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Abstract

We propose a procedure for selecting basis function orientation to improve
the efficiency of solution methodologies that employ local plane-wave approx-
imations. The proposed adaptive approach consists of a local wave tracking
strategy. Each plane-wave basis set within considered elements of the mesh
partition is individually or collectively rotated to best align one function of
the set with the local propagation direction of the field. Systematic deter-
mination of the direction of the field inside the computational domain is
formulated as a minimization problem. As the resultant system is nonlinear
with respect to the directions of propagation, the Newton method is employed
with exact characterization of the Jacobian and Hessian. To illustrate the
salient features and evaluate the performance of the proposed wave tracking
approach, we present error estimates as well as numerical results obtained by
incorporating the procedure into a prototypical plane-wave based approach,
the least-squares method (LSM) developed by Monk et al. [1]. The numerical
results obtained for the case of a two-dimensional rigid scattering problem
indicate that (a) convergence was achievable to a prescribed level of accu-
racy, even upon initial application of the tracking wave strategy outside the
pre-asymptotic convergence region, and (b) the proposed approach reduced
the size of the resulting system by up to two orders of magnitude, depending
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on the frequency range, with respect to the size of the standard LSM system.

Keywords: direct scattering, domain decomposition, Helmholtz equation,
Newton method, finite element method, pollution effect, adaptive direction,
plane-wave-based method, least-squares method

1. Introduction

Use of wave equations to model physical phenomena is well documented
with wide-ranging applications in optics [2], seismology [3], radar [4], and
ocean acoustics [5], along with many other fields in science and technology.
While the ubiquitous finite element method has served as a foundation for
the solution of this class of equations, issues that arise from the frequency
dependence of the discretization, identified as a pollution effect [6, 7], have
remained a topic of active research for over a half a century. Many attempts
have been made to overcome the difficulties related to this pollution effect.
Relatively recently, approaches that employ plane-waves as basis functions for
Helmholtz problems have demonstrated significant potential to numerically
determine these solutions [1, 8–21]. The oscillatory nature of plane-waves
provides a natural setting to more efficiently model highly oscillatory fields.
Nevertheless, fields that propagate with a high frequency remain difficult
to compute, due to an increasing presence of numerical instabilities created
upon refined discretization and/or the augmentation of the basis sets with
additional plane-wave functions. These instabilities arise due to the numeri-
cal loss of linear independence of functions within the basis sets, as observed
and demonstrated in [21, 22].

In response to the above numerical challenges, we propose an alternative
procedure that can extend the range of satisfactory convergence without sig-
nificantly increasing the number of plane-waves and/or drastically refining
the mesh. This can mitigate the nascent presence of near-linear dependencies
that instigate numerical breakdown. The essence of the proposed approach
is to maintain a low number of plane-waves, typically used to calculate fields
propagating in the low frequency regime, to calculate fields at higher frequen-
cies. This is accomplished by allowing the elemental basis sets to rotate so as
to align a basis function in the set with the main direction of field propaga-
tion. In this manner, a more accurate approximation of the field is expected
to that obtained by rigid and often arbitrarily predefined orientations of the
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basis sets. The proposed approach, which can be viewed as an adaptive-type
strategy, is succinctly demonstrated by comparison of the analytical solution
to the numerical one for a plane-wave propagating at an angle θ through a
square waveguide domain of length a [23]. In the domain, a high frequency
propagation is considered (ka=500) with the wavenumber represented by k.
Using a basis set of four canonically oriented plane-waves per element, over
100% relative error was determined with the Least-Squares Method (LSM)
[1] for a step-size h/a=1/100 for all propagation angles except those aligned
with the predefined basis functions (0◦, 90◦, 180◦ and 270◦), as depicted in
Fig. 1. However, if the basis functions were allowed to rotate so that one
function within an element aligns with the direction of propagation of the
field, the “rotated” LSM delivered an error of 10−6% with a much larger
step size: h/a=1/2, corresponding to a mesh partition of only two elements.
Note that the same degree of rotation was applied to each of the four basis
sets which is a logical option due to the common directions of propagation
through each element. In effect, allowing the basis functions to align or track
the direction of propagation of the field within a given element, improved the
calculation accuracy while mitigating discretization cost by a factor of 2500
in the case of the considered waveguide problem. We subsequently will refer
to this wave tracking (WT) method as LSM-WT in this study.

The above example is simple; it contains one direction of propagation whereas
realistic objects generate scattered fields with multiple directions of propa-
gation. In this paper, we propose an approach to permit the basis functions
to rotate and systematically track the local direction of field propagation. In
this manner, the method can numerically solve direct scattering problems in
domains containing fields with multiple directions of propagation. To this
end, the proposed approach represents the scattered field at the element level
by a superposition of plane-waves where both the expansion coefficients (the
nodes) and angles of orientation are unknown and need to be determined.
Computation of these unknowns can be expressed as a double minimiza-
tion problem which is linear with respect to the nodes and non-linear with
respect to the determination of the angles of orientation of the basis func-
tions. In this study, the Newton iterative method was employed to address
the nonlinear aspect of the formulation, although other methods can be em-
ployed, e.g., conjugate gradient and genetic algorithms, [24, 25]. The result-
ing smaller and linear systems corresponding to the scattering problem and
Newton iteration equations are solved by LU factorization. Although solu-

3



0 100 200 300 400

Propagation Angle

0.0

0.5

1.0

1.5

T
ot

al
 R

el
at

iv
e 

E
rr

or

Figure 1: Sensitivity of the relative error to the angle of propagation for ka = 500 and
4 plane-waves: LSM with h/a = 1/100 (line) and LSM-WT with h/a = 1/2 (diamond
symbols).

tion of the double minimization problem appears to require determination
of an increased number of unknowns, in point of fact, the proposed WT for-
malism incurs a significantly smaller size than required by existing methods,
as a coarser mesh and lower number of basis functions are needed for a given
level of accuracy. This effectively raises the onset of numerical instabilities
that arise from near-linear dependencies of the basis set functions at higher
frequencies. Consequently, the WT approach is designed to enhance conver-
gence stability and reduce computational cost. Both factors can, in turn,
extend the accessible range for the application of plane-wave based solution
methodologies to higher frequency scattering problems.

It should be emphasized that the proposed wave-tracking procedure is gen-
eral and can be incorporated into plane-wave based formulations that lead
to minimization of a cost function. To exemplify application, the algorithm
delineated in Sec. 3.1 is developed in this study in conjunction with LSM
(Sec. 3.2). The accuracy and efficiency of the resultant LSM-WT method
is assessed for a prototypical scattering problem consisting of a sound-hard
disk-shaped scatterer embedded in a circular computational domain (Sec. 5).
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The calculated scattered acoustic field is subsequently compared to the field
generated by the (unmodified) LSM. Accuracies of the approximated fields
obtained by LSM and LSM-WT are compared by calculating the relative
error in an H1-type norm. The proposed approach is found to converge to
a prescribed level of accuracy, even upon initial application of the Newton
algorithm outside the pre-asymptotic convergence region. The required size
of the scattering system is reduced with LSM-WT by one and two-orders of
magnitude, depending on the frequency range with respect to the standard
LSM system. Analysis of the resultant orientational angles reveal that sig-
nificant, independent, basis set rotations are required to achieve the targeted
error thresholds. This indicates that a) optimal orientational angles can
not be predicted a priori, and b) a straightforward, sweeping approach would
be ineffective, due to exorbitant computational cost.

2. Preliminaries

To assess the performance of the proposed strategy, we consider the following
prototypical Helmholtz problem: direct acoustic scattering from a sound-
hard object in the presence of an artificial exterior boundary Σ as shown
in Fig. 2. However, the wave-tracking procedure can accommodate other
interior [26] as well as other exterior boundary conditions (see e.g., Refs.
[27, 28] and references therein). The scattered field u is then the unique
solution of the boundary value problem:

(BVP)





∆u+ k2u = 0 in Ω,
∂nu = g on Γ,

∂nu = iku on Σ,
(1)

where Ω is a two-dimensional computational domain, ∂n is the normal deriva-
tive operator evaluated on the respective boundaries Γ and Σ, k is a positive
number representing the wavenumber, and g is a complex-valued function.
A standard example of such a function is given by:

g(~x) = −∂ne
ik~x·~d (2)

where ~d is a unit vector representing the direction of the incident plane-
wave. To numerically approximate the scattered field, the computational
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Figure 2: Sample computational domain for the scattering problem.

domain Ω is partitioned into a regular triangulation Th of Nh quadrilateral-
or triangular-shaped elements, K:

Ω =

Nh⋃

j=1

Kj. (3)

Assume that solution of the BVP (See Eq. (1)) by plane-wave-based varia-
tional methods can be formulated to be compactly expressed as a minimiza-
tion of a cost function J :

{
Find uh ∈ Xh such that,

J(uh) = inf
v∈Xh

J(v),
(4)

with the global space Xh defined by:

Xh =
{
v ∈ L2(Ω);

∣∣ ∀K ∈ Th, v|K = vK ∈ Xh(K)
}
. (5)

where element K ∈ Th possesses nK basis functions. Hence, the local sub-
spaces Xh(K) ⊆ H1(K) are given by:

Xh(K) =



v

K : K → C

∣∣∣∣∣∣
vK =

nK∑

j=1

ξKj φ
K
j ; where ξKj ∈ C



 , (6)

where:
φK
j (~x) = eik

~dKj ·(~x−~xK) ; 1 ≤ j ≤ nK ; ~x ∈ K, (7)
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with ~xK as the centroid of K, and ~dKj as the direction of the propagation of

the plane-waves, i.e., ~dKj = (cos θj, sin θj). The set of angles {θj} is such that
θj ∈ [0, 2π) and θj 6= θl if j 6= l. For example,

θj = 2π(j − 1)/(nK − 1) ; 1 ≤ j ≤ nK .

3. Solution Methodology

3.1. The general tracking wave strategy

The proposed wave-tracking approach guides a set of local basis functions
to align one function closely with the orientation of the local (intra-element)
propagation of the field, u. To this end, an adaptive strategy is employed by
which the direction of the initial choice of the local basis functions are rotated
within each element or an ensemble of elements, by employing a rotational
matrix Rα corresponding to the following rotation in R

2,

Rα(~x) =

[
cosα - sinα
sinα cosα

] [
x1
x2

]
;α ∈ [0, 2π), (8)

with the angle of rotation α employed to best align one function in the basis
set with the direction of field propagation. For each element K and angle
αK , we define a new set of basis functions

(
ψK
j (αK)

)
j=1,··· ,nK by rotating the

considered plane-waves
(
φK
j

)
j=1,··· ,nK through the angle αK , as illustrated in

Fig. 3.

Figure 3: Basis set rotation to align one basis function with the direction of propagation
in element, K: Initial basis set (dashed line), final orientation (solid line) with counter-
clockwise rotational angle given by αK .

ψK
j (αK)(~x) = φK

j (RαK (~x)) ; j = 1, · · · , nK , ∀K ∈ Th. (9)
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Note that the resulting basis functions ψK
j are also plane-waves that satisfy

the Helmholtz equation in R
2. The resulting field uh which accommodates

an arbitrary angle of field propagation θj is defined at the element level as:

uh(~α)|K =
nK∑

j=1

ξKj (αK) eik
~dj(α

K)·(~x−~xK) ; ∀K ∈ Th, (10)

where the new orientations are obtained by a counterclockwise rotation by
angle αK , that is:

~dj(α
K) = (cos(θj + αK), sin(θj + αK)). (11)

Note that the unknown expansion coefficients ξKj now also depend on the
unknown angle αK . Globally, the field is defined across the computational
domain as:

uh(~α) =
∑

K∈Th

uh(α
K)|K χ|K (12)

where χ|K being the characteristic function ofK. Note that the total number
of basis functions specified is Nφ = nK × Nh. The minimization problem
defined in Eq. (4) is reformulated using the new rotated basis functions given
by Eq. (9). In this manner, the original minimization problem given by Eq.

