
HAL Id: hal-01010339
https://hal.inria.fr/hal-01010339

Submitted on 10 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIGMA: Scala Internal Domain-Specific Languages for
Model Manipulations

Filip Krikava, Philippe Collet, Robert France

To cite this version:
Filip Krikava, Philippe Collet, Robert France. SIGMA: Scala Internal Domain-Specific Languages
for Model Manipulations. MODELS - 17th International Conference on Model Driven Engineering
Languages and Systems, Sep 2014, Valencia, Spain. �hal-01010339�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49620777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01010339
https://hal.archives-ouvertes.fr

SIGMA: Scala Internal Domain-Specific
Languages for Model Manipulations

Filip Křikava1, Philippe Collet2, and Robert B. France3

1 University Lille 1 / LIFL Inria Lille,
Nord Europe, France,

filip.krikava@inria.fr
2 Université Nice Sophia Antipolis / I3S - CNRS UMR 7271,

06903 Sophia Antipolis, France
philippe.collet@unice.fr

3 Colorado State University - Computer Science Department,
Fort Collins, CO 80523, USA
france@cs.colostate.edu

Abstract. Model manipulation environments automate model opera-
tions such as model consistency checking and model transformation.
A number of external model manipulation Domain-Specific Languages
(DSL) have been proposed, in particular for the Eclipse Modeling Frame-
work (EMF). While their higher levels of abstraction result in gains in
expressiveness over general-purpose languages, their limitations in ver-
satility, performance, and tool support together with the need to learn
new languages may significantly contribute to accidental complexities.
In this paper, we present Sigma, a family of internal DSLs embedded in
Scala for EMF model consistency checking, model-to-model and model-
to-text transformations. It combines the benefits of external model ma-
nipulation DSLs with general-purpose programming taking full advan-
tage of Scala versatility, performance and tool support. The DSLs are
compared to the state-of-the-art Epsilon languages in non-trivial model
manipulation tasks that resulted in 20% to 70% reduction in code size
and significantly better performance.

1 Introduction

Model manipulation languages and tools provide support for automating model
operations such as model consistency checking, and model-to-model (M2M) and
model-to-text (M2T) transformations [41]. A number of different model manip-
ulation technologies have been proposed, particularly within the Eclipse Mod-
eling Framework (EMF) [43]. The EMF models can be manipulated directly in
Java, however, a General Purpose Programming Language (GPL) such as Java
does not conveniently express model manipulation concepts and the loss of ab-
straction can give rise to accidental complexities [40]. Therefore, a number of
external Domain-Specific Languages (DSLs) for EMF model manipulation have
been proposed, e.g., the OMG standards including OCL [34] for navigating and
expressing constraints on models, QVT [33] and MOFM2T [32] for model trans-
formation; the Epsilon project [36] with an extensive family of model manipu-
lation DSLs; Kermeta [31], a single, but more general imperative language for

all model manipulation tasks; and ATL [20], a M2M transformation language.
External model manipulation DSLs provide language constructs that allow de-
velopers to manipulate models using higher-level abstractions. This should result
in higher expressiveness and ease of use in comparison to GPLs [29].

However, there are several impediments to such approaches. Even for a simple
model manipulation task users have to learn one or more new languages and
tools, which may require considerable effort [11]. Users might feel limited by the
more specific, but less versatile language constructs, by the language execution
performance or by the provided support tools [18]. In most cases the languages
build on a subset of OCL concepts for model navigation and model consistency
checking. Despite that, there are well known inconsistencies, interoperability and
reusability issues among these languages [22,23]. Finally, the large dependency
stacks associated with these languages can make their integration into existing
software projects rather challenging.

A notable exception is the Epsilon project, which alleviates some of these
issues. Epsilon provides an extensive family of model management languages
and tools such as Epsilon Validation Language (EVL) [24], Epsilon Transforma-
tion Language (ETL) [22], and Epsilon Generation Language (EGL) [38]. These
task-specific languages are based on a common OCL-like expression language
called EOL [23]. While this currently makes it one of the most complete lan-
guage workbenches for model manipulations, we identify several shortcomings.
EOL is a dynamically typed language, providing little compile time checking.
Consequently, IDE features such as content assists, static checking or refactor-
ing are rather basic in comparison to what is provided by the other approaches
that use static typing. EOL lacks certain programming constructs that makes
the code unnecessary lengthy in particular in the case of non-trivial model ma-
nipulations. Moreover, Epsilon DSLs are interpreted and their performance is an
order of magnitude slower than the compiled languages, but they are also slower
than the Eclipse implementation of the OMG stack [25]. As a result, these short-
comings also give rise to some accidental complexities, albeit of a different nature
than those associated with GPLs.

These issues are not easy to alleviate. The need to provide a lot of GPL-
like constructs together with the necessity of some level of Java interoperability
make the external DSLs large and complex. Evolving and maintaining complex
DSLs is known to be hard since it not only requires domain knowledge and
language development expertise, but also involves significant language and tool
engineering effort [29,13]. In this paper we propose an alternative internal DSL
approach whereby model manipulation constructs are embedded into a GPL.
The intent is to provide an approach that developers can use to implement
many of the practical EMF model manipulations within a familiar environment
with reduced learning overhead and improved usability.

