
HAL Id: hal-00959616
https://hal.inria.fr/hal-00959616v2

Submitted on 23 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulation at Very Large Scale with Distem
Tomasz Buchert, Emmanuel Jeanvoine, Lucas Nussbaum

To cite this version:
Tomasz Buchert, Emmanuel Jeanvoine, Lucas Nussbaum. Emulation at Very Large Scale with Distem.
SCALE Challenge, held in conjunction with the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), May 2014, Chicago, United States. �hal-00959616v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49619834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00959616v2
https://hal.archives-ouvertes.fr


Emulation at Very Large Scale with Distem

Tomasz Buchert, Emmanuel Jeanvoine and Lucas Nussbaum

Inria, Villers-lès-Nancy, F-54600, France

Université de Lorraine, LORIA, F-54500, France

CNRS, LORIA - UMR 7503, F-54500, France

Email: firstname.lastname@inria.fr

Abstract—Prospective exascale systems and large-scale cloud
infrastructures are composed of dozens of thousands of nodes.
Evaluating applications that target such environments is ex-
tremely difficult. In this paper, we present an extension of
the Distem emulator to allow experimenting on very large
scale emulated platforms thanks to the use of a VXLAN
overlay network. We demonstrate that Distem is capable of
emulating 40,000 virtual nodes on 168 physical nodes, and use
the resulting emulated environment to compare two efficient
parallel command runners: TakTuk and ClusterShell.

Keywords-large scale; emulation; VXLAN; virtualization

I. INTRODUCTION

In the fields of cloud computing or high performance

computing, the next generation platforms will involve more

and more computing units. Being able to efficiently use those

new infrastructures is a real challenge and numerous efforts

are needed to write appropriate distributed applications. Fur-

thermore, evaluating such applications can be complicated

since the final platform is sometimes not available, at least

for development purpose.

In previous work, we presented Distem [1], that provides

an emulated platform on top of a regular cluster in order

to facilitate the experimentation with distributed systems.

In this paper, we focus on enhancing Distem to deal with

large-scale experiments, typically those involving several

dozens of thousands of nodes. In particular, we explain

how leveraging overlay networks helps to push back some

previously reached limitations. Being able to build large-

scale platform is required to conduct large-scale experiments

but is not enough. Indeed, we also present a methodology

that leverages XPFlow [2] to perform clean and reproducible

large-scale experiments.

The paper is organized as follows. Section II presents a

general overview of Distem and how it has been enhanced

to be able to emulate very large-scale platforms. Section III

presents experiments carried out on 40,000 nodes that aimed

at showing the scalability of two efficient parallel command

tools. Section IV gives conclusions and presents future

works.

II. LARGE SCALE DISTRIBUTED SYSTEM EMULATOR

A. General overview

Distem [1] is a distributed system emulator that leverages

advanced Linux features like LXC, CPU frequency scaling

and traffic control, to emulate a heterogeneous platform on

top of a homogeneous cluster. Heterogeneity can be obtained

by (1) specifying a virtual network topology where latency

and bandwidth of the links can be defined, (2) emulating a

degraded CPU capability, (3) executing several virtual nodes

on a single physical node. Furthermore, Distem is able to

inject failures in the virtual platform in order to perform

experiment in realistic conditions.

Distem is a valuable tool for distributed system evaluation

since it allows one to perform experiments in various con-

ditions with only one physical testbed. Furthermore, Distem

improves reproducibility since the same experimental setup

can be reproduced on different physical infrastructure. Typi-

cal applications are: the study of a peer-to-peer protocol, the

study of a load-balancing algorithm, the study of a scheduler,

etc.

B. Enabling Large-Scale Experiments in Distem

Previously, we have explored the Distem scalability to

several thousands of virtual nodes (vnodes). Such virtual

platforms can easily be set up on clusters with 100 nodes.

Going beyond these numbers in terms of scale meets with

various network issues. As a reminder1, virtual nodes are

connected together in the following way. Every vnode has a

Virtual Ethernet device (veth) bridged into a Linux bridge

created on the physical node (pnode). The network inter-

face of the pnode is bridged into the Linux bridge. As

a consequence, vnodes and pnodes are in the same L2

network. When running more than 5,000 vnodes using this

architecture, several ARP-related problems appear. The ARP

protocol is used to provide mapping between a network

hardware address (i.e., MAC) and an IP address, a process

required in Ethernet networks to enable communication

between any two nodes. The encountered problems are:

1) the ARP protocol does not scale very well, in partic-

ular when a lot of requests are performed at the same

time, a phenomenon known as ARP flooding;

1See [1] for a complete explanation.