(4) becomes a double minimization consisting of finding a vector angle ~θ such
that: 




Find ~θ ∈ Dh and uh(~θ) ∈ X̂h(~θ) such that,

J(uh(~θ)) = inf
~α∈Dh

inf
v∈X̂h(~α)

J(v),
(13)

where Dh is the space corresponding to all possible directions of propagation
of the field in the domain Ω:

Dh =
{
~α ∈ R

Nh ; ∀K ∈ Th, ~α|K = αK ∈ [0, 2π)
}
, (14)

the modified global discrete space X̂h(~α) ⊆ L2(Ω) as:

X̂h(~α) =
{
v ∈ L2(Ω); ∀K ∈ Th, v|K = vK ∈ X̂h(K,α

K)
}
, (15)

~α is a given vector in R
Nh with coordinates defined as the rotational angle

for each element K. The local subspaces X̂h(K, θ
K) ⊆ H1(K) are defined
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by:

X̂h(K,α
K) =



v

K : K → C ; vK =
nK∑

j=1

ξKj ψ
K
j (αK) ; where ξKj ∈ C



 .

(16)

Figure 4: Disk-shaped scatterer: Example of a mesh comprised as a 16-sided regular
polygon with 4 radial and 16 angular elements. Angularly adjacent elements are grouped
into a given subdomain, specified by color and assigned a common angle of orientation.
Subdomains are shown as replicated in each quadrant.

We may choose an exhaustive approach to track at the element level as indi-
cated in Dh, however, it is preferable from the standpoint of computational
efficiency to use a priori knowledge or an adaptive strategy to determine re-
gions with similar directions of field propagation, and then stipulate a com-
mon basis set orientation for elements in these regions. Such an approach
will lead to a significant computational cost reduction, as demonstrated in
the following. The computational domain Ω is partitioned into NΩ subdo-
mains. Denoting {Ωµ} as the set of subdomains that possess elements with
a common direction field propagation:

Ω =

NΩ⋃

µ=1

Ωµ, (17)
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where:

Ωµ =

nµ
h⋃

j=1

Kj; µ = 1, 2, . . . , NΩ, (18)

with nµ
h elements K per subdomain Ωµ (see Fig. 4 for an illustrative example

with 4 elements per subdomain and 4 subdomains per quadrant). The double
minimization problem given by Eq. (13) is re-formulated as follows:





Find ~θ ∈ D̃h and uh(~θ) ∈ X̂h(~θ) such that,

J(uh(~θ)) = inf
~α∈D̃h

inf
v∈X̂h(~α)

J(v),
(19)

with D̃h ⊆ Dh, such that D̃h =
{
~α ∈ Dh; α|Ωµ

= αµ ∈ [0, 2π)
}
. Hence, ~θ is

a vector in R
NΩ where NΩ << Nh and Nh is the number of elements given

by Eq. (3). The double minimization problem given by Eq. (19) can be
compacted to avoid unnecessary complexity in the notation:

J(uh(~θ)) = inf
~α∈D̃h

L(~α) (20)

with the cost function L defined as:

L(~α) = inf
v∈X̂h(~α)

J(v). (21)

For clarity and later reference, we also set:

Lh = inf
~α∈D̃h

L(~α). (22)

Solving the double minimization problem given by Eqs. (21)-(22) requires
application of a descent method or other optimization approaches such as
the conjugate gradient method [24] or a genetic algorithm [25]. We propose
to determine this minimum by seeking the roots of the Jacobian operator

denoted by ~̇L(~α). In this study, the Newton method is employed to determine
the resulting non-linear system. This algorithm incurs at iteration m the
Newton iteration equation:

L̈(~α (m))δ~α (m) = −~̇L(~α (m)) (23)

with L̈ as the Hessian, and δ~α as the angular update. The solution of the
linear system specified in Eq. (23), yield the set of angular updates δ~α(m).
For each iteration m the update is then applied to the set of basis functions:

~α(m+1) = ~α(m) + δ~α(m). (24)
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3.2. Wave tracking formulation as applied to the least-squares method

The following delineates the formulation of the proposed wave-tracking strat-
egy in conjunction with the least squares approach [1].

3.2.1. Pertinent LSM formalism

In this study, we apply the general wave-tracking formalism defined in the
previous section in conjunction with the least-squares method [1]. The cost
function J given by Eq. (4) in the LSM format takes the form:

J(v) =
∑

e: interior edge

(
1

he

∫

e

|[v]|2ds+
1

k2he

∫

e

|[[∂nv]]|
2ds

)

+
∑

e⊂Γh∪Σh

1

k2he

∫

e

|∂nv − ikχ
Σh
v − χ

Γh
g|2ds

(25)

with he as the length of edge e, [v] and [[v]] denoting the jump of v across
an interior edge of two adjacent elements ∂K ∩ ∂K ′:

[v] = v|K − v|K′ ,

[[v]] = v|K + v|K′ ,
(26)

χ
Γh
(resp. χ

Σh
) is the characteristic function of Γh (resp. Σh), the inner

(resp. outer) boundary, and ∂n is the normal derivative operator evaluated
with respect to the edge. The solution of the minimization problem given
by Eq. (4) is then obtained by solving the following Variational Formulation
(VF) [1]:

(VF)

{
Find uh ∈ Vh such that :
a(uh , w) = F (w) ; ∀w ∈ Vh,

(27)

where the Hermitian bilinear form a(·, ·) is given by:

a(v, w) =
∑

e: interior edge

(
1

he

∫

e

[v][w] ds+
1

k2he

∫

e

[[∂nv]][[∂nw]] ds

)

+
∑

e⊂ Γh∪Σh

1

k2he

∫

e

(∂nv − i kχ
Σ
v)(∂nw − i kχ

Σ
w) ds,

(28)

and the linear functional F is given by:

F (w) =
∑

e⊂Γh

1

k2he

∫

e

g (∂nw) ds; ∀w ∈ Vh. (29)
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Last, the space Vh is a finite dimensional space whose elements w satisfy
∆w + k2w = 0 in K ; ∀K ∈ Th.

3.2.2. The LSM-WT Method

In the following, we provide a characterization of the Jacobian ~̇L(~α) and the
Hessian L̈(~α) in the context of the LSM formulation. Recall ~α → L(~α) is an
infinitely differentiable function.

Proposition 3.1. Let α ∈ Dh. Then:

i. ~̇L(~α) ∈ C
NΩ and its µth coordinate, L̇µ(~α), satisfies:

L̇µ(~α) =
∂L(~α)

∂αµ

=
1

2

∑

e⊂Γ

∫

e

∂nu̇h,µ(~α) g ds; µ = 1, . . . , NΩ, (30)

where, u̇h,µ(~α), the first-order partial derivative of uh(~α) with respect to
angle αµ, is expressed as follows:

u̇h,µ(~α) = u̇ah,µ(~α) + u̇bh,µ(~α); µ = 1, . . . , NΩ, (31)

with

u̇ah,µ(~α) =
∑

K∈Th

nK∑

j=1

ξ̇Kµ,j ψ
K
j (αK), u̇bh,µ(~α) =

∑

K⊂Ωµ

nK∑

j=1

ξKj ψ̇
K
j,µ(α

K),

(32)
and

ψ̇K
j,µ(α

K) = ∂ψK
j (αK)/∂αµ. (33)

ii. L̈(~α) ∈ C
NΩ×NΩ and its entries L̈µµ′(~α), satisfy:

L̈µµ′(~α) =
∂2L(~α)

∂αµ∂αµ′

=
1

2

∑

e⊂Γ

∫

e

∂nüh,µµ′(~α)g ds; µ, µ′ = 1, . . . , NΩ,

(34)
where üh,µµ′, the second-order partial derivative of uh(~α) with respect to
angles αµ and αµ′, is expressed as follows:

üh,µµ′(~α) = üah,µµ′(~α)+2 übh,µµ′(~α)+ üch,µµ′(~α); µ, µ′ = 1, . . . , NΩ, (35)
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with

üah,µµ′(~α) =
∑

K∈Th

nK∑

j=1

ξ̈Kµµ′,j ψ
K
j (αK), übh,µµ′(~α) =

∑

K⊂Ωµ

nK∑

j=1

ξ̇Kj,µψ̇
K
j,µ′(αK)

üch,µµ′(~α) =
∑

K⊂Ωµ∩Ωµ′

nK∑

j=1

ξKj ψ̈
K
j,µµ′(αK),

(36)
and

ψ̈K
j,µµ′(αK) = ∂2ψK

j (αK)/∂αµ∂αµ′ . (37)

Proof. The key step to prove Proposition 3.1 is to establish that

L(~α) =
1

2

∑

e⊂Γ

1

k2he

∫

e

∂nuh(~α) g ds; (38)

This property results from Eqs. (25)-(26) and then applying Green-Riemann
theorem to Eq. (25). Then, using the chain rule in Eq. (38) leads to the
desired result in (i) and (ii).

Remark 1. Consideration of the first- and second-order Fréchet derivatives
u̇h(α) and üh(~α) allows easy determination of the expansion coefficients: ~ξ,
~̇ξµ, and

~̈ξµ,µ′ . The latter are required for construction of the Jacobian ~̇L(~α)

and Hessian L̈(~α) that incur in the Newton iteration equation given by Eq.
(23). Evaluation of the Fréchet derivatives is achieved by solving the same
variational problem with different right-hand sides, as demonstrated in the
following two results.

Proposition 3.2. Let ~α ∈ Dh. Then, uh(~α), u̇
a
h,µ(~α), and ü a

h,µµ′(~α) are
solutions of the variational problem:

(VF)

{
Find ũh(~α) ∈ X̂h(~α) such that :
a(ũh(~α) , ψ

K
j (αK)) = G(ψK

j (αK)) ; ∀j = 1, · · ·nK , ∀K ∈ Th

(39)
where the expression of the linear functional G depends on the sought-after
field ũh(α) as follows:
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i. For ũh(~α) = uh(~α), we have:

G(ψK
j (αK)) = F (ψK

j (αK)) (40)

where the field uh(~α) is given by Eq. (10) and the linear functional F is
given by Eq. (29).

ii. For ũh(~α) = u̇ a
h,µ(~α), we have:

G(ψK
j (αK)) = F (ψ̇K

j,µ(α
K))− a(uh(~α), ψ̇

K
j,µ(α

K))− a(u̇bh,µ(~α), ψ
K
j (αK))

(41)
where the field u̇ a

h,µ(~α) is given by Eq. (32), the linear functional F
is given by Eq. (29), the bilinear form a(·, ·) is given by Eq. (39), and
u̇bh,µ(~α) is given by Eq. (32).

iii. For ũh(~α) = üah,µµ′(~α), we have:

G(ψK
j (αK)) = F (ψ̈K

j,µµ′(αK))− 2a(u̇h,µ(~α), ψ̇
K
j,µ(α

K)− a(u̇bh,µ(~α), ψ̈
K
j,µµ′(αK))

− 2a(ü b
h,µµ′(~α), ψ̈K

µµ′,j(α
K))− a(ü c

h,µµ′(~α), ψK
j (αK))

(42)
where the fields ü a

h,µµ′(~α), ü b
h,µµ′(~α) and ü c

h,µµ′(~α) are given by Eq. (36).

Proof. Property (i) results from substituting w = ψK
j (~α) in VF (27). To

prove property (ii), we consider first Eq. (39) and Eq. (40). We have:

a(uh(~α), φ
K
j (α

K) = F (ψj(α
K)). (43)

We differentiate with respect to αK
µ and use the fact that a(·, ·)(resp. F(·))

is a bilinear (resp. a linear) form. We obtain:

a

(
∂uh
∂αµ

, ψK
j (αK)

)
+ a

(
uh(~α),

∂ψK
j (αK)

∂αµ

)
= F

(
∂ψj(α

K)

∂αµ

)
. (44)

Then, substituting Eqs. (31), (32), and (33) in Eq. (44) leads to the desired
result given by Eqs. (39) and Eq. (41). The proof of Property (iii) results
from applying the second order derivative with respect to αµ and αµ′ to Eq.
(43), and then substituting into the obtained result the expression of the
second order partial derivative of uh(~α) given by Eqs (35)-(37).
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Corollary 3.1. The expansion coefficients ~ξ, {~̇ξµ}, and {~̈ξµµ′} are solu-
tions of the following linear system:

A ~X =
−→
b (45)

where A is an Nφ×Nφ, Hermitian and positive definite matrix whose entries
are of the form a

(
φK
j , φ

K′

l

)
; ∀K,K ′ ∈ Th, 1 ≤ j ≤ nK and 1 ≤ l ≤ nK′

, with

the bilinear form a(·, ·) defined in Eq. (28). The expression of the vector ~b
depends on the target expansion coefficients as follows:

i. For ~X = ~ξ, the j th coordinate of the vector ~b is given by:

bj = F (ψK
j (αK)) ; ∀j = 1, · · ·nK , ∀K ∈ Th (46)

with the linear functional F given in Eq. (29).

ii. For ~X = ~̇ξµ, the j
th coordinate of vector ~b is given by:

bj = G(ψK
j (αK)) ; ∀j = 1, · · ·nK , ∀K ∈ Th (47)

with the linear functional G given in Eq. (41).

iii. For ~X = ~̈ξµµ′ , the j th coordinate of vector ~b is given by:

bj = G(ψK
j (αK)) ; ∀j = 1, · · ·nK , ∀K ∈ Th (48)

with the linear functional G given in Eq. (42).