An internal DSL leverages the constructs and tools of its host language.
For this approach to be effective, the host GPL must be flexible enough to allow
definition of domain-specific constructs. We thus use Scala [35], a statically typed
object-oriented and functional programming language, to implement a family
of internal DSLs, called Sigma [28], for model consistency checking and model
transformations. In this paper, our contribution is to evaluate the resulting DSLs,

comparing their expressiveness and features to corresponding Epsilon DSLs in
several non-trivial model manipulation tasks. We observe this results in 20% to
70% reduction in code size and significantly better performance.

The remainder of the paper is organized as follows. In Section 2 we give a
quick overview of the Sigma languages family. Section 3 develops the common
infrastructure for model navigation and modification. This is used for model
consistency checking described in Section 4, M2M transformations described
in Section 5 and M2T transformations described in Section 6. In Section 7,
we overview the current implementation and provide an evaluation of Sigma.
Finally Section 8 discusses related work and Section 9 concludes the paper.

2 SIGMA Overview

Sigma is a family of internal DSLs for model manipulation that were created
with the aim to alleviate some of the main limitations of the currently pro-
posed approaches. It is thus not proposing new concepts in model manipula-
tion languages, but instead providing the existing concepts with the following
main requirements: (1) Epsilon-like features and expressiveness, (2) competi-
tive performance, (3) usable tool support, (4) simple testability with existing unit
frameworks, and (5) simple integration into existing EMF projects. We chose
Epsilon since it represents the state-of-the-art model manipulation languages
with proven features essential for usable model manipulation. Furthermore, it is
also presented as an approach that addresses most of the shortcomings of the
other external model manipulation DSLs (details in Kolovos et al. [22,24,23] and
Rose et al. [38]).

Sigma DSLs are embedded in Scala [35], a statically typed production-ready
GPL that supports both object-oriented and functional style of programming.
It uses type inference to combine static type safety with a “look and feel” close
to dynamically typed languages. It is interoperable with Java and it has been
designed to host internal DSLs [13]. Furthermore, it is supported by the major
integrated development environments.

A typical way of embedding a shallow DSL into Scala is by designing a library
that allows one to write fragments of code with domain-specific syntax. These
fragments are woven within Scala own syntax so that it appears different [16].
Next to Scala flexible syntax (e.g. omitting semicolons and dots in method invo-
cations, infix operator syntax for method calls, etc.), it has a number of features
simplifying DSL embedding such as implicit type conversions allowing one to
extend existing types with new methods, mixin-class composition (i.e. reusing
a partial class definition in a new class) [35], and lifting static source infor-
mation with implicit resolutions to customize error messages in terms of the
domain-specific extensions using annotations [30]. Furthermore, Scala supports
compile-time meta-programming allowing for code self-optimization and to re-
duce boilerplate code generation.

Figure 1 depicts the general organization of the Sigma DSLs. The use of EMF
models in Sigma is facilitated by a dedicated support layer that underneath
uses the default EMF generated Java classes and the EMF API (implementa-
tion details are given in Section 7.1). This layer provides a convenient model

Sigma

Eclipse Modeling Framework (EMF)

Sc
al

a

Sigma EMF to Scala Support

Model Navigation

Model-to-Model Transformation

Model Consistency Checking

Model Modification

Model-to-Text Transformation

te
ch

no
lo
gy

-s
pe

ci
fic

dr
iv
er

ta
sk

-s
pe

ci
fic

la
ng

ua
ge

s

provides

uses

uses

section 3

section 4

section 5

section 6

section 7.1

Fig. 1. Sigma EMF to Scala Support

navigation and modification support forming a common infrastructure for the
task-specific internal DSLs. While currently Sigma targets the EMF platform,
other meta-modeling platforms could be used since the task-specific languages
are technology agnostic (cf. Section 7.1).

In the following sections we detail the common infrastructure and the differ-
ent task-specific DSLs. We deliberately skip some technical details about how
certain DSL constructs are implemented. The complete examples with further
documentation are available at the project web site [8]. For illustration purposes,
in the following sections we consider a simplified Object-Oriented (OO) model
(cf. companion web page [4]).

3 Common Infrastructure

Essentially, any model manipulation technique is based on a set of basic opera-
tions for model navigation (e.g. projecting information from models) and mod-
ification (e.g. changing model properties or elements) [23]. In this section we
show their realization in Sigma for EMF based models. Implementation details
are discussed in Section 7.1.

Model Navigation. The model navigation support provides OCL-like expres-
sions for convenient model querying. For example, retrieving names of all OO
package elements stereotyped as singletons can be expressed using the following
OCL query:

let singletons = pkg.ownedElements
->select(e | e.stereotypes->exists(s | s.name = ’singleton’))->collect(e | e.name)

In Sigma, the very same query can be expressed almost identically to OCL:

val singletons = pkg.ownedElements
.filter(e => e.stereotypes exists (s => s.name == "singleton")).map(e => e.name)

In both versions the singletons type is inferred from the expression.
While navigating models, one often need to filter the types of the objects to

be kept during navigation. For example, selecting the operations of a package
abstract classes corresponds to the following OCL expression:

pkg.ownedElements
->select(e | e.oclIsKindOf(Class) and e.oclAsType(Class).abstract = true)
->collect(e.oclAsType(Class).operations)

This is rather verbose with the recurring pattern of oclIsKindOf/oclAsType,
which makes longer queries hard to read. Scala, on the other hand, provides sup-
port for pattern matching that can be used in combination with partial functions
to obtain the following Sigma code4:

pkg.ownedElements collect { case c: Class if c.abstract_ => c.operations }

In addition Sigma can also prevent null pointer exceptions when navigating
over potentially unset references and attributes (0..1 multiplicity). It wraps them
into Scala Option type, a container explicitly representing an optional value,
which consequently forces one to always check for the presence of the value.