2) the ARP tables, in particular those in the network

equipment, have a hard-wired size limit (usually 8,096

or 16,192 entries) or are rather small (in the case of

default Linux settings); consequently, the addresses of

vnodes cannot be stored simultaneously in the table,

leading to excessive numbers of ARP requests since

the table is updated according to a LRU policy. In a

related work on large-scale virtualization [3], the au-

thors worked around this problem by partitioning the

address into smaller networks, using routing between

those smaller networks;

3) by default, the ARP entries are purged after a quite

short time, leading to unnecessary and intrusive ARP

traffic during an experiment.

Some of those issues has been fixed at the system level.

Indeed, Distem performs tuning of various operating systems

parameters on the pnodes to avoid useless ARP requests. In

particular, on each pnode, Distem increases the ARP table

size and the aging time of the ARP entries. Furthermore,

Distem can be used to statically set a complete ARP table

on all the vnodes, completely avoiding the ARP requests

between them. These adjustments prove to be very effective,

making it possible to perform experiments with 15,000

vnodes in the same L2 network. However, the problem of

ARP tables still affects the network equipment, since in most

of the cases it is not possible to modify their ARP settings.

To go beyond this limitation, we leveraged the capabilities

of overlay networks, and in particular the VXLAN [4]

protocol. VXLAN encapsulates L2 network traffic in UDP

datagrams, which is very interesting in our context. Indeed,

encapsulating the inter-pnode traffic using VXLAN overlay

relieves the network switches since they do not have to deal

anymore with vnode traffic directly: their ARP tables only

need to store information about pnodes. We have explored a

similar approach with GRE-tunnel encapsulation [5]. This is

working well with a few pnodes in the network, but it does

not scale at all since a full mesh between pnodes has to be

created. Our experiments were unsuccessful with more than

10 pnodes.

Furthermore, to enable high bandwidth and low latency

between pnodes, we used an InfiniBand network. This allows

to lower the inter-vnode latency and to achieve large-scale

experiments since the involved network equipment is more

efficient when dealing with high-throughput traffic.

C. Technical details

Using VXLAN to encapsulate the inter-pnode traffic

slightly modifies the previous Distem design. To create such

an overlay, at least two possibilities exist: (1) leveraging

OpenVSwitch2 that offers VXLAN encapsulation, or (2)

leveraging Linux that added VXLAN support since 3.7 ver-

sion. OpenVSwitch is probably the best direction to create

2http://openvswitch.org/

IP

network

InfiniBand

ib0 ib0

. . .

vxlan0

br0

veth0

Vnode

. . . vethn

Vnode

Pnode

vxlan0

br0

veth0

Vnode

. . . vethn

Vnode

Pnode

Figure 1. Network stack of a virtual node when using VXLAN encapsu-
lation. Each virtual node has a virtual interface (vethi) that is bridged with
VXLAN interface (vxlan0) on each pnode. This interface is associated with
physical IP interface (ib0). In our study IPoIB is used, but more traditional
IP over Ethernet can be used as well.

virtual network, for instance it is used as a foundation of the

network management of OpenStack. However, for simplicity

of use and to minimize dependencies, we based Distem’s

VXLAN support on top of the Linux implementation.

Figure 1 presents the network stack of a vnode when

using the VXLAN encapsulation in Distem. First, a VXLAN

interface is set on top of the pnode’s physical interface.

Because the VXLAN overlay carries aggregated traffic of

all vnodes, a high-performance network interface offering IP

interface, like 10G-Ethernet interface or IPoIB, is needed.

Then, each pnode has a bridge that contains the VXLAN

interface and interfaces of all vnodes on the given pnode. In

this case, the bridge does not contain directly the physical

network interface and all the vnodes’ traffic is encapsulated

before reaching the physical network interface. There is no

need to specify routes between pnodes since VXLAN uses

multicast-based discovery features that allow to establish the

routes between several nodes automatically.