Upon determination of the set of differentiated expansion coefficients {ξ̇µ}

and {ξ̈µµ′} by the above procedure, the Hessian, L̈(~α) of the Newton system
Eq. (23) can be constructed. At the algebraic level, Eq. (23) becomes:

M(m) ~X(m) = ~b(m) (49)

where M(m) is an NΩ×NΩ real and symmetric matrix whose entries are given
by Mµµ′(~αm) = L̈µµ′(~αm)(see Eq. (34)). Matrix M is dense but is of much
smaller dimension than the least-squares matrix A since NΩ << Nφ. Hence,
the linear system given by Eq. (49) can be solved using any direct method.
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3.2.3. LSM-WT algorithm: Summary

The proposed solution methodology for tracking the propagation direction
of the field with the local basis functions can be viewed as the following
three-step strategy.

Step 1. Initialization
Define Th, the partition into Nh elements K of the computational
domain Ω, see Fig. 4 for illustration. For each element K, select a
set of nK plane-waves

(
φK
j

)
j=1,··· ,nK . Note that specifying a constant

value for nK , i.e., stipulating the same number of basis functions
for all elements in Th, is the simplest choice and commonly used.
Finally, we select the number and location of the subdomains, e.g.,
the contiguously colored regions in Fig. 4, where we would be op-
timizing the angles of the basis functions. In the considered mesh
discretization, we chose h to be the element edge length along the
radial direction.

Step 2. At iteration m
Evaluate uh(~α

(m)) and first- and second-order Fréchet derivatives

u̇h(α
(m)) and üh(~α

(m)) by solving one linear system, A ~X=rhs, (see
Eq. (45)), where A is an Nφ × Nφ, Hermitian and positive definite
matrix. A is a sparse matrix with a stencil width of 5nK . This task
requires evaluation of 1

2
(NΩ+1)(NΩ+2) different right-hand sides as

defined in Eqs. (46), (47), and (48). Then, we determine the update

δ~α (m) by solving the linear system M ~X=~b (see Eq. (49)) where M
is an NΩ×NΩ, real, symmetric, and dense matrix. The orientational
angles of the basis functions are then updated ~α (m+1)=~α(m)+δ~α (m).

Step 3. Stopping criterion
To stop the algorithm, we first record all the angles of basis func-
tions in a nh × nK rectangular array α(m) and their corresponding
updates in a rectangular array δα(m). We stop the algorithm when

the relative successive variation ||δα(m)||

||α(m)||
is less than a prescribed tol-

erance level. The numerical investigation tends to indicate that 5%
is a practical tolerance level, as illustrated in Sec. 5.

Remark 2. The proposed formulation can also accommodate p-type refine-
ment in which the number of plane-waves can be apportioned differently from
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element to element, i.e., nK need not necessarily be considered constant.

4. Mathematical Analysis

Throughout this section, we adopt the following notations and assump-
tions:

• Th is a regular triangulation of the computational domain Ω into triangular-
or quadrilateral-shaped elements K i.e. there exists a positive con-
stant ĉ that depends on Ω only such that:

∀K ∈ Th ;
hK
ρK

≤ ĉ, (50)

where ρK denotes the radius of the disc inscribed in the element K
centered at xG, the gravity center of K [29]. Note that he is the length
of the edge e of the element K i.e. hK = max

e⊂∂K
he and h = max

K∈Th
hK .

• For K ∈ Th, we define the local space V (K) as follows:

V (K) =
{
v ∈ H1(K);

∣∣ ∆v + k2v = 0 in K and ∂nv ∈ L2(∂K)
}
.

(51)

• V is a global space given by:

V =
{
v ∈ L2(Ω);

∣∣ ∀K ∈ Th, v|K ∈ V (K)
}
. (52)

• For v ∈ V , we denote by |||·||| the norm associated with theHermitian
bilinear form a(·, ·), given by Eq. (28), as follows:

|||v||| = {a(v, v)}1/2 , (53)

that is,

|||v|||2 =
∑

e:interior edge

(
1

k2he
‖[[∂nv]]‖

2
0,e +

1

he
‖[v]‖20,e

)

+
∑

e⊂Γ

1

k2he
‖∂nv‖

2
0,e +

∑

e⊂Σ

1

k2he
‖∂nv − ikv‖20,e.

(54)
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• For each element K ∈ Th, || · ||0,K (resp. | · |1,K) is the L
2-norm (resp.

H1 semi-norm) on K.

• The following two classical inequalities [29] will be of subsequent use:

‖w‖0,e ≤ ĉ

(
1

h
1/2
K

‖w‖0,K + h
1/2
K |w|1,K

)
, (55)

‖∂nw‖0,e ≤ ĉ

(
1

h
1/2
K

|w|1,K + h
θ−3/2
K |w|θ,K

)
(56)

where θ ∈ (3/2, 2].

We recall the following standard properties that will be of subsequent use:

Property 4.1.

i. Let J(·) be the cost function given by Eq. (25). Then,

J(v) = 1
2
a(v, v)−ℜ(F (v)) + 1

2

∑

e⊂Γ

1

k2he
||g||2L2(e) ; ∀ v ∈ V, (57)

with ℜ(z) representing the real part of z ∈ C. Observe that:

J(v) = 0 if and only if v ∈ H1(Ω) ∩ V and v satisfies BVP(1).

ii. Assume Ω to be a polygonal-shaped domain. Then, for any g ∈ Hs(Γ)
with s > 0, the solution of BVP(1), u ∈ Hθ(Ω), where θ ∈ (3/2, 2].
Hence, u ∈ V and J(u) = 0.

4.1. Announcement of the Main Results

The following two theorems summarize the main results of this section.
The first result provides an a priori error estimate.

Theorem 4.1. Let u (resp. uh) be the solution of the boundary value
problem BVP(1) (resp. the variational problem VF(27)). Then there exists
a positive constant ĉ (ĉ depends on Ω only) such that:

||u− uh||L2(Ω) ≤ ĉ (1 + kh) inf
vh∈Vh

|||u− vh|||, (58)

where Vh is any finite dimensional subspace of the space V given by Eq(52).
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The next result provides a posteriori error estimates that depend on the
regularity of the scattered field u, the solution of BVP(1).

Theorem 4.2. Let u (resp. uh) be the solution of the boundary value
problem BVP(1) (resp. the variational problem VF(27)). Then, there exists
a positive constant ĉ (ĉ depends on Ω only) such that:

||u− uh||L2(Ω) ≤ ĉ (1 + kh)

(∑

e⊂Γ

1

k2he

∫

e

(g − ∂nuh) g ds

)1/2

. (59)

In addition, if u ∈ HN+2(Ω) (and N ≥ 1), then there exists a positive
constant ĉ (ĉ depends on Ω and N only) such that:

||u−uh||L2(Ω) ≤ ĉ (1 + kh)N+4 (kh)N−1

(
ks ‖g‖1/2−s,Γ +

N−1∑

l=0

1

kl+1
‖g‖l+1/2,Γ

)
.

(60)
where s ∈ (1/2, 1).
Remark 3. The following three observations are noteworthy:

• The proof of Theorem 4.1 uses the same argument introduced
in [1]. However, unlike the approach used in [1], our proof does
not require the mesh to be uniform because of our choice of
the weights in the cost function given by Eq. (25). In addi-
tion, Theorem 4.1 provides an a priori error estimate with an
explicit dependence in kh because of the use of the stability
estimate derived in Theorem 4.3). This is not the case in The-
orem 3.1 in [1] in which the explicit dependence in h−1/2 only.
Our estimate appears to be an interesting improvement.

• Theorem 4.2 provides a practical a posteriori error estimate that can
be employed for an adaptive mesh refinement and/or subdomain parti-
tioning strategy yielding {Ωµ}. This estimate is very simple to evaluate
at it involves the computation of the normal derivative of the scattered
field over the edges of the interior boundary Γ. These quantities do not
add to the cost of the calculation, as they have been determined when
building the matrix A. Moreover, the intermediate analysis de-
veloped to prove Theorem 4.2 uses an ingenious argument
relating Taylor series and plane wave expansions to prove
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approximation properties of plane waves in Sobolev norms.
Although results along theses lines are known, this analysis
dispenses with the need for integral operators, as done by Me-
lenk et al.[30–32], and the rather “complicated” arguments of
Cessenat and Després [10]. Furthermore, it appears that our
approach can be extended to the three-dimensional case with
no additional burden.

• When the incident field is a plane wave, the expression of g is given
by Eq. (2), which is an analytical function. Hence, the regularity of u
depends mainly on the regularity of the boundary Γ (since in practice
the exterior boundary Σ is an artificial boundary that can be chosen
to be regular enough). Moreover, for the case of g given by Eq. (2),
we have ‖g‖s,Γ ≤ ĉ ks+1 for any s > 0. Therefore, since k ≥ 1, the a
posteriori estimate given by Eq. (60) becomes:

||u− uh||L2(Ω) ≤ ĉ (1 + kh)N+4 (kh)N−1 ks+1, (61)

where s ∈ (1/2, 1).

4.2. Preliminary Properties and Intermediate Estimates

The goal of this section is to establish the properties and estimates needed
to prove Theorem 4.1 and Theorem 4.2.

4.2.1. Preliminary Properties

Let Vh be any finite dimensional subspace of the space V given by Eq. (52).
Let u (resp. uh) be the solution of the boundary value problem BVP(1)
(resp. the variational problem VF(27)).

Then, we have the following useful properties pertaining to the bilinear
form a(·, ·) given by Eq. (28):

Property 4.2. The bilinear form a(·, ·) satisfies the following two properties:

i.
a(u− uh, vh) = 0 ; ∀vh ∈ Vh. (62)

ii.

a(u− uh, u) =
∑

e⊂Γ

1

k2he

∫

e

(g − ∂nuh) g ds. (63)
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Proof. To establish Property i, we first observe that it follows from VF(27)
that:

a(u, vh) = F (vh) ; ∀vh ∈ Vh ⊆ V. (64)

Hence, Property ii is a direct consequence of combining Eq. (64) and the fact
that uh also satisfies VF(27).
Next, we prove Property iii. First, it is easy to verify that:

a(u− uh, u) = F (u)− F (uh). (65)

Hence, using the definition of F (·) (See Eq(29)), we deduce that:

a(u− uh, u) =
∑

e⊂Γ

1

k2he

(∫

e

g ∂nu ds −

∫

e

g∂nuh ds

)
. (66)

which proves to Property ii.

The next results are stability estimates on the solution of the boundary
value problem BVP(1).