Model Modification. The model modification support provides facilities for
seamless creation, updates and removal of model elements. By design, the OCL
does not have model modification capabilities, but in Epsilon for example, an
OO singleton class can be created using the code in Listing 1.1. Using Sigma
the same model instance is created in Listing 1.2.

var cls = new Class;
cls.name = "MyClass";

var singleton = new Stereotype;
singleton.name = "singleton";
cls.stereotypes.add(singleton);

var op = new Operation;
op.name = "getInstance";
op.returnType = cls;
cls.operations.add(author);

Listing 1.1. EOL

val cls = Class(name = "MyClass")
val singleton = Stereotype(name = "singleton")
cls.stereotypes += singleton

val op = Operation(name = "getInstance",
returnType = cls)

cls.features += op

Listing 1.2. Sigma

These methods provide a convenient way to author complete EMF models
directly in Scala. Additionally, Sigma provides support for delayed initialization
in the cases an element initialization should only happen after its containment,
and for lazy resolution of contained references5.

4 Model Consistency Checking

Model consistency checking provides facilities to capture structural constraints as
state invariants and to check model instances against these constraints. In OCL
or EVL, a structural constraint is a boolean query that determines whether a
model element or a relation between model elements satisfies certain restrictions.

4 The _ suffix to abstract is automatically added by the Sigma EMF support since
it is a Scala keyword.

5 Technical details at http://bit.ly/18javEY

http://bit.ly/18javEY

For example, in the OO model, an invariant may represent a restriction that
within one package, there cannot be two classes having the same name. In Sigma,
such an invariant can be expressed as:

1 class ClassInvs extends ValidationContext with OOPackageSupport {
2 type Self = Class // context type
3

4 def invUniqueNamesWithinPackage =
5 self.pkg.ownedElements forall (e => e != self implies e.name != self.name)
6 }

Invariants are represented as regular Scala methods (line 4). They are organized
into a validation context class (line 1) that specifies a context type (line 2), i.e.,
the type of instances the invariants can be applied to. As in OCL, self represents
the current instance that is being checked. The OOPackageSupport trait (cf.
Section 7.1) mixes-in the Sigma EMF to Scala support for model navigation
and modification (line 1). By organizing invariants as methods in classes we can
simply reuse them through inheritance. Furthermore, it allows one to easily test
invariants using any of the Java unit testing frameworks.

Listing 1.3 shows an extended OO class validation with additional features. A
validation context class can narrow its applicability by providing a context guard
(line 4). Invariant violation can distinguish different severity levels such as errors
and warnings (line 10). In order to prevent meaningless evaluation of constraints
whose dependencies are not satisfied, invariants can also have guards (line 7).
Finally, a user can be provided with a feedback including a meaningful message
(line 10), as well as means to repair the inconsistency with change suggestions
over the affected model elements (line 11).

1 class ClassInvs extends ValidationContext with OOPackageSupport {
2 type Self = Class // context type
3

4 override def guard = self.annotations exists (_.name == "ignore") // context guard
5

6 def invUniqueNamesWithinPackage = guardedBy {
7 self satisfies invHasValidName // invariant guard
8 } check { // invariant body
9 self.pkg.ownedElements find (e => e != self && e.name == self.name) match {

10 case Some(c) => Error(s"Class $c has the name")
11 .quickFix("Rename ’${self.name}’ to ’${self.name}_2’") { self.name += "_2" }
12 case None => Passed
13 }
14 }
15

16 def invHasValidName = // ...
17 }

Listing 1.3. Example of model consistency checking

5 Model-to-Model Transformations

M2M transformations provide necessary support for translating models into
other models, essentially by mapping source model elements into correspond-
ing target model elements. An imperative style of M2M transformation [15]

is already supported thanks to the common infrastructure layer described in
Section 3. On the other hand, the lower level of abstraction of the imperative
transformation style leaves users to manually address issues such as orchestrating
the transformation execution and resolving target elements against their source
counterparts [22]. Therefore, inspired by ETL and ATL, we provide a dedicated
internal DSL that combines the imperative features with declarative rule-based
execution scheme into a hybrid M2M transformation language.

Transformation rules constitute the abstract syntax of the M2M transforma-
tion DSL. Similarly to ETL or ATL, a rule defines a source and a target element
to which it transforms the source. It may optionally define additional targets,
but there is always one primary source to the target relation. A rule can also be
declared as lazy or abstract. Each non-lazy and non-abstract rule is executed for
all the source elements it is applicable. Lazy rules have to be called explicitly.
When a rule is executed, the transformation engine initially creates all the ex-
plicitly defined target elements and passes them to the rule that populates their
content using arbitrary Scala code. Similarly to consistency checking constraints,
transformation rules can optionally limit their applicability by defining a guard.

