,··· ,n

Ig(π,Ci) + (n− 1) ·
(

Hmin
g (π)−Hg(π)

)

.

A.3 Input Approximation

Let π′ = π|X\X ′ . Here are extensions of input approximation technique to n
channels composed in parallel:
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Corollary 6.




∑

i=1,2,··· ,n

I∞(πi, Ci)− log

(

V (πi, Ci)

V (πi, Ci)− ǫ

)



− log
Mmax

∞,π′

Mmin
∞,π′

≤ I∞(π,C1 × · · · × Cn)

≤





∑

i=1,2,··· ,n

I∞(πi, Ci)



+ log

(

maxj=1,2,··· ,n V (πj , Cj)

maxj=1,2,··· ,n V (πj , Cj)− ǫ

)

+ log
Mmax

∞,π′

Mmin
∞,π′

.

Corollary 7. I∞(π,C1 ‖· · ·‖Cn) ≤
∑

i=1,2,··· ,n I∞(πi, Ci)+(n−1) ·(Hmin(π′)−

H∞(π′) + log
(

maxj=1,2,··· ,n V (πj ,Cj)
maxj=1,2,··· ,n V (πj ,Cj)−ǫ

)

.

B Omitted Lemmas

B.1 Decomposition of Channels

Sometimes it can be useful to decompose a large system for analysis purposes:
the components may be easier to analyze than the whole system. Here, given a
channel that outputs pairs in Y1×Y2, we consider the sub channels that output
on Y1 and Y2 separately. Depending on whether we wish to perform an analogous
separation also the inputs or not, we obtain two kinds of decomposition.

Definition 12. (Decomposition)

– The decomposition of a discrete channel (X1×X2,Y1×Y2, C) with respect to
(X1,Y1) and (X2,Y2) is a pair of channels (X1,Y1, C|Y1

) and (X2,Y2, C|Y2
)

where

C|Y1
[x1, y1] =

∑

x2∈X2
p(x2|x1)

∑

y2∈Y2
C[(x1, x2), (y1, y2)]

C|Y2
[x2, y2] =

∑

x1∈X1
p(x1|x2)

∑

y1∈Y1
C[(x1, x2), (y1, y2)].

– The decomposition of a discrete channel (X ,Y1 × Y2, C) with respect to Y1

and Y2 is a pair of channels (X ,Y1, C|Y1
) and (X ,Y2, C|Y2

) where

C|Y1
[x, y1] =

∑

y2∈Y2
C[x, (y1, y2)] and C|Y2

[x, y2] =
∑

y1∈Y1
C[x, (y1, y2)].

For a composed channel (X1×X2,Y1×Y2, C1×C2), it is easy to prove that we
have (C1×C2)|Y1

= C1 and (C1×C2)|Y2
= C2. For a channel (X ,Y1×Y2, C1‖C2)

with shared input, we have (C1 ‖ C2)|Y1
= C1 and (C1 ‖ C2)|Y2

= C2.

B.2 The Prior g-Entropies of Joint Input Distributions

The support Sw1,w2
, defined in Definition 8, satisfies the following property:

Lemma 2. Let π be jointly supported, and g1 : W1×X1 → [0, 1], g2 : W2×X2 →
[0, 1]. Then for all (x1, x2) ∈ (X1 × X2) \ Sw1,w2

, π1[x1] · g1(w1, x1) · π2[x2] ·
g2(w2, x2) = 0.
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Proof. Let (x1, x2) ∈ (X1 × X2) \ Sw1,w2
. By definition, we have π[x1, x2] ·

g((w1, w2), (x1, x2)) = 0. Since π is jointly supported, π1[x1] · π2[x2] = 0.
By the definition of joint gain functions, g1(w1, x1)g2(w2, x2) = 0. Hence
π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) = 0.

The (prior) g-entropy Hg(π) of a joint input distribution π is lower-bounded
by the summation of logMmin

π and the (prior) g-entropies of its two marginals
π1, π2:

Lemma 3. For any input distribution π on X1 ×X2,

Hg(π) ≥ Hg1(π1) +Hg2(π2) + logMmin
π .

Proof.

Vg(π) ·M
min
π

= max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π[x1, x2] · g((w1, w2), (x1, x2))

· min
w1∈W1,w2∈W2

min
(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

≤ max
(w1,w2)∈W1×W2





∑

(x1,x2)∈X1×X2

π[x1, x2] · g((w1, w2), (x1, x2))

· min
(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

)

≤ max
(w1,w2)∈W1×W2

∑

(x1,x2)∈Sw1,w2

π[x1, x2]g((w1, w2), (x1, x2)) ·
π1[x1]g1(w1, x1)π2[x2]g2(w2, x2)

π[x1, x2]g((w1, w2), (x1, x2))

(∵ For all (x1, x2) ∈ (X1 ×X2) \ Sw1,w2
, π[x1, x2]g((w1, w2), (x1, x2)) = 0.)