Lemma 4.1. Assume Ω to be a polygonal-shaped domain and k ≥ 1. Let
u ∈ H1(Ω) be the solution of BVP(1) with a boundary condition g ∈ L2(Γ).
Then, for any s ∈ (1/2, 1], there is a positive constant ĉ that depends on Ω
and s only such that:

|u|1,Ω + k ‖u‖0,Ω ≤ ĉ ks ‖g‖ 1
2
−s,Γ. (67)

In addition, if Ω is C∞ and g ∈ HN+1/2(Γ), for N ∈ N, then u ∈ HN+2(Ω)
and there is a positive constant, denoted by ĉ that depends on Ω, s, and N
only such that for any integer m such that 2 ≤ m ≤ N + 2, we have:

‖u‖m,Ω ≤ ĉ

(
km−1+s ‖g‖ 1

2
−s,Γ +

m−2∑

l=0

km−1−l ‖g‖l+1/2,Γ

)
. (68)

Proof. Let g ∈ L2(Γ) and consider w ∈ H1(Ω) the unique solution of the
following Laplace-problem:





−∆w + k2w = 0 in Ω,
∂nw = g on Γ,

∂nw − ikw = 0 on Σ.
(69)
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Next, we set ϕ = u− w. Then, ϕ ∈ H1(Ω) and satisfies the following BVP:




∆ϕ+ k2ϕ = 2k2w in Ω,
∂nϕ = 0 on Γ,

∂nϕ− ikϕ = 0 on Σ.
(70)

Therefore, there is a positive constant, denoted by ĉ, that depends on Ω only
such that [33]:

k ‖ϕ‖0,Ω + |ϕ|1,Ω+ ≤ ĉ k2 ‖w‖0,Ω. (71)

In addition, since w is the solution of the Laplace-problem given by (69),
then w satisfies:

|w|21,Ω + k2 ‖w‖20,Ω − ik ‖w‖20,Σ =

∫

Γ

gw ds. (72)

We then deduce from taking the real part of Eq. (72) and the fact that k ≥ 1
that:

‖w‖21,Ω ≤ |w|21,Ω + k2 ‖w‖20,Ω ≤

∣∣∣∣
∫

Γ

gw ds

∣∣∣∣ ≤ ‖g‖ 1
2
−s,Γ ‖w‖s− 1

2
,Γ, (73)

for any s ∈ (1/2, 1].
On the other hand, there is also a positive constant denoted again by ĉ that
depends on Ω and s only such that:

‖w‖s− 1
2
,Γ ≤ ĉ ‖w‖s,Ω ≤ ĉ ‖w‖1−s

0,Ω ‖w‖s1,Ω ≤ ĉ ks−1
(
k2‖w‖20,Ω

) 1−s
2
(
‖w‖21,Ω

) s
2 .

(74)
Moreover, using Eq. (73), it follows from Eq. (74) that:

‖w‖s− 1
2
,Γ ≤ ĉ ks−1

∣∣∣∣
∫

Γ

gw ds

∣∣∣∣
1/2

(75)

Consequently, it follows from Eq. (73) and Eq. (75) that there is also a
positive constant denoted again by ĉ that depends on Ω and s only such
that: ∣∣∣∣

∫

Γ

gw ds

∣∣∣∣ ≤ ĉ ks−1 ‖g‖ 1
2
−s,Γ

∣∣∣∣
∫

Γ

gw ds

∣∣∣∣
1/2

(76)

and thus, ∣∣∣∣
∫

Γ

gw ds

∣∣∣∣
1/2

≤ ĉ ks−1 ‖g‖ 1
2
−s,Γ. (77)
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Finally, it follows from Eq. (73) and Eq. (77) that there is also a positive
constant, denoted again by ĉ, that depends on Ω and s only such that:

|w|1,Ω + k ‖w‖0,Ω ≤ ĉ ks−1 ‖g‖ 1
2
−s,Γ. (78)

Furthermore, since u = ϕ + w, it follows from Eq. (71) and Eq. (72) that
there is also a positive constant denoted again by ĉ that depends on Ω and
s only such that:

k ‖u‖0,Ω + |u|1,Ω ≤ ĉ
(
k2 ‖w‖0,Ω + |w|1,Ω + k ‖w‖0,Ω

)
. (79)

Hence, we obtain from Eq. (78) and Eq. (79) that there is also a positive
constant, denoted again by ĉ, that depends on Ω only such that:

|u|1,Ω + k ‖u‖0,Ω ≤ ĉ ks ‖g‖ 1
2
−s,Γ, (80)

which concludes the proof of Eq. (67).
Next, we prove Eq. (68). To this end, assume g ∈ HN+1/2(Γ), for N ∈ N.
We use the induction to prove that u ∈ HN+2(Ω). First, we know that
u ∈ H1(Ω). For 1 ≤ m ≤ N + 1, assume u ∈ Hm(Ω). Therefore, u|∂Ω ∈

Hm− 1
2 (∂Ω) with 1

2
≤ m− 1

2
≤ N + 1

2
. Moreover, if follows from the regularity

of g, that ∂nu|∂Ω ∈ Hm− 1
2 (∂Ω). On the other hand, ∆u = k2 u ∈ Hm(Ω).

Therefore, u ∈ Hm+1(Ω) and we have [34]:

‖u‖m+1,Ω ≤ ĉ
(
‖∆u‖m−1,Ω + ‖∂nu‖m− 1

2
,Γ

)
, (81)

for some positive constant ĉ that depends on Ω only. Hence, u ∈ HN+2(Ω).
Furthermore, since u satisfies BVP(1), then for 1 ≤ m ≤ N + 1, we have:

‖u‖m+1,Ω ≤ ĉ
(
k2‖u‖m−1,Ω + ‖g‖m− 1

2
,Γ + k ‖u‖m− 1

2
,Σ

)
. (82)

Thus,

‖u‖m+1,Ω ≤ ĉ
(
k2‖u‖m−1,Ω + ‖g‖m− 1

2
,Γ + k ‖u‖m,Ω

)
. (83)

Proceeding by induction, we then obtain, for 2 ≤ m ≤ N + 2, that:

‖u‖m,Ω ≤ ĉ

(
km ‖u‖0,Ω + km−1 |u|1,Ω +

m−2∑

l=0

km−2−l ‖g‖l+1/2,Γ

)
. (84)
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which can be re-written as follows:

‖u‖m,Ω ≤ ĉ

(
km−1 (k ‖u‖0,Ω + |u|1,Ω) +

m−2∑

l=0

km−2−l ‖g‖l+1/2,Γ

)
. (85)

Eq. (68) is then a consequence of substituting Eq. (80) in to Eq. (85)

Next, let v ∈ V and consider w ∈ H1(Ω) the unique solution of the fol-
lowing BVP:





−∆w − k2w = v in Ω,
∂nw = 0 on Γ,

∂nw + ikw = 0 on Σ.
(86)

The next result states a stability estimate on the solution of BVP(86) assum-
ing that the boundary of the domain Ω is only Lipschitz continuous. Note
that a similar result has been established in [33] assuming the computational
domain being a polygonal-shaped domain. Similar estimates with different
approaches can be found for example in [35] and references therein.

Lemma 4.2. Assume Ω to be a polygonal-shaped domain and k ≥ 1. Then,
w ∈ Hθ(Ω), where θ ∈ (3/2, 2]. In addition, there is a positive constant ĉ
that depends on Ω and θ only such that:

k ‖w‖0,Ω + k1−θ |w|θ,Ω ≤ ĉ ‖v‖0,Ω. (87)

Proof. The regularity of w ∈ Hθ(Ω), with θ ∈ (3/2, 2] results from standard
regularity results of the Laplace operator [36]and [34]. In addition, we have:

‖w‖θ,Ω ≤ ĉ
{
‖v + k2w‖θ−2,Ω + ‖k w‖θ−3/2,Σ

}
. (88)

for some positive constant ĉ that depends on Ω and θ only.
In addition, since w ∈ H1(Ω), we have:

k ‖w‖0,Ω + |w|1,Ω ≤ ĉ ‖v‖0,Ω. (89)

Next, we estimate |w|θ,Ω. To this end, we proceed in two steps.
Step 1. The goal here is to prove that

‖w‖θ−3/2,Σ ≤
ĉ

k2−θ
‖v‖0,Ω. (90)
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To this end, we first consider the the following standard estimate:

‖w‖θ−3/2,Σ ≤ ĉ ‖w‖θ−1,Ω. (91)

In addition, since
1

2
< θ−1 < 1, then we also have the following interpolation

result [36]:
‖w‖θ−1,Ω ≤ ‖w‖2−θ

0,Ω ‖w‖θ−1
1,Ω . (92)

Therefore, Eq. (91) becomes:

‖w‖θ−3/2,Σ ≤ ĉ ‖w‖2−θ
0,Ω ‖w‖θ−1

1,Ω . (93)

Furthermore, since k ≥ 1, it follows from (89) that:

‖w‖1,Ω ≤
(
k2 ‖w‖20,Ω + |w|21,Ω

)1/2
≤ ĉ ‖v‖0,Ω, (94)

and

‖w‖0,Ω ≤
ĉ

k
‖v‖0,Ω. (95)

Eq. (90) is then an immediate consequence of Eq. (93), Eq. (94), and Eq. (95).
Step 2. The goal here is to prove that:

‖w‖θ−2,Ω ≤
ĉ

k3−θ
‖v‖0,Ω. (96)

It follows from BVP(86) that:

k2 ‖w‖−1,Ω = ‖∆w + v‖−1,Ω. (97)

Hence,
k2 ‖w‖−1,Ω ≤ |w|1,Ω + ‖v‖−1,Ω. (98)

Consequently, there is a positive constant ĉ that depends on Ω only such
that:

k2 ‖w‖−1,Ω ≤ |w|1,Ω + ĉ ‖v‖0,Ω. (99)

Then, it follows from Eq. (89) and Eq. (99) that there is a positive constant,
denoted again by ĉ, that depends on Ω only such that:

k2 ‖w‖−1,Ω ≤ ĉ ‖v‖0,Ω. (100)
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Furthermore, using again Eq. (89), we deduce from Eq. (100) that there is a
positive constant, denoted again by ĉ, that depends on Ω only such that:

k2 ‖w‖−1,Ω + k ‖w‖0,Ω ≤ ĉ ‖v‖0,Ω. (101)

We then conclude the proof of Eq. (96) using standard interpolation results

[36] and the fact that −
1

2
< θ − 2 ≤ 0.

We are now ready to prove Eq. (87). First, we have from Eq. (88) that:

‖w‖θ,Ω ≤ ĉ
{
‖v‖θ−2,Ω + k2 ‖w‖θ−2,Ω + ‖k w‖θ−3/2,Σ

}
. (102)

Next, it follows from substituting Eq. (90) and Eq. (96) into Eq. (102) that
there is a positive constant, denoted again by ĉ, that depends on Ω only such
that:

‖w‖θ,Ω ≤ ĉ
{
‖v‖0,Ω + kθ−1 ‖v‖0,Ω + kθ−1 ‖v‖0,Ω

}
. (103)

Therefore, Eq. (87) results immediately for using k ≥ 1 and θ ∈ (3/2, 2] into
Eq. (103).

4.2.2. Interpolation Properties

We adopt throughout this paragraph the following additional notations:

• For K ∈ Th, let
−→x G be the gravity center of K and ρK the radius of

the circle inscribed in K whose center is −→x G.

• We set:
rK = min

(
ρK ,

π

3 k

)
(104)

and consider BK = B(−→x G, rK), the ball of radius rK centered at −→x G.

Hence, BK ⊆ K. In addition, ∀−→x ∈ BK and for any
−→
d such that

|
−→
d | = 1, we have: ∣∣∣k−→d · (−→x −−→x G)

∣∣∣ ≤ π

3
(105)

and

cos
(
k
−→
d · (−→x −−→x G)

)
≥

1

2
. (106)
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• Let M ∈ N, we set the following M plane waves:

φq(
−→x ) = ei k

−→
dq ·(

−→x−−→x G); q = 1, 2, · · · ,M (107)

where
−→
dq is a unit vector representing the direction of the propagation

of φq. Note that, using Eq. (105) and Eq. (106), we obtain φq(
−→x )

satisfies the following property:

1

|BK |

∣∣∣∣
∫

BK

φq(
−→x ) d−→x

∣∣∣∣ ≥
1

2
; q = 1, 2, · · · ,M. (108)

• For q = 1, 2, · · · ,M , the direction of propagation
−→
dq is written as fol-

lows:
−→
dq = (dq1 , dq2). In addition, we set:

zq = dq1 + i dq2 ; q = 1, 2, · · · ,M. (109)

Hence, |zq| = 1 for q = 1, 2, · · · ,M .