1 class OO2DB extends M2M with OOPackageSupport with DBPackageSupport {
2

3 def ruleClass2Table(cls: Class, tab: Table, pk: Column) {
4 // standard Scala
5 tab.name = cls.name
6 tab.columns += pk
7 pk.name = "Id"
8 pk.type_ = "Int"
9

10 // SIGMA specific: target elements resolution
11 tab.columns ++= cls.properties.sTarget[Column]
12 }
13

14 def ruleProperty2Column(prop: Property, col: Column) = guardedBy {
15 !prop.multi // prevent transformation of multi-valued properties
16 } transform {
17 col.name = prop.name.toUpperCase
18 col.type_ = prop.type_.name
19 }
20 }

Listing 1.4. Example of M2M transformation

Listings 1.4 illustrates the internal DSL using the traditional example of
OO model to database schema transformation6. A M2M transformation is a
Scala class that extends the M2M base class with the generated package support
traits for model navigation and modification (line 1). Transformation rules are
represented by methods. For example, the ruleClass2Table denotes a rule
that, for a given class, produces a table and a column (line 3). Additional target
elements can be constructed within the rule body, but in such a case a developer
is responsible for their proper containment.

During the M2M transformation, there is often the need to relate the target
elements that have been already (or can be) transformed from source elements.
For this purpose, Sigma provides a set of operations. An example is shown on

6 While it is a worn example, it enables one to easily compare to similar examples
provided by ETL and ATL cf. companion web page [4].

the line 6 where sTarget[Column] transforms class properties into columns. It
does that by looking up a rule with property-to-column mapping, which in this
case is the ruleProperty2Column rule. This operation can be applied both to
a single instance as well as to a collection of model elements. Similarly, Sigma
includes support for resolving source elements from their corresponding targets.

6 Model-to-Text Transformations

M2T transformations translate models into text by mapping source model el-
ements into corresponding textual fragments. We focus on template-based ap-
proach whereby string patterns are extended with executable logic for code se-
lection and iterative expansion [15]. This approach is used by all the major M2T
transformation languages including EGL and MOFM2T. In model-driven soft-
ware development, the aim is to synthesize a running system implementation
and therefore our primary focus is on generating source code artifacts.

Unlike EGL and Acceleo, our internal DSL for M2T transformation is using
the code-explicit form, i.e., it is the output text instead of the transformation
code that is escaped. This is one of the syntax limitations that cannot be easily
overcome. On the other hand, from our experience, in non-trivial code gener-
ations, the quantity of text producing logic usually outweighs the text being
produced. For the parts where there is more text than logic we rely on Scala
multi-line string literals and string interpolations allowing one to embed variable
references and expressions directly into strings.

1 class OO2Java extends M2T with OOPackageSupport {
2 type M2TSource = Class // input type for transformation
3

4 def execute = !s"public class ${root.name}" curlyIndent {
5 for (o <- root.operations) {
6 genOperation(o) // call to another template
7 !endl // extra new line
8 }
9 }

10

11 def genOperation(o: Operation) =
12 !s"public ${o.retType.name} ${o.name}()" curlyIndent {
13 !s"""
14 // TODO: should be implemented
15 throw new UnsupportedOperationException("${o.name}");
16 """
17 }
18 }

Listing 1.5. Example of M2T transformation

Listing 1.5 shows an example of OO class to Java transformation7. Follow-
ing the same pattern, a M2T transformation is a Scala class extending from
the M2T base class (line 1). Line 2 defines the type of model element, i.e., the
transformation source. A M2T transformation consists in a set of templates that
are represented as methods (lines 4 and 11). The execute method is the entry
point, which will be invoked when the transformation is executed. Usually, from

7 Similar examples are provided for both EGL and Acceleo cf. companion web page [4].

there, a transformation is split and logically organized into smaller templates in
order to increase modularity and readability.

The most common operation in a M2T transformation is a text output. A
convenient way to output text in our DSL is through a unary ! (bang) operator
that is provided on strings (e.g. line 4). The prefix s right before the string double
quote denotes an interpolated string, which can include Scala expressions in a
type-safe way.

An important aspect of any M2T transformation language is the template
readability, e.g., layout and indentation. The internal DSL maintains it through
dedicated support for decorators, smart whitespace handling and relaxed new-
lines. Decorators are nestable string operations that reformat a given block. For
example, on line 4 we use curlyIndent decorator, that wraps its body into a
pair of curly brackets and indent each line. Smart whitespace handler removes
extra whitespace from multi-line strings that are there only for the template
readability. For example the whitespaces prefixing the text on lines 14 and 15
will be discarded. Relaxed newlines loosen the necessity to output new line char-
acters by doing it automatically after every text output. Both smart whitespace
and newlines handlers are enabled by default, but can be turned off.

Finally, the DSL also allows one to fork new text sections. This makes it
possible to output text into different locations at the same time. All sections are
appropriately merged in the final text at the end of the transformation. This is
useful for example for handling imports while generating Java code, as they can
be resolved one-by-one during the model traversal.

7 Evaluation

Our aim is to propose an approach that improves the overall usability of model
manipulations through DSLs. However, defining usability of a DSLs and associ-
ated tool support tend to be subjective, since it largely depends on the prefer-
ences and background of its users [41] and its improvement cannot be measured
directly. Therefore, we structure the evaluation as follows. First we give details
about the implementation and current applications. Next, we compare Sigma
DSLs to their corresponding Epsilon counterparts with regard to implementa-
tion effort measured in terms of code size, performance and features. Finally, we
discuss the limitations of the approach and threats to validity.