≤ max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2))

= max
(w1,w2)∈W1×W2

(

∑

x1∈X1

π1[x1] · g1(w1, x1) ·
∑

x2∈X2

π2[x2] · g2(w2, x2)

)

= max
w1∈W1

∑

x1∈X1

π1[x1] · g1(w1, x1) · max
w2∈W2

∑

x2∈X2

π2[x2] · g2(w2, x2)

=Vg1(π1) · Vg2(π2).

Therefore
Hg(π) =− log Vg(π)

≥− log Vg1(π1)− log Vg2(π2) + logMmin
π

=Hg1(π1) +Hg2(π2) + logMmin
π .
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To obtain an upper bound for the g-entropyHg(π) of a joint input distribution
π, we assume that π is jointly supported. The upper bound is the summation of
logMmax

π and the g-entropies of its two marginals π1, π2:

Lemma 4. For any jointly supported input distribution π on X1 ×X2,

Hg(π) ≤ Hg1(π1) +Hg2(π2) + logMmax
π .

Proof.

Vg(π) ·M
max
π

= max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π[x1, x2] · g((w1, w2), (x1, x2))

· max
w1∈W1,w2∈W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

≥ max
(w1,w2)∈W1×W2





∑

(x1,x2)∈X1×X2

π[x1, x2] · g((w1, w2), (x1, x2))

·
∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))





≥ max
(w1,w2)∈W1×W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

= max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

(∵ Lemma 2)

= max
(w1,w2)∈W1×W2

(

∑

x1∈X1

π1[x1]g1(w1, x1) ·
∑

x2∈X2

π2[x2]g2(w2, x2)

)

=

(

max
w1∈W1

∑

x1∈X1

π1[x1]g1(w1, x1)

)

·

(

max
w2∈W2

∑

x2∈X2

π2[x2]g2(w2, x2)

)

=Vg1(π1) · Vg2(π2).

Therefore

Hg(π) =− log Vg(π)
≤− log Vg1(π1)− log Vg2(π2) + logMmax

π

=Hg1(π1) +Hg2(π2) + logMmax
π .
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C Omitted Proofs

In this section we present omitted proofs.

C.1 Omitted Proofs from Section 3

Proposition 1. For any prior π, Mmin
π > 0.

Proof. Let π be any input distribution. Since probabilities and gains are non-
negative, it suffices to show that Mmin

π 6= 0.
Let w1 ∈ W1, w2 ∈ W2 and (x1, x2) ∈ Sw1,w2

. Then we have π[x1, x2] 6= 0
and g((w1, w2), (x1, x2)) 6= 0. Then, by the definition of joint gain functions,
g1(w1, x1)g2(w2, x2) 6= 0. In addition, we obtain π1[x1] · π2[x2] 6= 0 from
π[x1, x2] 6= 0. Hence π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) 6= 0 Therefore Mmin

π 6= 0.

Proof of Lemma 1

Vg(π,C1×C2) ·M
min
π

=
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π[x1, x2] · (C1×C2)[(x1, x2), (y1, y2)] · g((w1, w2), (x1, x2))

· min
w1∈W1,w2∈W2

min
(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

≤
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2





∑

(x1,x2)∈X1×X2

π[x1, x2] · (C1×C2)[(x1, x2), (y1, y2)] · g((w1, w2), (x1, x2))

· min
(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

)

≤
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) · (C1×C2)[(x1, x2), (y1, y2)]

(∵ For all (x1, x2) ∈ (X1 ×X2) \ Sw1,w2
, π[x1, x2]g((w1, w2), (x1, x2)) = 0.)

≤
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) · (C1×C2)[(x1, x2), (y1, y2)]

=
∑

y1∈Y1

∑

y2∈Y2

max
(w1,w2)∈W1×W2

(

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1) ·
∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)

)

=
∑

y1∈Y1

∑

y2∈Y2

(

max
w1∈W1

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1) · max
w2∈W2

∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)

)

=





∑

y1∈Y1

max
w1∈W1

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1)



·





∑

y2∈Y2

max
w2∈W2

∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)





=Vg1(π1, C1) · Vg2(π2, C2).
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Therefore
Hg(π,C1 × C2)

=− log Vg(π,C1 × C2)
≥− log Vg1(π1, C1)− log Vg2(π2, C2) + logMmin

π

=Hg1(π1, C1) +Hg2(π2, C2) + logMmin
π .