• We set N = 2M +1. Then, for K ∈ Th, Z(K) is a subspace of HN(K),
given by:

Z(K) =
{
v ∈ HN(K); ∆v + k2v = 0 in K

}
. (110)

• Zh(K) is a finite-dimensional subspace of Z(K) defined by:

Zh(K) =

{
v : K → C

∣∣∣∣∣ v =
M∑

q=1

βqφq; where βq ∈ C

}
. (111)

The next proposition states preliminary interpolation properties to be
employed to establish estimates on the interpolation operator.

Proposition 4.1. For K ∈ Th, there is a linear mapping

ΠN : Z(K) −→ Zh(K)

such that, ∀v ∈ Z(K), we have:
∫

BK

∂m (v − ΠN v) d
−→x =

∫

BK

∂
m
(v − ΠN v) d

−→x = 0 ;m = 0, · · · , N

(112)
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where ∂m = (∂x1 + i ∂x2)
m and ∂

m
= (∂x1 − i ∂x2)

m.
Moreover, for any p ∈ N, there is a positive constant ĉ that depends on p and
Ω only such that:

|ΠN v|p,K ≤ ĉ kp (1 + khK)
N∑

m=0

1

km
|v|m,K ; ∀v ∈ Z(K). (113)

Proof. Let v ∈ Z(K), and define the vector
−→
b = (b1, b2, · · · , bN)

t ∈ C
M

as follows:




bm =
1

(i k)N+1−m

1

|BK |

∫
BK

∂
N+1−m

v d−→x m = 1, 2, · · · , N

bN+1 =
∫
BK

v d−→x

bm+N+1 =
1

(i k)m
1

|BK |

∫
BK

∂mv d−→x m = 1, 2, · · · , N.

(114)
We also consider the matrix A ∈ C

M,M defined by

Amq = zm−1
q , 1 ≤ m, q ≤M. (115)

Observe that A is invertible and ‖A−1‖2 does not depend on K, k, and rK
given by Eq. (104). Hence, there is a unique

−→
ξ ∈ C

M and a positive constant
ĉ that depends on Ω only such that:

A
−→
ξ =

−→
b (116)

and
‖
−→
ξ ‖2 ≤ ĉ ‖

−→
b ‖2.

On the other hand, it follows from Eq. (114) that:

‖
−→
b ‖22 =

M∑

m=1

|bm|
2 =

N∑

m=1

1

k2(N+1−m)

1

|BK |2

∣∣∣∣
∫

BK

∂
N+1−m

v d−→x

∣∣∣∣
2

+
1

|BK |2

∣∣∣∣
∫

BK

v d−→x

∣∣∣∣
2

+
N∑

m=1

1

k2m
1

|BK |2

∣∣∣∣
∫

BK

∂mv d−→x

∣∣∣∣
2

,

(117)
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and then,

‖
−→
b ‖22 =

1

|BK |2

∣∣∣∣
∫

BK

v d−→x

∣∣∣∣
2

+
N∑

m=1

1

k2m
1

|BK |2

(∣∣∣∣
∫

BK

∂
m
v d−→x

∣∣∣∣
2

+

∣∣∣∣
∫

BK

∂mv d−→x

∣∣∣∣
2
)
.

(118)
Next, for each plane wave φq given by Eq. (107), zq given by Eq. (109), and
ξq given by Eq. (116), we set:

βq = zNq ξq
|BK |∫

BK

φq(
−→x ) d−→x

; q = 1, 2, · · · ,M. (119)

We also define the interpolation operator ΠN as follows:

ΠNv =
M∑

q=1

βq φq ; ∀v ∈ Z(K). (120)

Since, for each m ∈ N, we have:

∂mφq = (i k)m zmq φq and ∂
m
φq = (i k)m

1

zmq
φq,

then, it follows from Eq. (120) that:

∂mΠNv =
M∑

q=1

zNq ξq
|BK |∫

BK

φq(
−→x ) d−→x

(i k)m zmq φq ; ∀v ∈ Z(K). (121)

Therefore,

∫

BK

∂mΠNv d
−→x = |BK |

M∑

q=1

zN+m
q ξq (i k)m ; ∀v ∈ Z(K). (122)

Consequently, using Eq. (115) and Eq. (116), along with the definition of the

vector
−→
b given by Eq. (114), it follows from Eq. (122) that:

∫

BK

∂mΠNv d
−→x = |BK | (i k)

m bN+m+1 =

∫

BK

∂mv d−→x ; ∀v ∈ Z(K).

(123)

29



Similarly, we also have:

∫

BK

∂
m
ΠNv d

−→x = |BK | (i k)
m bN−m+1 =

∫

BK

∂
m
v d−→x ; ∀v ∈ Z(K).

(124)
Eq. (123) and Eq. (124) conclude the proof of Eq. (112).
On the other hand, for p ∈ N and K ∈ Th, it follows from the definition of
ΠN given by Eq. (120) that:

|ΠNv|p,K ≤

M∑

q=1

|βq| |φq|p,K ; ∀v ∈ Z(K). (125)

Moreover, using Eq. (119) along with Eq. (108), we deduce that:

|βq| ≤ 2 |ξq| ; q = 1, 2, · · · ,M. (126)

Hence,
‖β‖2 ≤ 2 ‖ξ‖2 ≤ 2 ‖A−1‖2 ‖b‖2. (127)

In addition, it is easy to verify that for any K ∈ Th and any plane waves φq

given by Eq. (107), there is a positive constant ĉ (ĉ depends on Ω only) such
that:

|φq|p,K ≤ ĉ kp hK ; q = 1, 2, · · · ,M. (128)

Therefore, it follows from substituting Eq. (127) and Eq. (128) into Eq. (125)
that there is a positive constant ĉ (ĉ depends on Ω only) such that:

|ΠNv|p,K ≤ ĉ kp hK ‖b‖2 ; ∀v ∈ Z(K). (129)

Next, we estimate ‖b‖2. To this end, we observe that, by construction, we
have:

‖b‖2 ≤ ĉ
N∑

m=0

1

|BK |

(∣∣∣∣
∫

BK

∂mv d−→x

∣∣∣∣+
∣∣∣∣
∫

BK

∂
m
v d−→x

∣∣∣∣
)

; ∀v ∈ Z(K).

(130)
Hence,

‖b‖2 ≤ ĉ

N∑

m=0

1

|BK |1/2

(
‖∂mv‖0,K + ‖∂

m
v‖0,K

)
; ∀v ∈ Z(K), (131)
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and therefore:

‖b‖2 ≤
ĉ

rK

N∑

m=0

|v|m,K ; ∀v ∈ Z(K), (132)

where rK is given by Eq. (104).
Furthermore, it follows from Eq. (50) and Eq. (104) that:

hK
rK

≤ max(ĉ,
3

π
khK) ≤ ĉ (1 + khK) (133)

for some positive constant denoted again by ĉ. Eq. (113) is then an immediate
consequence of substituting Eq. (132) and Eq. (133) into Eq. (129).

Before stating the second interpolation estimate, we prove the following
technical Lemma.

Lemma 4.3. For K ∈ Th, consider the subspace

W (K) =

{
w ∈ H1(K)

∣∣∣∣
∫

BK

w d−→x = 0

}
.

Then, there is a positive constant ĉ (ĉ does not depend on K) such that:

‖w‖0,K ≤ ĉ hK (1 + khK) |w|1,K ; ∀w ∈ W (K). (134)

Proof. Let α ∈ C. Then, for any w ∈ W (K), we have:

‖w‖0,K ≤ ‖w−α‖0,K+ |α| |K|1/2 = ‖w−α‖0,K+
|K|1/2

|BK |

∣∣∣∣
∫

BK

(w − α) d−→x

∣∣∣∣ .
(135)

Hence, using Eq. (108) and Eq. (133), we deduce that there is a positive
constant ĉ that depends on Ω only such that:

‖w‖0,K ≤ ‖w−α‖0,K + ĉ
hK
rK

‖w−α‖0,BK
≤ ĉ (1+khK) ‖w−α‖0,K . (136)

Finally, we have
inf
α∈C

‖w − α‖0,K ≤ ĉ hK |w|1,K , (137)

which concludes the proof of Lemma 4.3.
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Proposition 4.2. There is a positive constant ĉ such that for any K ∈ Th,
v ∈ Z(K) ∩HN+1(K), and m = 0, 1, · · · , N , we have:

|v − ΠNv|m,K ≤ ĉ (1 + khK)
N+1−m hN+1−m

K |v − ΠNv|N+1,K . (138)

Proof. Let v ∈ Z(K)∩HN+1(K). Then, ΠNv ∈ Zh(K) ⊆ Z(K)∩HN+1(K).
Consequently, w = v−ΠNv ∈ Z(K) and therefore, it follows from Eq. (112)
(see Proposition 4.1) that:

∫

BK

∂mw d−→x =

∫

BK

∂
m
w d−→x = 0 ;m = 0, · · · , N. (139)

On the other hand, we have

∂x =
1

2

(
∂ + ∂

)
,

∂y =
1

2i

(
∂ − ∂

)
,

and
∆ = ∂∂ = ∂∂.

Hence, for j, l ∈ N such that j + l ≤ N , we have:

∂jx =
1

2j

j∑

p=0

j!

p!(j − p)!
∂p ∂

j−p

and

∂ly =
1

(2i)l

l∑

q=0

l!

q!(l − q)!
∂q ∂

l−q
.

Consequently, we have

∂jx ∂
l
y w =

1

2j+l il

j∑

p=0

l∑

q=0

j! l!

p!(j − p)! q!(l − q)!
∂p+q ∂

j+l−p−q
w.

Observe that if 2(p+q) ≤ j+ l, we have ∂p+q ∂
j+l−p−q

w = ∆p+q ∂
j+l−2(p+q)

w.
In addition, we also have ∆p+q w = (−k2)p+q w. Consequently, we have:

∂p+q ∂
j+l−p−q

w = (−k2)p+q ∂
j+l−2(p+q)

w.
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Since 0 ≤ j + l − 2(p+ q) ≤ j + l ≤ N , then it follows from Eq. (139) that:
∫

BK

∂p+q ∂
j+l−p−q

w d−→x = 0.

Furthermore, if 2(p+ q) ≥ j + l, we have:

∂p+q ∂
j+l−p−q

w = ∆j+l−(p+q) ∂2(p+q)−(j+l)w = (−k2)p+q ∂j+l−2(p+q)w.

Similarly, since 0 ≤ 2(p+ q)− (j+ l) ≤ 2(J + l)− (j+ l) ≤ N , it also follows
from Eq. (139) that:

∫

BK

∂p+q ∂
j+l−p+q

w d−→x = 0.

Finally, we can conclude, that for any j, l ∈ N such that j + l ≤ N , we have:
∫

BK

∂jx ∂
l
y w d−→x = 0.

Let 0 ≤ m ≤ N and j, l ∈ N such that j + l = m. Then, using Lemma 4.3,
there is a positive constant ĉ (ĉ does not depend on K) such that:

‖∂jx ∂
l
y w‖0,K ≤ ĉ (1 + khK)hK |∂jx ∂

l
y w|1,K . (140)

Since j + l = m, we deduce that:

|w|m,K ≤ ĉ (1 + khK)hK |w|m+1,K ; 0 ≤ m ≤ N. (141)

Therefore, there is a positive constant, denoted again by ĉ (ĉ does not depend
on K) such that:

|w|m,K ≤ ĉ (1 + khK)
N+1−m hN+1−m

K |w|N+1,K ; 0 ≤ m ≤ N. (142)

The next result is a key estimate for proving the main results of this paper
(See Theorem 4.1 and 4.2).

Theorem 4.3. There is a positive constant ĉ, ĉ depends on Ω and N only,
such that for any K ∈ Th, v ∈ Z(K) ∩HN+1(K), and m = 0, 1, · · · , N + 1,
we have:
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|v − ΠNv|m,K ≤ ĉ (1 + khK)
N+2−m hN+1−m

K (k |v|N,K + |v|N+1,K) . (143)

Proof. Let v in Z(K) ∩HN+1(K) and q = 0, 1, · · · , N − 1. Then, we have:

|v|q,K =
1

k2
‖∆v‖q,K ≤

ĉ

k2
|v|q+2,K . (144)

Hence,

|v|q,K ≤
ĉ

k2p
|v|q+2p,K ; with 0 ≤ p ≤

N + 1− q

2
. (145)

Therefore, we deduce that:

|v|q,K ≤





ĉ

kN+1−q
|v|N+1,K for N + 1− q even

ĉ

kN−q
|v|N,K for N + 1− q odd.