III. EXPERIMENTAL VALIDATION

A. Purpose

In those experiments, we want to study two parallel

commands tools: TakTuk [6] and ClusterShell [7], [8] (aka

Clush). Both tools aim at efficient execution of command on

a large set of nodes, which is a critical concern since execut-

ing administrative tasks or executing complex applications

on large-scale clusters may rely on such tools. For instance,

executing a simple command on dozens of thousands of

nodes can take a lot of time if not performed in a proper

way.

ClusterShell and TakTuk differ in their way to achieve

high performance. ClusterShell uses a sliding window: the

root node establishes SSH connections in parallel to several

nodes, bounding the number of concurrent connections.



OBTAIN G5K NODES DEPLOY DEBIAN VERIFY CONNECTION INSTALL DISTEM START VNODES

= =DISCARD FAILED NODES TAKE SUBSET OF n NODES

RUN CLUSH

RUN TAKTUK WITH ARITY 2

RUN TAKTUK WITH ARITY 3

Figure 2. Experimental workflow. After the infrastructure is prepared (the first line of the workflow), a varying number of nodes (n) is used to run
Clush and TakTuk methods in a simple loop (denoted with “=”). At each iteration, the Distem infrastructure is analyzed and failed nodes are discarded if
necessary.

TakTuk, instead, uses a tree-based algorithm, using nodes

already connected to connect to additional nodes3. The

experiment presented below will allow the comparison of

those two strategies.

B. Physical Setup

The experiment has been executed on the Grid’5000

testbed [9]. More precisely, we used the Graphene and

Griffon clusters from the Nancy site. Graphene is composed

of 144 nodes (1 CPU Intel X3440 @2.53 GHz, 4 cores/CPU,

16GB RAM on each node) and Griffon is composed of 92

nodes (2 CPU Intel L5420 @2.50GHz, 4 cores/CPU, 16GB

RAM on each node). Both clusters are interconnected with

20Gbit InfiniBand network and run Debian Jessie with Linux

kernel at version 3.12.

On top of those clusters, we emulated a virtual platform

with Distem and 162 physical nodes. Each pnode hosted

246 vnodes. All inter-pnode traffic was encapsulated inside

a VXLAN overlay. Each VXLAN interface was plugged on

top of an IPoIB interface to leverage the performance of the

InfiniBand network.

C. Methodological Setup

Experiments where carried out with XPFlow [2], a tool

based on business processes and workflows, and specifically

designed to manage large-scale experiments. Among its

features are robust failure handling and useful workflow

patterns that model common experimental activities. In

particular, XPFlow allowed us to transparently manage a

failure of one physical node during our experiments, as it

is explained in the following section. Figure 2 presents the

experimental workflow.

Although our primary goal is to verify and show scal-

ability of Distem, we wanted to show it using a study of

various methods for command execution in large computer

installations. To this end, we measured the time necessary

to successfully execute the command true on a varying

number of nodes. Each measure is repeated 3 times and

3A similar mode of operation is available in ClusterShell’s development
branch, but we encountered problems when using it and discarded it from
our experiments.

the results are presented with 95% confidence intervals

according to Student’s t-distribution.

The raw results, the experimental workflow and associated

files are available at http://www.loria.fr/∼buchert/scale2014.

tar.xz.

D. Results

The results with small number of nodes are presented

in Figure 3. This range was chosen to show the size of

infrastructure when sliding-window algorithms for command

execution become inferior to ones based on tree topology. It

happens around 1,400 nodes (for TakTuk with arity 3) and

around 1,800 nodes (for TakTuk with arity 2).

Figure 4 shows the same type of experiments, but with

a much larger infrastructure. Distem, thanks to it use of

VXLAN encapsulation, shows a great scalability. Our goal

of 40,000 nodes was almost reached, as we were able to

successfully run our measurements with up to 39,852 virtual

nodes. The reason for that is that one physical node failed

during our measurements and had to be discarded. Fortu-

nately, the presence of this failure was promptly detected

and addressed by our experimental framework. Apart from

that detail, we do not see why the scalability of Distem could

not be pushed even more.