Vg(π,C1×C2) ·M
max
π

=
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π[x1, x2] · (C1×C2)[(x1, x2), (y1, y2)] · g((w1, w2), (x1, x2))

· max
w1∈W1,w2∈W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))

≥
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2





∑

(x1,x2)∈X1×X2

π[x1, x2] · (C1×C2)[(x1, x2), (y1, y2)] · g((w1, w2), (x1, x2))

·
∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2)

π[x1, x2] · g((w1, w2), (x1, x2))





≥
∑

(y1,y2)∈Y1×Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈Sw1,w2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) · (C1×C2)[(x1, x2), (y1, y2)]

=
∑

y1∈Y1

∑

y2∈Y2

max
(w1,w2)∈W1×W2

∑

(x1,x2)∈X1×X2

π1[x1]g1(w1, x1) · π2[x2]g2(w2, x2) · (C1×C2)[(x1, x2), (y1, y2)]

(∵ Lemma 2)

=
∑

y1∈Y1

∑

y2∈Y2

max
(w1,w2)∈W1×W2

(

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1) ·
∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)

)

=
∑

y1∈Y1

∑

y2∈Y2

(

max
w1∈W1

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1) · max
w2∈W2

∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)

)

=





∑

y1∈Y1

max
w1∈W1

∑

x1∈X1

π1[x1]C1[x1, y1] g1(w1, x1)



 ·





∑

y2∈Y2

max
w2∈W2

∑

x2∈X2

π2[x2]C2[x2, y2] g2(w2, x2)





=Vg1(π1, C1) · Vg2(π2, C2).

Therefore
Hg(π,C1 × C2)

=− log Vg(π,C1 × C2)
≤− log Vg1(π1, C1)− log Vg2(π2, C2) + logMmax

π

=Hg1(π1, C1) +Hg2(π2, C2) + logMmax
π .
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Proof of Theorem 1

Ig(π,C1 × C2) =Hg(π)−Hg(π,C1 × C2)
≤Hg(π)−Hg1(π1, C1)−Hg2(π2, C2)− logMmin

π

(By Lemma 1)

≤(Hg1(π1)−Hg1(π1, C1)) + (Hg2(π2)−Hg2(π2, C2))
+ logMmax

π − logMmin
π

(By Lemma 1)

=Ig1(π1, C1) + Ig2(π2, C2) + log
Mmax

π

Mmin
π

.

The other inequality is also proven using Lemma 1 in a similar way.

Proof of Theorem 2
We instantiate Lemma 1 by taking g1 and g2 as g, π as π† and X1 = X2 = X :

Hg(π
†, C1 × C2) ≥ Hg(π

†
1, C1) +Hg(π

†
2, C2) + logMmin

π† .

By π†
1[x] = π†

2[x] = π[x] for all x ∈ X , logMmin
π† = −Hmin

g (π) and Hg(π,C1 ‖

C2) = Hg(π
†, C1 × C2), the theorem follows.

Proof of Theorem 3

Ig(π,C1 ‖ C2) =Hg(π)−Hg(π,C1 ‖ C2)
≤Hg(π)−Hg(π,C1)−Hg(π,C2) +Hmin

g (π)
(By Theorem 2)

≤(Hg(π)−Hg(π,C1)) + (Hg(π)−Hg(π,C2))
−Hg(π) +Hmin

g (π)
=Ig(π,C1) + Ig(π,C2) +Hmin

g (π)−Hg(π).

Note that, since π is not necessarily jointly supported, we cannot instantiate
Lemma 1 (and cannot obtain a lower bound for the leakage).

C.2 Omitted Proofs from Section 4

Proof of Corollary 3
By taking g, g1, g2 as identity gain functions, Hg(π1 × π2, C1 ×C2) = H∞(π1 ×
π2, C1 × C2), Hg1(π1, C1) = H∞(π1, C1), Hg2(π2, C2) = H∞(π2, C2), M

min
π =

Mmin
∞,π and Mmax

π = Mmax
∞,π . Then the first claim follows from the first claim of

Lemma 1 and the second claim follows from the second.
If π1 and π2 are independent we have Mmin

∞,π = Mmax
∞,π = 1, hence the last claim

follows.

Proof of Corollary 4
By taking g, g1, g2 as identity gain functions, Ig(π1 × π2, C1 × C2) = I∞(π1 ×
π2, C1 × C2), Ig1(π1, C1) = I∞(π1, C1), Ig2(π2, C2) = I∞(π2, C2), M

min
π = Mmin

∞,π
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and Mmax
π = Mmax

∞,π . Then the first and second claims follow from Theorem 1
and Corollary 2 respectively.

