
HAL Id: hal-01011808
https://hal.inria.fr/hal-01011808

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Grid-based Collision Risk Prediction for
Driving Application

Lukas Rummelhard, Amaury Nègre, Mathias Perrollaz, Christian Laugier

To cite this version:
Lukas Rummelhard, Amaury Nègre, Mathias Perrollaz, Christian Laugier. Probabilistic Grid-based
Collision Risk Prediction for Driving Application. ISER, Jun 2014, Marrakech/Essaouira, Morocco.
�hal-01011808�

https://hal.inria.fr/hal-01011808
https://hal.archives-ouvertes.fr


Probabilistic Grid-based Collision Risk

Prediction for Driving Application
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Abstract. In the recent years, more and more modern cars have been
equipped with perception capabilities. One of the key applications of such
perception systems is the estimation of a risk of collision. This is nec-
essary for both Advanced Driver Assistance Systems and Autonomous
Navigation. Most approach for risk estimation propose to detect and
track the dynamic objects in the scene. Then the risk is estimated as
a Time To Collision (TTC) by projecting the object’s trajectory in the
future. In this paper, we propose a new grid-based approach for collision
risk prediction, based on the Hybrid-Sampling Bayesian Occupancy Fil-
ter framework. The idea is to compute an estimation of the TTC for each
cell of the grid, instead of reasoning on objects. This strategy avoids to
solve the difficult problem of multi-objects detection and tracking and
provides a probabilistic estimation of the risk associated to each TTC
value. After promising initial results, we propose in this paper to evalu-
ate the relevance of the method for real on-road applications, by using a
real-time implementation of our method in an experimental vehicle.

Keywords: Dynamic Occupancy Grid, Risk assessment, Time To Col-
lision, Intelligent Vehicle

1 Introduction

In the development of ADAS (Advanced Driver Assistance Systems) that can
prevent collision to append, a basic requirement is an assessment of the collision
risk. This paper presents an original method for collision risk estimation. The
idea is to compute an estimation of the TTC for each cell of a grid, instead
of reasoning on objects. This strategy avoids to solve the difficult problem of
multi-objects detection and tracking and provides a probabilistic estimation of
the risk associated to each TTC value.
The method has been implemented for real time operation on GPU in our ex-
perimental vehicle. Then the vehicle is used for real on-road testing in order to
evaluate the method in real conditions.
The paper is organized as follow: Section II presents related work. Section III
describes the method. Section IV provides experimental results. Section V con-
cludes.
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2 Related work

In the literature, various approaches have been proposed in order to detect po-
tential collisions in advance and trigger an assistance like a driver alarm or an
automatic braking. Most of them rely on the detection and tracking of the mov-
ing objects in the scene. This tracking is used to estimate a risk metric, used for
a decision layer. The simplest approach consists in computing a simple Time to
Collision (TTC) by predicting the trajectories of both the ego-vehicle and the
other objects using a simple linear motion model [1]. More advanced approach
propose to generate a set of possible trajectories for all the objects, including
the ego-vehicle, and compute the number of possible intersections between those
trajectories [2]. The trajectory generation is performed by applying a set of pos-
sible controls to the objects. This approach has the advantage of providing a
probabilistic estimation of the risk.

Considering that a control can change over time and is dependant from the
intention of the driver, the authors in [3] propose to constrain the possible tra-
jectories using the estimated maneuver intention of the driver. This allows to
consider longer time prediction.

All this methods rely on the detection and tracking of the moving objects [4].
This stage is a difficult problem to solve, which can be computationally costly
and can generate errors in the process. Alternatively to methods based on objects
trajectory prediction, other methods propose to estimate time to collision based
on visual features [5], but such methods are only designed to work with computer
vision.