It can be expected that the total execution time consists

of a constant factor, a linear factor (due to a constant time

required by each node) and a logarithmic factor (due to a

tree topology used by TakTuk). Therefore, we modeled the

execution time using the model function

T (n) = A · n+B · log (n) + C (1)

where T - execution time, n - number of nodes, and A,B,C

- parameters of the model. The least squares fitting of the

data to this model gives:

TC (n) = 0.01649 · n− 7.55 · log (n) + 52, (2)

T2 (n) = 0.00146 · n+ 3.55 · log (n) − 4, (3)

T3 (n) = 0.00099 · n+ 2.27 · log (n) + 4. (4)

where TC , T2, T3 are results for Clush, TakTuk with arity 2,

and TakTuk with arity 3, respectively.



1,000 1,200 1,400 1,600 1,800 2,000
0

10

20

30

Number of nodes

T
im

e
(s

)

Clush TakTuk (arity 2) TakTuk (arity 3)

Figure 3. The time required to execute a command using various methods
(small number of nodes). Clush performs better than TakTuk-based methods
for around 1,400 nodes, but is outperformed by them for 2,000 nodes and
more.

0 1 2 3 4

·104

0

200

400

600

Number of nodes

T
im

e
(s

)

Clush TakTuk (arity 2) TakTuk (arity 3)

Figure 4. The time required to execute a command using various methods
(large number of nodes). Clush is increasingly outperformed by both
variations of TakTuk which use a tree overlay to execute commands.

We clearly see that the linear factor of Clush has the most

impact on its total execution time, whereas in the case of

TakTuk methods the linear factor is an order of magnitude

smaller and constitutes a smaller percentage of execution

time.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we showed Distem’s ability to scale to large

emulated infrastructures. This feature depends on VXLAN

encapsulation which is a modern network virtualization

technology to address problems associated with large-scale

distributed systems. We were able to successfully run our ex-

periments with 39,852 virtual nodes hosted on 162 physical

nodes interconnected with InfiniBand (although one node

failed unexpectedly), showing scalability of VXLAN and

Distem. Finally, we used this infrastructure to perform a

simple analysis of different methods for command execution.

Future work will follow two directions. The first direction

is to improve Distem in order to perform very large scale

experiments with nodes in a single L2 network. Our next

goal is to reach experiments involving more than 100,000

vnodes. Currently, one of the difficulties is to get access

to large number of nodes in the same L2 network with

root rights. The second direction is to enhance Distem

with a distributed mode in order to perform experiments

involving nodes from several geographical sites and many

L2 networks. This way, Distem would be able to deal with

extreme scale experiments.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using

the Grid’5000 testbed, supported by a scientific interest

group hosted by Inria and including CNRS, RENATER

and several Universities as well as other organizations (see

https://www.grid5000.fr).

REFERENCES

[1] L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum,
“Design and Evaluation of a Virtual Experimental Environment
for Distributed Systems,” in PDP2013 - 21st Euromicro In-
ternational Conference on Parallel, Distributed and Network-
Based Processing, (Belfast, United Kingdom), pp. 172 – 179,
IEEE, Feb. 2013.

[2] T. Buchert, L. Nussbaum, and J. Gustedt, “A workflow-
inspired, modular and robust approach to experiments in dis-
tributed systems,” Research Report RR-8404, INRIA, Nov.
2013.

[3] R. G. Minnich and D. W. Rudish, “Ten Million and One
Penguins, or, Lessons Learned from booting millions of virtual
machines on HPC systems,” in Workshop on System-level
Virtualization for High Performance Computing in conjunction
with EuroSys, vol. 10, 2009.

[4] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright, “VXLAN: A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks.” Internet Draft, Feb. 2014.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic
Routing Encapsulation (GRE).” RFC 2784, Mar. 2000.

[6] B. Claudel, G. Huard, and O. Richard, “TakTuk, adaptive
deployment of remote executions,” in Proceedings of the
18th ACM international symposium on High performance
distributed computing, pp. 91–100, 2009.

[7] S. Thiell, A. Degrémont, H. Doreau, and A. Cedeyn, “Clus-
terShell, a scalable execution framework for parallel tasks,” in
Linux Symposium, p. 77, 2012.

[8] S. Thiell, A. Degrémont, and H. Doreau, “ClusterShell, Python
library and tools for scalable cluster administration,” in PyHPC
- Python in HPC Workshop, 2013.

[9] “Grid’5000.” http://www.grid5000.fr.