(146)

Consequently, it follows from Eq. (146) that there is a positive constant ĉ (ĉ
depends on Ω only) such that:

N∑

q=0

1

kq
|v|q,K ≤ ĉ

(
1

kN
|v|N,K +

1

kN+1
|v|N+1,K

)
. (147)

Let m = 0, 1, · · · , N and v in Z(K) ∩ HN+1(K). Then, it follows from
Eq. (138) (See Proposition 4.2), Eq. (113) (See Proposition 4.1), and Eq. (147)
that there is a positive constant, denoted again by ĉ, that depends on Ω only)
such that:

|v − ΠNv|m,K ≤ ĉ (1 + khK)
N+1−m hN+1−m

K (|v|N,K + |ΠNv|N+1,K) . (148)

Hence, using Eq. (113), we deduce that:

|v − ΠNv|m,K ≤ ĉ (1 + khK)
N+1−m hN+1−m

K (|v|N+1,K+

(1 + khK)
N∑

q=0

kN+1

kq
|v|q,K)

≤ ĉ (1 + khK)
N+2−m hN+1−m

K (k |v|N,K + |v|N+1,K) .

(149)
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A direct application of the previous theorem is the following interpolation
error estimate.

Corollary 4.1. Suppose (1+khK)hK ≤ 1. Then, there is a positive constant
ĉ, ĉ depends on Ω, N, and θ such that for any K ∈ Th and v ∈ Z(K) ∩
HN+1(K), we have:

|v − ΠNv|θ,K ≤ ĉ (1 + khK)
N+1−θ hN+2−θ

K (k |v|N,K + |v|N+1,K) , (150)

where 3/2 < θ ≤ 2.

4.2.3. Intermediate Estimates

We first establish a general result that can be viewed as a stability esti-
mate with respect to ||| · |||.

Proposition 4.3. Assume that Ω to be a polygonal-shaped domain. Then,
there is a positive constant ĉ (ĉ depends on Ω only) such that:

||v||0,Ω ≤ ĉ (1 + kh) |||v||| ; ∀v ∈ V (151)

Proof. For v ∈ V , consider w ∈ H1(Ω) the unique solution of BVP(86).
Note that it follows from the standard regularity results of the Laplace oper-
ator [36], [34] that w ∈ Hθ(Ω) with θ ∈ (3/2, 2]. Next, we multiply the first
equation of BVP(86) by v and integrate over Ω. Hence, it follows from us-
ing Green-Riemann theorem and the fact that v satisfies Helmholtz equation
that:

‖v‖20,Ω =
∑

K∈Th

∫

∂K

(w ∂nv − v∂nw) ds, (152)

which can be written as follows:

‖v‖20,Ω =
∑

e:interior edge

∫

e

(w [[∂nv]] − [v] ∂nw ) ds

+
∑

e⊂Γ

∫

e

(w ∂nv − v ∂nw ) ds+
∑

e⊂Σ

∫

e

(w ∂nv − v ∂nw ) ds.

(153)

We substitute the boundary conditions of BVP(86) into Eq. (153). We then
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obtain:

‖v‖20,Ω =
∑

e:interior edge

∫

e

(w [[∂nv]] − [v] ∂nw ) ds

+
∑

e⊂Γ

∫

e

w ∂nv ds+
∑

e⊂Σ

∫

e

w (∂nv + ik v ) ds.

(154)

Thus,

‖v‖20,Ω =
∑

e:interior edge

∫

e

(w [[∂nv]] − [v] ∂nw ) ds

+
∑

e⊂Γ

∫

e

w ∂nv ds+
∑

e⊂Σ

∫

e

w
(
∂nv − ik v

)
ds.

(155)

Next, we apply Cauchy-Schwartz inequality to Eq. (155). We then obtain:

‖v‖20,Ω ≤
∑

e:interior edge

(‖w‖0,e‖ [[∂nv]]‖0,e + ‖[v]‖0,e ‖∂nw‖0,e )

+
∑

e⊂Γ

‖w‖0,e ‖∂nv‖0,e +
∑

e⊂Σ

‖w‖0,e ‖∂nv − ikv‖0,e.
(156)

Hence, using the definition of ||| · ||| (See Eq. (54)), we deduce that:

‖v‖20,Ω ≤

{ ∑

e:interior edge

(
kh1/2e ‖w‖0,e + h1/2e ‖∂nw‖0,e

)

+
∑

e⊂∂Ω

kh1/2e ‖w‖0,e

}
|||v|||.

(157)

Consequently, we have:

‖v‖20,Ω ≤ |||v|||
∑

K∈Th

∑

e⊂∂K

(
kh

1/2
K ‖w‖0,e + h

1/2
K ‖∂nw‖0,e

)
. (158)

Next, we substitute the two classical inequalities given by Eq. (55) and
Eq. (56) into Eq. (158). We then obtain:

‖v‖20,Ω ≤ ĉ |||v|||
∑

K∈Th

(
k‖w‖0,K + khK |w|1,K + |w|1,K + hθ−1

K |w|θ,K
)
. (159)
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Therefore, we have:

‖v‖20,Ω ≤ ĉ |||v|||
(
k‖w‖0,Ω + (1 + kh)|w|1,Ω + hθ−1|w|θ,Ω

)
. (160)

To conclude the proof we use the stability estimates of Lemma 4.2. It follows
from Eq. (160) and Eq. (87) that:

‖v‖20,Ω ≤ ĉ |||v|||
(
1 + kh+ (kh)θ−1

)
‖v‖0,Ω. (161)

Since 3/2 < θ ≤ 2, then 1/2 < θ − 1 ≤ 1. Consequently, it follows from
Eq. (161) that there is a positive constant, denoted again by Ĉ which depends
on Ω only, such that:

‖v‖0,Ω ≤ ĉ (1 + kh) |||v|||.

In the following, we establish intermediate estimates involving the norm
||| · |||.
Proposition 4.4. For θ ∈ (3/2, 2], we consider the space:

Wθ =
{
v ∈ Hθ(Ω) ; ∀K ∈ Th : v|K ∈ V (K)

}
. (162)

where V (K) is the subspace given by Eq. (51).
Then, there exists a positive constant ĉ that depends on Ω and θ only such
that, for any v ∈ Wθ, we have:

|||v||| ≤ ĉ

{∑

K∈Th

(
1

h2K
‖v‖20,K +

(1 + khK)
2

k2h2K
|v|21,K +

1

k2h4−2θ
K

|v|2θ,K

)}1/2

.

(163)

Proof. Since the considered triangulation Th is regular satisfying Eq. (50),
then it follows from Eq. (54), that there is a positive constant ĉ that depends
on Ω only such that for any v ∈ Wθ, we have:

||v|||2 ≤ ĉ
∑

K∈Th

∑

e⊂∂K

(
1

k2hK
‖∂nv‖

2
0,e +

1

hK
‖v‖20,e

)
. (164)
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Using the classical inequalities given by Eq. (55) and Eq. (56), it follows
from Eq. (164) that there exists a positive constant, denoted again by ĉ, that
depends on Ω only such that:

|||v|||2 ≤ ĉ
∑

K∈Th

(
1

k2h2K
|v|21,K +

1

k2h4−2θ
K

|v|2θ,K +
1

h2K
‖v‖20,K + |v|21,K

)
,

(165)
which concludes the proof of Proposition 4.2.

The next result is a general error interpolation estimate with respect of
the norm ||| · |||.

Proposition 4.5. There is a positive constant ĉ that depends on Ω and N
such that:

|||v − ΠNv||| ≤ ĉ (1 + kh)N+3 hN−1

(
|v|N,Ω +

1

k
|v|N+1,Ω

)
; ∀v ∈ X (166)

where X =
{
v ∈ HN+2(Ω)

∣∣ ∆v + k2v = 0 in Ω
}
, the mapping ΠN is de-

fined in Proposition 4.1 (See Eq. (120)), and θ ∈ (3/2, 2].

Proof. To establish Eq. (166), we first use the expression of ||| · ||| given by
Eq. (54).

|||v − ΠNv||| ≤ ĉ

(∑

K∈Th

(
1 + khK
khK

)2

|v − ΠNv|
2
1,K +

1

(kh2−θ
K )2

|v − ΠNv|
2
θ,K

+
1

h2K
‖v − ΠNv‖

2
0,K

)1/2

.

(167)

Then we apply Eq. (143) (See Theorem 4.3) in conjunction with Eq. (150),
we obtain:

|||v − ΠNv||| ≤ ĉ

{∑

K∈Th

[
(1 + khK)

2N+4

(khK)2
h2NK +

(1 + khK)
2N+4−2θ

(kh2−θ
K )2

h
2(N+1−θ)
K

+ (1 + khK)
2N+4 h2NK

] (
k2 |v|2N,K + |v|2N+1,K

)}1/2
.

(168)

Therefore,
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|||v − ΠNv||| ≤ ĉ

(
(1 + kh)N+2

k
hN−1 +

(1 + kh)N+2−θ

k
hN−1 + (1 + kh)N+2 hN

)

(k |v|N,Ω + |v|N+1,Ω) ,

(169)

which concludes the proof of Eq. (166).

Corollary 4.2. Assume ∂Ω to be infinitely differentiable, and let g ∈ HN+1/2(Γ),
where N ∈ N. Then, there is a positive constant ĉ that depends on Ω and N
such that:

|||u−ΠNu||| ≤ ĉ (1 + kh)N+3 (kh)N−1

(
ks ‖g‖1/2−s,Γ +

N−1∑

l=0

1

kl+1
‖g‖l+1/2,Γ

)
,

(170)
where u is the solution of BVP(1), s ∈ (1/2, 1), and θ ∈ (3/2, 2].

Proof. This is a direct consequence of applying Lemma 4.1 (See Eq. (67)
- (68)) in conjunction with Eq. (169). Indeed, we have:

|||u− ΠNu||| ≤ĉ (1 + kh)N+3 hN−1

{
kN−1+s ‖g‖1/2−s,Γ +

N−2∑

l=0

kN−2−l ‖g‖l+1/2,Γ

+
1

k

(
kN+s ‖g‖1/2−s,Γ +

N−1∑

l=0

kN−1−l ‖g‖l+1/2,Γ

)}
.

(171)

Hence,

|||u−ΠNu||| ≤ ĉ (1 + kh)N+3 (kh)N−1

(
ks ‖g‖1/2−s,Γ +

N−1∑

l=0

1

kl+1
‖g‖l+1/2,Γ

)
.

(172)
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4.3. Proof of the Main Results

First, we apply property ii (See Eq. (62) in Property 4.2) with vh = uh.
This leads to:

|||u− uh|||
2 = a(u− uh, u) = a(u− uh, u− vh) ; ∀vh ∈ Vh. (173)

Consequently,
|||u− uh||| = inf

vh∈Vh

|||u− vh|||. (174)

Then, using Eq. (151) (See Proposition 4.3, there exists a positive constant
ĉ that depends on Ω only such that:

||u− uh||0,Ω ≤ ĉ (1 + kh) inf
vh∈Vh

|||u− vh|||, (175)

which concludes the proof of Theorem 4.1. Furthermore, it follows from
substituting Eq. (63) (See property iii. in Property 4.2) into Eq. (173) that:

|||u− uh|||
2 =

∑

e⊂Γ

1

k2he

∫

e

(g − ∂nuh) g ds. (176)

Consequently, it follows from Eq. (151) (See Proposition 4.3) and Eq. (176)
that there exists a positive constant ĉ that depends on Ω only such that:

||u− uh||0,Ω ≤ ĉ (1 + kh)

{∑

e⊂Γ

1

k2he

∫

e

(g − ∂nuh) g ds

}1/2

, (177)

which concludes the proof of the a posteriori estimate given by Eq. (59) in
Theorem 4.2. Similarly, the a posteriori error estimate given by Eq. (60) in
Theorem 4.2 results from Proposition 4.3 and Corollary 4.2.