Another alternative to the object-based approaches are the grid-based ap-
proaches, like the Bayesian Occupancy Filter [6], or its extension Hybrid -
Sampling Bayesian Occupancy Filter (HSBOF)[7], which represents the environ-
ment as a probabilistic occupancy grid. This framework allows to model both
the static and the dynamic environment, by estimating velocity probability dis-
tributions for each cell in the grid. It is efficient for short term prediction, but
since there are no notions of objects or behaviors, longer term prediction requires
to integrate additional prior knowledge like map information [8].

Grid based methods are designed to be very efficiently implemented on par-
allel architecture and avoid to deal with object-level data association for both
tracking and sensor fusion. Consequently, they are able to provide in real time
a robust representation of the environment. However, in order to use such ap-
proaches for driving applications, the authors generally add a subsequent clus-
tering stage to retrieve the notion of objects before any application [9, 3].

An hybrid approach is presented in [10], with velocity obstacles. The authors
combine a notion of objects with an estimation of velocities within a dynamic
occupancy grid.

Based on the occupancy grid framework, we propose in this paper a method
that allows to estimate both a probabilistic collision risk and a TTC for each
cell of a grid, without any detection and tracking of objects. This dense repre-
sentation of the risk is intended to be used to take decisions about the short
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term evolution of the scene. In this work, we present the approach and propose
to evaluate how it can be used for automotive applications.

3 Description of the method

3.1 HSBOF presentation

The Hybrid Sampling Bayesian Occupancy Filter (HSBOF)[7] is a Bayesian fil-
tering perception technique which models the environment at a sub-object level,
in term of spatial occupancy and dynamics. The surrounding of the subject is
divided into cells, to which are associated random variables, symbolizing their
occupancies and velocities. The scene is interpreted through the estimated dis-
tributions of those variables, estimations that are recursively updated according
to the observations. The motion field of the scene is inferred through the spa-
tial occupancy evolution, and is described as the combination of a static part,
depicted by likelihood values in a regular grid, and a dynamic part, sampled by
moving particles which transfer occupancy between cells. All the distributions
are jointly generated and updated. The distinction in dynamics allows to ap-
ply specific motion representations, and then to efficiently allocate memory and
computation power. Indeed, while the static part of the scene does not require an
important number of samples to symbolize its velocity distribution, the dynamic
one necessitate a substantial precision and reactivity. The figure 1 summarizes
the HSBOF scene representation. This data structure also allows to conveniently
change the reference frame, which is needed in case of a moving subject. Using
motion sensors embedded in the mobile robot (Inertial Measurement Unit, GPS,
Wheel speed and steering sensor, visual odometry, etc.), the displacement of the
grid between two updates is estimated, then applied on the models. The global
framework of the HSBOF is summarized on the figure 2.

Fig. 1. HSBOF data representation. A dense grid is used to represent the occupancy
while for each cell velocity is split among a static field and a set of particles.
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Fig. 2. HSBOF algorithm summary. From sensor data instantaneous occupancy grids
are successively computed. Those observations are integrated in a Bayesian filter in
which coexist and jointly adapt two models, a static grid and a dynamic set of moving
particles. The result is obtain by their combination, which provides a filtered occupancy
grid as well as inferred motion distributions for cells.

3.2 Grid-based collision assessment

As an output of the HSBOF, are available estimates of the robot surrounding
occupancy and dynamics. Thanks to the already mentioned embedded motion
sensors, the ego-motion is estimated. Using those and a robot model, which
specifies its form, size and motion model, a time projection is achieved to assess
collision risk in the future and localize it in the grid. Indeed, to each current
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occupancy component is associated a velocity and motion model, in such a way
that its position over time can be predicted. Simultaneously, the space occupied
by the robot over time can also be assessed. The risk evaluation consists in a
succession of scene configuration and robot position predictions, and so potential
overlaps, in other words collisions can be assessed in time and space (figure 3).