7.1 Implementation

Sigma is implemented as a Scala library which is available from the project
website [8]. Its task-specific languages are all relying on a common infrastructure.

Common infrastructure. The common infrastructure aligns EMF generated
Java classes with Scala to enable use of model navigation and modification no-
tation similar to OCL and EOL. This involves (1) model navigation without
“get noise” (e.g. getSuperPackage.getName becomes superPackage.name),
and (2) promoting EMF collections to corresponding Scala collections to bene-
fit from convenient first-order logic operations (e.g., map, filter, collect) similar

to OCL. Both issues are addressed by generating extension traits8 that make
EMF model elements interoperable with Scala. These traits implicitly extend
all model classes with property accessors without the get prefix and convert
EMF collections into the corresponding Scala ones. The conversion only hap-
pens at the interface level leaving the underlying data storage unchanged. In the
same way, existing Scala types are extended with missing OCL operations (e.g.
implies). These traits are either generated by provided Sigma M2T transfor-
mation executed explicitly by a user or implicitly using the experimental Scala
macro annotations [12].

Task-specific languages. The model consistency checking and M2M transfor-
mation have similar abstract syntax (i.e. constraints and rules) to EVL and ETL
respectively, and their execution semantics is the same as defined in Epsilon. The
M2T transformation is a purely imperative DSL and as such it does not con-
tain any particular execution engine. All DSLs are implemented following the
same pattern, i.e. organizing task-specific concerns into Scala classes that extend
from a task-specific base class. The main constructs such as invariants, rules and
templates are expressed as methods in order to foster reuse and extensibility.

7.2 Applications

Sigma has been used in the SALTY project [7] to develop a modeling environ-
ment for developing self-adaptive software systems [27]. The main motivations
were the shortcomings of OCL used for the initial implementation [26]. Sigma
has been also adopted by the Yourcast project [10] for M2T transformations
replacing Velocity [1] and plain Java templates, gaining 20% reduction in code
size, mainly thanks to more expressive model navigation and more compact text
outputting constructs.

7.3 Code Comparison

In order to evaluate the overall usability of our approach we re-implemented
larger Epsilon model manipulation tasks for each of the Sigma DSLs. As sug-
gested by the Epsilon community9, we chose Eugenia [3] GMF Ecore constraints
for model consistency checking, Unicaneer2sql [9] (an ER to relational model
transformation) for M2M transformation, and Egldoc [2] (an Epsilon tool for gen-
erating Ecore documentation in HTML including Graphviz diagram) for M2T
transformation. The Eugenia and Egldoc comes directly from Epsilon, which
should guarantee certain quality of the source code. The complete implementa-
tion is available from the paper companion web page [4].

Table 1 summarizes the implementation effort in terms of Source Lines of
Code (SLOC) for the three scenarios, for both Epsilon and Sigma. Interpreting
SLOC metrics is always problematic. The issue of what is the right level of
“verbosity” in a language is complex and should not be reduced naively to just
counting SLOC. Our assumption, however, is that usability is not achieved by

8 Technical details at http://bit.ly/18javEY
9 http://www.eclipse.org/forums/index.php?t=rview&goto=1235103

http://bit.ly/18javEY
http://www.eclipse.org/forums/index.php?t=rview&goto=1235103

Scenario Epsilon Sigma difference
Model consistency checking 364 EVL 286 22%
M2M transformation 733 ETL 389 47%
M2T transformation 1400 EGL 412 70%

Table 1. SLOC comparison

having fewer lines of code, but instead, by having more expressive and concise
code, which is beneficial to writers as well as to readers. On the other hand, code
bloat resulting from code duplication and from lack of constructs that enable
the building of more concise but expressive statements, is not desirable.

Most of the code reduction comes from the fact that Scala contains more
general programming constructs than EOL. In particular, pattern matching and
inheritance helped to reduce many of the code duplications. In the case of model
consistency checking, the code reduction is the least significant one since Sigma
contains the same constraints constructs as EVL and the invariant expressions
were mostly simple first-order logic queries. The EVL code is therefore almost
identical to the Sigma one and the only reduction was in the EOL helper meth-
ods. They can be expressed more concisely in Scala primarily thanks to pattern
matching.

The case of M2M transformation led to a similar situation. Sigma supports
the same M2M transformation rules and thus the ETL code is very close to
the Sigma one. However, the M2M transformation involved a lot of imperative
EOL code which could be reduced by using more expressive Scala statements.
Furthermore, about 15% of the transformation generates text for which we could
use Sigma M2T constructs reducing the code even further.

The M2T transformation scenario involved generating both HTML code and
Graphviz code. Generally, code-explicit forms of M2T transformation are not
particularly suitable for generating HTML code since in this case the quantity
of text outweighs the text producing logic. However, despite this, the code has
been reduced by 70%. The main reason is that, by the use of inheritance, a lot
of code duplication present in the EGL templates was avoided.

We do not provide a comparison of the coding time. First we do not have
the measures of the Epsilon versions. Second it is always easier to port an exist-
ing code to a new language than to write it from scratch. However, we expect
some strong points of the Sigma DSLs to reduce coding time. Static type safety
prevents runtime typing errors. The highly usable tool support provided by the
Scala IDE [5] with a code completion and a debugger and the ability to easily
run and test the transformations should facilitate development.