5. Illustrative Numerical Results

We consider a prototypical system comprised of a sound-hard, disk-shaped
scatterer of radius a = 1, embedded in circular domain of radius R = 2, in the
presence of an incident plane-wave impinging from the left, i.e., ~d=(1,0). The
analytical solution for this configuration is expressed as Fourier series [21, 37].

u(r, θ) = 2
∞∑

m=0

′ (−i)m
(
C2

mH
1
m(kr) + C1

mH
2
m(kr)

)
cos(mθ); a ≤ r ≤ R,

θ ∈ [0, 2π),(178)
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where the prime on the sum indicates that the first term is halved and the
Fourier coefficients C l

m satisfy:

C l
m = (−1)l

J
′

m(ka)

∆m

(
Hl

′

m(kR)− i Hl
m(kR)

)
; l = 1, 2, (179)

and

∆m = H1
′

m(ka)
(
H2

′

m(kR)− i H2
m(kR)

)
− H2

′

m(ka)
(
H1

′

m(kR)− i H1
m(kR)

)
.

(180)
The total relative error of the numerical approximation of the scattered field,
uh, can subsequently be expressed by the modified H1-norm:

||uh − u||
Ĥ1(Ω)

=

(∑

K

||uh − u||2H1(K) +
∑

∂K∈Th

||uK
′

h − uKh ||
2
L2(∂K∩∂K′)

) 1
2

.

(181)
This norm is considered a more accurate indicator than solely the standard,
local, H1-norm as it also takes into account the jump of the solution across
the edges of the elements. In this study, the series of the analytical solution,
given by Eq. (178) was truncated by selecting the first 2∗ka+4 terms. Pre-
viously, we observed that this choice was sufficient to achieve the combined
convergence of the sum [21–23].

Remark 4. In spite of its apparent simplicity, there exists at least three at-
tributes of this disk-shaped scattering mathematical model. Firstly, we can
assess the accuracy of the proposed method by evaluating the relative error
with respect to the analytical solution, given by Eq. (178). Secondly, the
considered configuration admits incoming traveling waves due to reflections
at the outer boundary. Thus, the local main direction of field propagation
is not readily apparent. This makes the determination of the main local
directions of propagation, particularly for the far field, more challenging for
the proposed wave-tracking approach, as compared to the situation where a
more efficient absorbing boundary condition is employed. Lastly, for realis-
tic scatterers, e.g., non-convex shaped scatterers, multiple reflections at the
scatter’s boundary may impede easy determination of the main direction for
the near field propagation. The considered configuration includes to some
extent such a complication through traveling waves reflected at the exterior
boundary. These waves propagate toward the inner boundary and therefore
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mimic the complexity of the propagation. Hence, the proposed configuration
appears to provides an adequate platform for assessing the performance of
the proposed wave tracking solution methodology.

The computational domain Ω is uniformly discretized into quadrilateral ele-
ments by approximating the inner and outer boundary as regular matching
polygons and radially partitioning the resultant annulus. The mesh is gener-
ated as follows: the number of elements in the angular direction are 4 times
the number of radial elements nr. The total number of elements in the mesh
can thus be calculated as 4n2

r, as illustrated in Fig. 4 for the case of nr = 4.
To locally approximate the scattered field, each element contained a basis set
of 4 plane-wave functions centered at the element centroid. The initial angle
of the plane-wave basis functions were defined by aligning one function along
horizontal axis (1,0) and equally spanning the remaining basis functions by
angles in increments of π/2, (see Eq. (7) with nK=4).
A systematic approach was employed to assign radially aligned elements
within a quadrant to comprise an individual subdomains, in the manner
of Fig. 4. As such, the orientation of the elemental basis sets within a given
subdomain were locked to a common value. Each subdomain was then repli-
cated to all four quadrants. We recognize that it is not an optimal domain
partition since the propagation of the scattered field is not periodic with
respect to the quadrant nor it is necessarily constant within a given radial
cone. Clearly, this partitioning strategy is relatively arbitrary and definitely
not optimal which may hamper the efficiency of the proposed wave-tracking
method. A more intelligent subdomain assignment should rely on an adap-
tive strategy based on a priori physics-based knowledge and/or a posteriori
error estimation.
Four frequency regimes were considered in this study: ka = 1 and ka = 2
(low-frequency), ka = 5 (resonance region), and ka = 10 (higher frequency).
For comparison purposes, we also directly applied LSM and computed the
relative error for these frequencies with variation of the mesh resolution h/a
(see Table 1). The performance of the two methods, LSM and LSM-WT, is
assessed by determining the size of the corresponding linear system, Nφ, for
a prescribed accuracy level (see Table 2). Moreover, since we use a direct
method for solving the resulting linear systems, the number of nonzeros en-
tries of the matrixA, employed by both the LSM and LSM-WT, are reported
in Table 2. Recall that this number is an indicator of factorization cost that
complements the total number of unknown values.
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The Pardiso direct solver, versions 4.1.0 - 4.1.2 [38–41], was employed to solve
the relatively large and sparse system given by Eq. (45) with multiple right-
hand sides: Eqs. (46), (47), and (48). Solution of the comparatively smaller
and dense Newton system Eq. (49) was completed by LU factorization with
an in-house routine. The following numerical experiments were executed by
a FORTRAN 90 code-base developed in this study with parallel capability
provided by the OpenMP application programming interface [42]. The pro-
gram was run on the Lonestar and Blacklight supercomputing workstations
supported by the Texas Advanced Computing Center and Pittsburgh Su-
percomputing Center respectively, as well as on a local AMD Opteron 4284
workstation with 128 GB of memory.

(h/a)−1\ ka 1 2 5 10

32 10%
40 9% 15%
50 8% 14%
64 7% 12%
90 10%
105 9% 28%
160 23%
200 20%
300 17%
600 12.3%
800 11.2%
925 10.2%
1500 7.5% 21.7%
1700 20.7%
2000 19.5%

Table 1: Sensitivity of the relative error to the mesh refinement for four frequencies:
ka = 1, 2, 5, and 10. Values report the total relative error of the scattered field approxi-
mated by LSM with 4 plane-waves per element.

5.1. Performance assessment for ka=1, ka=2

We set ka=1 and consider a discretization step size h/a = 1/6, that is, we
define a mesh with 6 radial and 24 angular elements, i.e., Nh=144 as the
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Relative LSM LSM-WT

ka Error (h/a) Nφ(x 103) n0 (x 106) (h/a) Nφ(x 103) n0 (x 106) iter.

1 10% 1/32 16.4 0.327 1/6 0.576 0.011 3
2 10% 1/90 129.6 2.59 1/10 1.6 0.032 5
5 10% 1/925 13,690 271 1/50 40 0.798 13
5 5% . . . . . . . . . 1/90 129.6 2.59 16
10 10% . . . . . . . . . 1/160 409.6 8.19 20

Table 2: Comparison of the size of the global matrix A required to achieve a prescribed
accuracy level for ka = 1, 2, 5, and 10, and 4 plane-waves per element. The total number
of non-zero entries is listed as n0. Missing LSM values were unattainable with 128 GB of
memory.

total number of elements. The domain partition is comprised of 6 angular
subdivisions replicated in each quadrant in the manner depicted in Fig. 4.
The basis functions are 4 plane-waves initially oriented parallel to the carte-
sian axes. As stated earlier, these plane-waves will be rotated by a common
angle in radially aligned elements. Hence, the total number of unknowns
(angles) in the Newton system is NΩ = 6. The obtained results are reported
in Fig. 5, Fig. 6, and Tables 1 and 2. The following include observations
and noteworthy points:

• Fig. 6 indicates that, at iteration 0, which corresponds to the plane-
wave basis functions aligned parallel to the cartesian axes, the error is
about 22%. This accuracy level delivered by LSM indicates that LSM-
WT algorithm is applied very far from the pre-asymptotic convergence
region. Yet, Fig. 6 and Table 2 show that LSM-WT converges after

only 3 iterations to the prescribed accuracy level %10 in the Ĥ1-relative
error over the computational domain.

• Fig. 5 reveals that the LSM-WT algorithm changed the orientation of
the angles from their original positions by up to 52◦counterclockwise
and 25◦clockwise at iteration 3 (see Fig. 5). These individual rotations,
demonstrate that it would be (a) improbable to predict such orientation
combinations at iteration 0 unless a wave-tracing strategy such
as the one suggested in [43] is employed, and (b) computation-
ally intractable for simpler combinatorial angle sweeping approaches to
achieve such a level of accuracy.
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iteration 0

iteration 3

Figure 5: Plane-wave basis function orientation (left) and pointwise relative error of the
absolute scattered field (right) for ka = 1, 4 plane-waves per element, h/a=1/6, NΩ = 6,
and Newton iterations 0 and 3. The basis set orientation of all elements within a given
subdomain are represented by their common value (left).
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Figure 6: Convergence history for ka=1, 4 plane-waves, h/a=1/6, and NΩ=6. Total
relative error (a) and relative change in the angles of the plane-waves (b), as a function
of iteration (solid line). The specified convergence threshold is denoted by the dotted line
(b).

• Fig. 6 describes the convergence history of the LSM-WT algorithm.
As the minimization of the Newton system is a multi-variate problem
it does not necessarily follow a path of monotonic decline, as evident
by the peak in the first iteration in Fig. 6a. It is an attribute of the
Newton method by which the system can “escape” local minima, al-
though, for any given iteration, the method may also overshoot optimal
convergence parametrization. Rapid convergence is apparent by the
monotonic decline in the relative error beginning at the second itera-
tion. Fig. 6b also demonstrates that monitoring the relative successive
change in the angle is a practical stopping criterion with selection of
5% tolerance on this change is found to be suitable.

• Table 2 demonstrates the efficiency of the method. Specifically, achiev-

ing 10% of the Ĥ1-relative error with 4 plane-waves per element requires
a mesh size of h/a=1/32 with LSM whereas, after 3 Newton iterations,
LSM-WT converges to 10% error with a mesh size of h/a=1/6. At
each iteration, LSM-WT requires evaluation of one (576×576) linear
system with 28 right-hand sides, in contrast to the comparative size
of the LSM system: 16,400×16,400. Therefore, there is a reduction in
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a b

Figure 7: Error evaluation for the frequency ka=2, 4 plane-waves per element, h/a=1/10,
and NΩ=10. Pointwise relative error of the absolute scattered field for (a) LSM and (b)
LSM-WT at iteration 5.

both non-zero and total unknown values between LSM and LSM-WT
by about a factor of 30.

• It should be acknowledged that LSM solves the system once while, at
each Newton iteration, LSM-WT needs to build A, multiple right-hand
sides, and factor this system which add to computational cost. Note,
the cost of building matrix A is significantly reduced by eschewing
numerical quadrature since all the integrals are evaluated analytically
over the elemental edges (1D intersections). This significantly reduces
the computational cost associated with building these matrices. The
same observation applies to the construction of the right-hand sides.
The cost for solving the Newton system is marginal as its corresponding
matrix M(m) is a 6 x 6 matrix. Thus, the competing factors, the size
of the system and the number of iterations required to achieve target
accuracy, govern computational efficiency. Due, in part, to the fact
that construction and solution of additional right-hand sides do not
significantly lengthen computational time, it is expected that the cost
generated by multiple iterations becomes progressively attenuated as
the size increases for larger systems incurred by standard LSM.

In the following results, the frequency is doubled, i.e., ka=2 while maintain-
ing 4 plane-waves per element. We set the discretization step size h/a =
1/10, that is, we define a mesh with 10 radial and 40 angular elements, i.e.,
Nh=400 as the total number of elements. The domain partition is comprised
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Figure 8: Convergence history for ka=2, 4 plane-waves, h/a=1/10, and NΩ=10. Total
relative error (a) and relative change in the angles of the plane-waves (b), as a function of
iteration.

of 10 angular subdivisions replicated in each quadrant, i.e., NΩ=10, as the
total number of subdomains. Results are shown in Figs. 7-8 and Tables 2
and 1. The following observations were taken:

• Fig. 8 indicates that at iteration 0, which corresponds to the plane-
wave basis functions aligned parallel to the cartesian axes, the error is
about 31%. This accuracy level delivered by LSM indicates that LSM-
WT algorithm is applied very far from the pre-asymptotic convergence
region. Yet, Fig. 8 and Table 2 show that LSM-WT converges after

only 5 iterations to the prescribed accuracy level %10 in the Ĥ1-relative
error over the computational domain.