Proof of Corollary 5
When w = x, π[x]gid(w, x) = π[x] holds . Hence Hmin

gid
(X) = Hmin(X).

By definition, Hgid(π,C1 ‖ C2) = H∞(π,C1 ‖ C2), Hgid(π,C1) = H∞(π,C1),
Hgid(π,C2) = H∞(π,C2) and Hgid(π) = H∞(π). Then the claims follow from
Theorems 2 and 3.

C.3 Omitted Proofs from Section 5

Proof of Theorem 4

V (π,C) =
∑

y∈Y

max
x∈X

π[x]C[x, y]

≤
∑

y∈Y

(

max
x∈X\X ′

π[x]C[x, y] +
∑

x′∈X ′

π[x′]C[x′, y]

)

=
∑

y∈Y

(

max
x∈X\X ′

π[x]C[x, y]

)

+
∑

x′∈X ′



π[x′]
∑

y∈Y

C[x′, y]





=
∑

y∈Y

(

max
x∈X\X ′

π[x]C[x, y]

)

+ ǫ

= V (π|X\X ′ , C) + ǫ.

By maxx∈X\X ′ π[x] = maxx∈X π[x], we have V (π|X\X ′) = V (π). Then

I∞(π,C) = log
V (π,C)

V (π|X\X ′)

≤ log
V (π|X\X ′ , C) + ǫ

V (π|X\X ′)

= log

(

V (π|X\X ′ , C)

V (π|X\X ′)
·
V (π|X\X ′ , C) + ǫ

V (π|X\X ′ , C)

)

= I∞(π|X\X ′ , C) + log

(

1 +
ǫ

V (π|X\X ′ , C)

)

.

On the other hand, by V (π|X\X ′ , C) ≤ V (π,C), we obtain I∞(π|X\X ′ , C) ≤
I∞(π,C).

Proof of Theorem 5
By the first claim in the proof for Theorem 4, V (π′, C1×C2) ≥ V (π,C1×C2)−ǫ ≥
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max(V (π1, C1), V (π2, C2))− ǫ. Then

I∞(π,C1 × C2)

≤I∞(π′, C1 × C2) + log
(

1 + ǫ
V (π′,C1×C2)

)

≤I∞(π′, C1 × C2) + log
(

1 + ǫ
max(V (π1,C1),V (π2,C2))−ǫ

)

≤I∞(π′
1, C1) + I∞(π′

2, C2) + log
Mmax

π′

Mmin

π′
+ log

(

max(V (π1,C1),V (π2,C2)
max(V (π1,C1),V (π2,C2))−ǫ

)

(By Corollary 4)

≤I∞(π1, C1) + I∞(π2, C2) + log
Mmax

π′

Mmin

π′
+ log

(

max(V (π1,C1),V (π2,C2)
max(V (π1,C1),V (π2,C2))−ǫ

)

(By Theorem 4)

The other inequality is shown as follows.

I∞(π,C1 × C2)
≥I∞(π′, C1 × C2) (By Theorem 4)

≥I∞(π′
1, C1) + I∞(π′

2, C2)− log
Mmax

π′

Mmin

π′
(By Corollary 4)

≥I∞(π1, C1) + I∞(π2, C2)− log
Mmax

π′

Mmin

π′
− log

(

V (π′,C1)+ǫ

V (π′,C1)

)

− log
(

V (π′,C2)+ǫ

V (π′,C2)

)

(By Theorem 4)

≥I∞(π1, C1) + I∞(π2, C2)− log
Mmax

π′

Mmin

π′
− log

(

V (π,C1)
V (π,C1)−ǫ

)

− log
(

V (π,C2)
V (π,C2)−ǫ

)

✷

Proof of Theorem 6
Let π′ = π|X\X ′ . Then by Theorem 4,

I∞(π,C1 ‖ C2)

≤I∞(π′, C1 ‖ C2) + log
(

1 + ǫ
V (π′,C1‖C2)

)

≤I∞(π′, C1 ‖ C2) + log
(

max(V (π1,C1),V (π2,C2))
max(V (π1,C1),V (π2,C2))−ǫ

)

≤I∞(π′
1, C1) + I∞(π′

2, C2) +Hmin(π′)−H∞(π′) + log
(

max(V (π1,C1),V (π2,C2)
max(V (π1,C1),V (π2,C2))−ǫ

)

≤I∞(π1, C1) + I∞(π2, C2) +Hmin(π′)−H∞(π′) + log
(

max(V (π1,C1),V (π2,C2)
max(V (π1,C1),V (π2,C2))−ǫ

)
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