7.4 Performance Comparison

The performance of Sigma is determined by the host language one and the over-
head of the Sigma API. Sigma compiles directly into Java byte-code and thus
it significantly outperforms Epsilon and other interpreted DSLs. For example,

generating QVT meta-model (159 classifiers) documentation using Egldoc takes
on average 8 times more time than using the Sigma version.

However one of the concerns is related to the extensive use of implicit type
conversions and other Scala constructs that might have negative performance im-
pact. Therefore, as a part of the performance evaluation, we have implemented
the same M2T transformation in Sigma and the related M2T languages10. In
addition, we have also implemented it in pure Java and Scala with no additional
libraries. The Java version is used as a performance baseline. The Scala version is
used to measure the overhead of Scala in comparison to Java and the performance
penalty caused by Sigma. The implementation in the other languages aims at
evaluating our requirement of competitive performance. The M2T transforma-
tion has been chosen because (1) it uses many Scala constructs that might cause
performance issues (e.g., implicit conversions, string interpolation), (2) M2T
transformation is one of the most often used model manipulation tasks [21], and
(3) the implementation in the other languages was straightforward, limiting the
possibility of misusing some features. As a concrete transformation we chose our
simple OO model to Java transformation, since nearly all the listed languages
provide an example that is based on it. Table 2 shows the median of 20 con-
secutive runs for two different model sizes, (A) corresponds to 250 classes with
50 methods and properties each, while (B) is 500 classes with 100 methods and
properties each.

Scenario Java Sigma EGL Acceleo Xtend Kermeta Scala
A 1.0 1.0 18.6 11.9 0.9 1.0 0.9
B 1.0 1.8 48.1 16.4 1.0 1.0 1.0

Table 2. Performance of different M2T languages normalized to Java version

As expected, the performance of Sigma together with the other compiled
languages is close to Java, while the interpreted ones are an order of magnitude
higher (also their memory footprint is double). The decrease in Sigma perfor-
mance in the case of the larger model is caused by the whitespace handling
decorator. Every appended string is checked for whitespaces to be removed, and
its complexity increases with the indent level. Without this decorator, the per-
formance is again close to Java (A: 0.9, B: 1.0).

7.5 Evaluation of Requirements

In the previous section we evaluated the competitive performance requirement.
The following is the evaluation of the other requirements identified in Section 2:
(1) Epsilon-like features and expressiveness. In Table 3, we evaluate the require-

ment stating that our DSL should contain similar features as in Epsilon

10 Kermeta version was put together by Didier Vojtisek, a Kermeta committer. All the
source code is available from the companion web page [4].

languages, i.e. EOL, EVL, ETL and EGL. The listed Epsilon features are
taken from the Epsilon website [6].

(2) Usable tool support. One of the advantages of an internal DSL is that it can
directly reuse the tool support provided for the host language. As mentioned
above, the recent versions of the Scala IDE [5] provide solid tools facilitating
Scala development. Moreover, additional tools operating on the JVM class
level such as profilers can be directly used.

(3) Simple testability with existing unit frameworks. The method-based styles
of all the three languages allows to cherry-pick the fragments of model ma-
nipulation to be tested by any Java-based unit testing framework, which is
especially useful for larger model transformations.

(4) Simple integration into existing EMF projects. Executing a model manip-
ulation task in Sigma is no different from executing a regular JVM-based
application and therefore it can be included in many building tools.

With the basic set of Scala skills necessary to use Sigma, we consider that
the DSLs are rather small and thus less learning effort is likely to be required
in comparison to language such as OCL or EOL. Finally, being an internal DSL
is notably reflected in the code size of the implementation. Sigma is currently
implemented in 3500 lines of Scala code, which is an order of magnitude less
than just EOL, which is an order of magnitude less than Eclipse OCL.

7.6 Limitations

Apart from the syntax limitations, an internal DSL is in general a leaky abstrac-
tion [42]. For example an implementation of guards and structural constraints
can contain arbitrary code and by default. There is no simple way to make sure
they are side-effect free without employing an external checker such as IGJ [45],
which brings additional overhead. Traditionally, the support for domain-specific
analysis, error checking and optimization has been difficult to realize in internal
DSLs. However, Scala offers some more advanced methods for DSL embedding,
using language virtualization and lightweight modular staging [37,13].

Depending on the target audience, the use of Scala can be seen as a drawback
rather than a merit. It is a new language that has not yet reached the popularity
of some of the mainstream programming languages. It might be hard to justify
learning a language such as Scala solely for the purpose of model manipula-
tion. Finally, there is a small compile-time overhead of generating the common
infrastructure.

7.7 Threats to Validity

There are few potential threats to validity of the evaluation presented in Sec-
tions 7.3 and 7.4. First, the implemented model manipulation tasks represent
only a small subset of possible scenarios. To the best of our knowledge, we do not
know about other publicly available larger model manipulations implemented in
Epsilon. In some parts, the Epsilon code itself could be improved which, would
result in more concise solutions, nevertheless, we believe that this would not
make a major difference.