• Table 2 demonstrates the efficiency of the method. Specifically, achiev-

ing 10% of the Ĥ1-relative error with 4 plane-waves per element requires
a mesh size of h/a=1/90 with LSM whereas, after 5 Newton iterations,
LSM-WT converges to 10% error with a mesh size of h/a=1/10. At
each iteration, LSM-WT requires evaluation of one (1,600×1,600) lin-
ear system with 66 right-hand sides in contrast to the comparative
size of the LSM system: 129,600×129,600. Therefore, there is a re-
duction in both non-zero and total unknown values between LSM and
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LSM-WT by about a factor of 80. Note that the size of the Newton
iteration matrix M(m) is only 10 x 10 and therefore its factorization is
computationally negligible.

• Doubling the frequency required refining the mesh by a factor of 1.7
(h/a=1/6 for ka=1 and h/a=1/10 for ka=2). However, the number of
iterations increased from 3 to 5 for ka = 1 to ka = 2. Nevertheless, the
increased number of iterations is compensated by the gain in reduction
in system size: a factor of 80 for ka=2 versus a factor of 30 for ka=1.

5.2. Performance assessment for ka=5

In the following computational experiment, a frequency of ka=5 is consid-
ered, while maintaining 4 plane-waves per element. We set the discretization
step size h/a = 1/50. Hence, the mesh possesses 50 radial and 200 angu-
lar elements, i.e., Nh=10,000 as the total number of elements. The domain
partition is comprised of 50 angular subdivisions, replicated in each quad-
rant, i.e., NΩ=50. Results are shown in Figs. 9-10 and Tables 1 and 2. The
following observations are noteworthy:

• Fig. 10 indicates that, at iteration 0, which corresponds to the plane-
wave basis functions aligned parallel to the cartesian axes, the error
is over 40% corresponding to the accuracy level delivered by LSM.
Clearly, LSM-WT algorithm is starting from an initial setup that is
completely deviated from the target. In spite of this unacceptably high

initial level of error, the algorithm attains 10% of the Ĥ1-relative error
after 13 iterations, as reported in Fig. 8 and Table 2.

• Table 2 demonstrates the efficiency of the method. Specifically, achiev-

ing 10% of the Ĥ1-relative error with 4 plane-waves per element requires
a mesh size of h/a=1/925 with LSM whereas, after 13 Newton itera-
tions, LSM-WT converges to 10% error with a mesh size of h/a=1/50.
At each iteration, LSM-WT requires evaluation of one (40,000×40,000)
linear system with 1,326 right-hand sides in contrast to the compara-
tive size of the LSM system: 13,690,000×13,690,000. Therefore, there
is a reduction in both non-zero and total unknown values between LSM
and LSM-WT by about a factor of 350. Note that the size of the New-
ton iteration matrix M(m) is only 50 x 50 and therefore, the solution of
the corresponding system marginally impacts the overall computational
cost.
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• The number of iterations m is increasing with the frequency. In this
case, the algorithm converged after 13 iterations. Nevertheless, the
increased number of iterations is compensated by the gain in reduction
in system size of a factor of 350.

• While error reduction by iterative application of the wave-tracking pro-
cess is apparent by inspection of the pointwise representation of the
relative error over the entirety of the computational domain (Fig. 9),
significant reduction can be achieved in the regions with the highest
LSM error, namely regions at angles of approximately π/4 and -π/4,
by use of an adaptive strategy for apportionment of elements into the
subdomains.

• The error and angular change profiles obtained as a function of iteration
(Fig. 10) reveal more oscillations in the first iterations than shown
previously for the ka=1 and ka=2 calculations (Figs. 6-8). This is
most likely due to the fact that the initial error of the Newton algorithm
is above 40% and therefore the state might proceed through multiple
local minima. Nevertheless, after the fourth iteration the algorithm
then exhibits monotonic convergence.

Proceeding further, we maintain the frequency at ka=5 and reduce the target
error level to 5%. To this end, we employ again 4 plane-waves per element,
but refine the mesh to 90 radial and 360 angular elements, i.e., 1/h = 1/90.
The domain was partitioned into 90 angular subdivisions replicated in each
quadrant, i.e., NΩ = 90. Results are shown in Figs. 11-12 and Tables 1 and
2. The following observations are noteworthy:

• Fig. 12a indicates that at iteration 0, which corresponds to the plane-
wave basis functions aligned parallel to the cartesian axes, the error is
31% corresponding to the accuracy level delivered by LSM. Again, the
LSM-WT algorithm is starting from an unacceptably high initial level

of error. However, the algorithm attains 5% of the Ĥ1-relative error
after 16 iterations, as reported in Fig. 12a and Table 2.

• Table 2 reveals that, even with a very fine mesh corresponding to
h/a = 1/1500 incurring solution of a system comprised of about 36
million unknowns, LSM delivers a relative error of about 7.5%. Re-
fining the mesh further exceeded our computational capabilities and
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therefore the 5% error level is computationally untractable with LSM.
On the other hand, LSM-WT delivers the 5% error level by solving, at
each Newton iteration, (a) a linear system with about 130 thousand
unknowns and 4,186 right-hand sides and (b) a small Newton system
with 90 unknowns.
It is recognized that increasing the number of plane-waves, without
refining the mesh, can indeed improve the accuracy as well as the com-
putational cost of LSM, as indicated in [1]. However, the objective of
the proposed approach is precisely to avoid the necessity to excessively
increase the number of required basis functions which can lead to the
risk of the loss of their linear independence. Additionally, LSM-WT can
even be more competitive if equipped with a higher number of plane-
waves in the elemental basis set provided that their linear independence
is numerically preserved.

• Dividing the error level from 10% to 5% was accomplished with LSM-
WT by refining the mesh by less than a factor of 2 and by almost
doubling the number of unknown angles.

5.3. Performance assessment for ka=10

We consider here a frequency value of ka = 10 and 4 plane-waves per element.
The target error level in this numerical experiment is 10%. We consider a
discretization step size h/a = 1/160, that is, we define a mesh with 160 radial
and 640 angular elements, i.e., Nh= 102,500 as the total number of elements.
The domain partition is comprised of 160 angular subdivisions replicated in
each quadrant in the manner depicted in Fig. 4. The four basis functions
are initially oriented parallel to the cartesian axes. The obtained results are
reported in Figs. 13-14 and Tables 1 and 2.

• Fig. 14 indicates that at iteration 0, which corresponds to the plane-
wave basis functions aligned parallel to the cartesian axes, the error
is about 45%. This accuracy level delivered by LSM indicates that
LSM-WT algorithm is starting from an initial configuration setup that
is completely deviated from the pre-asymptotic region. In spite of this
unacceptably high initial level of error, the algorithm attains 10% of

the Ĥ1-relative error after 20 iterations, as reported in Fig. 14a and
Table 2.
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• Table 2 reveals that, even with a very fine mesh corresponding to
h/a = 1/2000 incurring solution of a system comprised of about 64
million unknowns, LSM delivers a relative error of about 19.5%. Re-
fining the mesh further exceeded our computational capabilities and
therefore the 10% error level is computationally untractable with LSM.
On the other hand, LSM-WT delivers the 10% error level by solving,
at each Newton iteration, (a) a linear system with about 410 thousand
unknowns and 13,041 right-hand sides and (b) a small Newton system
with 160 unknowns. Again, in practical terms, this calculation became
feasible by application of the wave-tracking strategy only.
As stated earlier, it is possible to improve the accuracy as well as the
computational cost of LSM by increasing the number of plane-waves
without refining the mesh. We must reemphasize that the objective of
the proposed approach is to avoid the necessity to excessively increase
the number of required basis functions which can lead to the loss of lin-
ear independence, notwithstanding that near-linear dependencies may
not occur at this frequency value and considered mesh.

6. Summary and Conclusion

We have proposed a wave-tracking strategy to be incorporated into solution
methodologies that employ local plane-wave approximations. The key idea
here is that each plane-wave basis set within considered elements of the mesh
partition is individually or collectively rotated to best align one function of
the set with the main local propagation direction of the field. The goal in
doing this is to maintain a low number of plane-wave basis functions while
preserving the accuracy level. Consequently, it is expected that the approach
will improve computational efficiency by avoiding numerical instabilities that
result from near-linear dependency that may occur from increasing the num-
ber of plane-waves.
The proposed approach leads to the solution of a double minimization prob-
lem, where the unknowns are not only the usual nodes of the scattered field,
but also the main directions of propagation. The least-squares formulation
suggested in [1], a prototypical plane-wave based method, is considered in
this study to serve as a suitable underpinning to be used in conjunction
with the wave-tracking approach and, in its standard form, as an evaluative
benchmark. This resulting modified method is termed in this study as LSM-
WT. The Newton method is applied to solve the resulting non-linear system.
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Exact characterization of both the Jacobian and Hessian is established to
ensure convergence, stability, and robustness of the Newton algorithm. The
computational effort for applying LSM-WT is predominately governed by
the construction and factorization, at each Newton iteration, of the original
least-squares scattering matrix A with multiple right-hand sides. The matrix
A is of dimension Nφ × Nφ (with Nφ defined as the total number of basis
functions) and the number of right-hand sides is 1

2
(NΩ + 1×NΩ + 2), where

NΩ is the number of distinct rotational angles considered. Subsequently, a
construction and factorization of a Newton matrix is required by the LSM-
WT approach, however the size of this system, NΩ×NΩ is much smaller than
the scattering problem, i.e., NΩ << Nφ.
An evaluation of the scattered field from a prototypical sound-hard disk-
shaped scatterer circumscribed by a Robin-type boundary provided a model
for assessment of LSM-WT evaluated with respect to conventional applica-
tion of LSM. The results obtained from the numerical experiments, performed
with 4 plane-waves, demonstrate: (a) the LSM-WT algorithm converges to
the prescribed level of accuracy even when initiated from a configuration
that deviates greatly from the pre-asymptotic region, (b) LSM-WT is shown
to reduce the size of the LSM system by over two orders of magnitude de-
pending on the frequency range, and (c) for higher frequency regimes and/or
accuracy levels, LSM-WT allowed determination of the field whereas appli-
cation of LSM became computationally prohibitive.
Finally, it is anticipated that the performance of the LSM-WT approach
can be improved by use of an adaptive strategy to intelligently partition the
computational domain. This can be accomplished by an a posteriori error
estimate that we have established. This estimate can be easily employed
since it requires the computation of the the jumps of the scattered field over
the interior element edges. Such values are, in practice, readily available as
they are required for the construction of the matrix A corresponding to the
direct scattering system.
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a b

Figure 9: Error evaluation for the frequency ka=5, 4 plane-waves per element, h/a=1/50,
and NΩ=50. Pointwise relative error of the absolute scattered field for (a) LSM and (b)
LSM-WT at iteration 13.
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Figure 10: Convergence history for ka=5, 4 plane-waves, h/a=1/50, and NΩ=50. Total
relative error (a) and relative change in the angles of the plane-waves (b), as a function of
iteration.
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a b

Figure 11: Error evaluation for the frequency ka=5, 4 plane-waves per element, h/a=1/90,
and NΩ=90. Pointwise relative error of the absolute scattered field for (a) LSM and (b)
LSM-WT at iteration 16.
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Figure 12: Convergence history for ka=5, 4 plane-waves, h/a=1/90, and NΩ=90. Total
relative error (a) and relative change in the angles of the plane-waves (b), as a function of
iteration.
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a b

Figure 13: Error evaluation for the frequency ka=10, 4 plane-waves per element,
h/a=1/160, and NΩ=160. Pointwise relative error of the absolute scattered field for (a)
LSM and (b) LSM-WT at 20 iterations.
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Figure 14: Convergence history for ka=10, 4 plane-waves, h/a=1/160, and NΩ=160. Total
relative error (a) and relative change in the angles of the plane-waves (b), as a function of
iteration.
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