DSL Feature Sigma support

EOL

Simultaneously accessing/modifying many
models of (potentially) different metamodels

+ Accessing a model in Sigma is the same as
accessing a Scala/Java class

All the usual programming constructs + Sigma is based on Scala GPL
First-order logic OCL operations + All OCL collection operations are supported
Create and call methods of Java objects + Scala is interoperable with Java
Dynamically attaching operations to existing
meta-classes and types

+ Supported through Scala implicit conver-
sions

Cached operations + Supported using Scala implicit conversions
and lazy values

Extended properties + Supported using Scala implicit conversions
User interaction + Supported through Scala and Java libraries
Create reusable libraries of operations + Scala has notions of packages and imports

that goes beyond the one in Epsilon

EVL

Distinguish between errors and warnings dur-
ing validation

+ Both errors and warnings are supported

Guarded constraints + Constraints can have guards (line 5-7 in List-
ing 1.3)

Specify constraint dependencies + Constraint dependency can be specified in a
guard condition (line 6 in Listing 1.3)

Break down complex constraints to se-
quences of simpler statements

+ Sigma constraints can contain arbitrary Scala
code (cf. Section 7.6)

Automated constraint evaluation + Sigma execution semantics is the same as in
Epsilon

Out-of-the-box integration with the EMF
validation framework and GMF

+ Sigma provides an EValidator implementa-
tion

ETL

Ability to query/navigate/modify both
source and target models

+ Accessing a model in Sigma is the same as
accessing a Scala/Java class

Declarative rules with imperative bodies + Method signature declares a rule and the
method body can contain any Scala code

Automated rule execution + Sigma execution semantics is the same as in
Epsilon

Lazy and greedy rules + Both rule types are supported using annota-
tions

Multiple rule inheritance 0 Currently, inherited rules must be called ex-
plicitly

Guarded rules + Rules can have guards (lines 12-14 in List-
ing 1.3)

EGL

Decouple content from destination + The result of M2T transformation is a string
that can be outputted to any destination

Call templates (with parameters) from other
templates

+ An M2T template is just a Scala class that
can be used from any Scala code

Define and call sub-templates + A sub-template is a Scala method that can
be used from any Scala code

Mix generated with hand-written code - There are several problems with mixing gen-
erated and non-generated code (e.g., com-
plicated merge, non-generated code is lost
among the generated one, generated code has
to be put under version control) and there-
fore Sigma promotes the generation gap pat-
tern [17] instead

Table 3. Supported Epsilon features. (+) supported, (-) unsupported, (0) partially supported

As for the performance evaluation, it is a form micro benchmark and as such
it should be considered with all the validity threats micro benchmarking brings.
We have implemented only a small model manipulation task, yet, we already see
the trends of the different approaches whose performance will likely remain in
the same order of magnitude even for other model manipulations.

8 Related Work
Cuadrado et al. [14] developed RubyTL, a Ruby internal DSL for ATL-like M2M
transformations. Later, they used it for a comparison on the effort of building an
internal DSL and an external one. They concluded that the success of an internal
DSL highly depends on the selection of the host language, its support for DSL
embedding, execution performance, tool support, and popularity [39]. The main
difference with Sigma is that using a dynamic language prevents any compile
type checking. Also RubyTL relies on its own EMF model parser facilities and
is not directly interchangeable with the mainstream EMF.

George et al. [18] used Scala to build a M2M transformation DSL for the EMF
platform that resembles ATL. Since we use the same host language, their DSL is
fully interoperable with ours, e.g. the common infrastructure (Section 3) can be
directly used in the transformation rules. However their internal DSL is not com-
pletely type safe and they represent transformation rules directly as anonymous
classes, which limits their modularity and reusability. Wider [44] presents an in-
teresting approach to bidirectional model transformations by embedding lenses
(a combinator-based approach to bidirectional term-transformations) into Scala
and showed how they can be used in an MDE context. Akehurst et al. [11] de-
veloped a Java library for simple imperative M2M transformations. Being based
on Java gives it performance and tool support advantages, as well as a wider
audience. On the other hand, there is no particular support for improving the
expressiveness of model navigation and modification, resulting in rather verbose
and complicated code.

9 Conclusion
In this paper we have presented an alternative internal DSL approach for model
manipulation whereby the supporting constructs are embedded into a GPL.
We used Scala as the host language to design and fully implement Sigma, a
family of type-safe internal DSLs for EMF model consistency checking, M2M
and M2T transformations. We have shown that the resulting DSLs have similar
expressiveness and features found in external model manipulation DSLs, while
providing competitive performance, compact implementation, and the ability to
take advantage of the advanced Scala tool support.

Non-trivial model manipulation tasks often involve a lot of general purpose
programming. By using a GPL such as Scala with rich general purpose program-
ming constructs, we were able to significantly reduce the code size of the model
manipulation tasks implemented in our evaluation process, without jeopardizing
their readability.

Current work in progress around Sigma consists in carrying out more evalu-
ations to further assess the usability of the proposed DSLs. Sigma has notably
participated in the 2014 edition of the Transformation Tools contest [19]. For the
future we first want to apply the Scala advanced DSL embedding techniques to
address identified limitations such as the problem of leaky abstraction. We also
plan to tackle DSL composition issues by exploring appropriate ways to couple
Sigma with other DSLs in different case studies.

Acknowledgments. This work is partially supported by the Datalyse project
www.datalyse.fr.

www.datalyse.fr

References

1. Apache Velocity, http://velocity.apache.org/
2. Epsilon Egldoc, https://wiki.eclipse.org/EDT:EGLDoc
3. Epsilon Eugenia, http://www.eclipse.org/epsilon/doc/eugenia/
4. Paper Companion Web Page
5. Scala IDE, http://scala-ide.org/
6. The Epsilon Project Documentation, http://eclipse.org/epsilon/doc/
7. The SALTY Project, https://salty.unice.fr
8. The SIGMA Project, https://github.com/fikovnik/Sigma
9. The Unicaneer2sql Project, https://code.google.com/p/unicaneer2sql/

10. The YourCast Project, http://yourcast.fr/
11. Akehurst, D., Bordbar, B., Evans, M., Howells, W., McDonald-Maier, K.: SiTra:

Simple Transformations in Java. In: 9th International Conference, MoDELS 2006.
12. Burmako, E.: Scala macros: let our powers combine! In: Proceedings of the 4th

Workshop on Scala, 2013
13. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan, P., Odersky,

M., Olukotun, K.: Language virtualization for heterogeneous parallel computing.
In: Proceedings of the ACM international conference on Object oriented program-
ming systems languages and applications, 2010

14. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical, Extensible
Transformation Language. In: Model Driven Architecture – Foundations and Ap-
plications, 2006

15. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 2006

16. Dubochet, G.: Embedded Domain-Specific Languages using Libraries and Dynamic
Metaprogramming. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2011

17. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 1st edn.,
2010

18. George, L., Wider, A., Scheidgen, M.: Type-Safe Model Transformation Languages
as Internal DSLs in Scala. In: Proceeding of the 5th International Conference on
Theory and Practice of Model Transformations. ICMT, 2012

19. Horn, T., Krause, C., Rose, L.: 7th Transformation Tools Contest , 2014
20. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.M. (ed.) Satel-

lite Events at the MoDELS 2005 Conference, Lecture Notes in Computer Science,
vol. 3844, 2006

21. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press, 2008

22. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. In: Pro-
ceedings of the 2008 International Conference on Model Transformations. 2008

23. Kolovos, D., Paige, R., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) Model Driven Architecture – Foundations and Ap-
plications, LNCS 4066, 2006

24. Kolovos, D., Paige, R., Polack, F.: On the Evolution of OCL for Capturing Struc-
tural Constraints in Modelling Languages. In: Abrial, J.R., Glässer, U. (eds.) Rig-
orous Methods for Software Construction and Analysis, 2009

25. Krikava, F.: Domain-Specific Modeling Language for Self-Adaptive Software Sys-
tem Architectures. Ph.D. thesis, University of Nice Sophia-Antipolis, 2013

26. Krikava, F., Collet, P.: On the Use of an Internal DSL for Enriching EMF Models.
In: Proceedings of the Proceedings of the 2012 International Workshop on OCL
and Textual Modelling, 2012

http://velocity.apache.org/
https://wiki.eclipse.org/EDT:EGLDoc
http://www.eclipse.org/epsilon/doc/eugenia/
http://scala-ide.org/
http://eclipse.org/epsilon/doc/
https://salty.unice.fr
https://github.com/fikovnik/Sigma
https://code.google.com/p/unicaneer2sql/
http://yourcast.fr/

27. Krikava, F., Collet, P., France, R.: ACTRESS: Domain-Specific Modeling of Self-
Adaptive Software Architectures. In: Symposium on Applied Computing (SAC),
track on Dependable and Adaptive Distributed Systems (DADS). 2014

28. Krikava, F., Collet, P., France, R.B.: Manipulating Models Using Internal Domain-
Specific Languages. In: Symposium on Applied Computing (SAC), track on Pro-
gramming Languages (PL). 2014

29. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

30. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: Proceedings
of the ACM SIGPLAN 2012 workshop on Partial evaluation and program manip-
ulation, 2012

31. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems, 2005

32. Object Management Group: MOF Model to Text Transformation Language
(MOFM2T). Tech. rep., Object Management Group, 2008

33. Object Management Group: MOFTM Query / View / Transformation (QVT).
Tech. rep., Object Management Group, 2011

34. Object Management Group: OMG Object Constraint Language (OCL). Tech. rep.,
Object Management Group, 2012

35. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An Overview of the Scala Pro-
gramming Language. Tech. rep., École Polytechnique Fédérale de Lausanne, 2014

36. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., a.C. Polack, F.: The Design
of a Conceptual Framework and Technical Infrastructure for Model Management
Language Engineering. In: 2009 14th IEEE International Conference on Engineer-
ing of Complex Computer Systems, 2009

37. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. In: Proceedings of the ninth Interna-
tional Conference on Generative programming and component engineering, 2010

38. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: The Epsilon Generation Lan-
guage. In: Proceedings of the 4th European conference on Model Driven Architec-
ture: Foundations and Applications. pp. 1–16. ECMDA-FA, 2008

39. Sánchez Cuadrado, J., Canovas, J., Garcia Molina, J.: Comparison between internal
and external DSLs via RubyTL and Gra2MoL. In: Mernik, M. (ed.) Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments. IGI Global
2012

40. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 2006

41. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. Software, IEEE 20(5), 20003

42. Siek, J.G.: General purpose languages should be metalanguages. In: Proceedings
of the 2010 ACM SIGPLAN workshop on Partial evaluation and program manip-
ulation, 2010

43. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley Professional, 2008

44. Wider, A.: Towards combinators for bidirectional model transformations in scala.
Software Language Engineering, 2011

45. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kieżun, A., Ernst, M.D.: Object and
reference immutability using java generics. In: Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 2007

	SIGMA: Scala Internal Domain-Specific Languages for Model Manipulations