In practice, to each static cell and dynamic particle of the HSBOF represen-
tation are associated a ”Time To Contact” (TTC) value and a risk weight. Until
a time horizon, both vehicle and elementary components are iteratively moved
according to their motion models. The time step used is chosen according to the
grid resolution and the maximal reachable speed, to prevent any failed collision
detection due to time resolution. The intersection between the vehicle and each
basic component is evaluated. If a collision is confirmed, the TTC value is set
and a weight is associated to the element, according to its associated quantity
of occupancy. Otherwise, the next time step is processed. Beyond the chosen
time range, if no collision is observed, a null weight is assigned (since there is
no predicted collision, the TTC value is meaningless, by convention it is set to
the time limit). Those computations performed, for each cell in the current oc-
cupancy grid a risk value over the time range is calculated, corresponding to the
likelihood of the cell to be occupied, and for its content to collide with the robot
during the selected period. The risk calculation simply consists in a sum over
this time range of the related weights.

As a result at this stage, a risk grid presents for each cell the probability to
hit an obstacle coming from that cell over a given period if the scene dynam-
ics remain unchanged (conservative model, relevant for short-term prediction).
Given that grid, a single global collision value is computed, and used to inform
the system of any imminent danger. Two approaches are proposed to evaluate
this general risk :

The first one proposes to evaluate the likelihood of colliding with a selected
surface size. According to this area, and to the area of a cell, the number of n
cells to be struck is thus given, the computed risk value being the probability
to collide with n cells of the grid. This evaluation presents the advantage of
rightfully integrate risk when the occupancy estimation is diffuse. However, in
the case of high speed robot displacement, the integration of occluded spaces,
yet with unknown occupancy, can lead to systematic high risk scores. Although
crossing unknown areas is rightfully dangerous, the estimation becomes mean-
ingless under such circumstances.

The second evaluation selects, after applying a median filter on the risk grid
to remove noisy data, the maximum value of collision over the cells. This simpler
approach turns out to be more effective in practice.

By comparing this value to a threshold, a risk detector is thus defined. The
system is then used to generate alerts, for the driver if the timing makes it
relevant, and for a driving assistance device.
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Fig. 3. Collision risk estimation over time for a specific cell. The cell position is pre-
dicted according to its velocity, along with the mobile robot. This risk profile is com-
puted for every cell, and then used to integrate over time the global collision risk.

4 Experimental Results

4.1 Experimental platform

For the experiments, we equipped a Lexus LS600h car with two Ibeo Lux mul-
tilayer lidars under the two front lights (see Fig.4). The horizontal field of view
covered by the two lidars is almost 160 degrees. For the odometry calculation
we use vehicle velocity and steering data collected from the CAN bus system.
The input of our algorithm is a sequence of occupancy grids computed from the
two lidars. To merge the eight laser scan layers acquired by the two lidars and to
compute the input observation occupancy grid, we use a method similar to [11].
The vehicle is used to collect real on-road data for both downtown and highway
scenarios, in order to assess the performances of the proposed approach.

Fig. 4. Experimental platform : Lexus LS600h car equipped with two Ibeo Lux Lidars
and cameras.
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The collected data are also processed in real time using a computer embedded
in the car trunk. As the method is designed to be efficiently implemented on
parallel, it is implemented on GPU, using nvidia CUDA. The grid resolution
used is of 750x300, and the number of particles is 262144 (0.86 particle/ cell on
average). The complete chain for perception (including lidar to grid mapping,
HSBOF and TTC estimation) runs in real time at 15 FPS on a nVidia Quadro
2000 graphic board.

4.2 Methodology

The experiments focus on validating the approach in different contexts. On the
one side, real on-road data is used to asses the realism of the approach in complex
scenarios. One the other side, it is not possible to generate real risky situations
on open road. Therefore, collision are performed with soft objects in a closed
environment, to simulate risky driving situations.

Beyond the various contexts, we propose to use our risk estimation strat-
egy for various applications. Therefore, we consider 3 different time horizons
corresponding to 3 different TTC values:

A1 - pre-crash: a collision is likely to appear in less than t1 = 500ms. In this
context, the driver is no longer able to react and the collision detection is
used to prepare the vehicle to the impact;

A2 - collision mitigation: a collision is likely to appear between t1 and t2 = 1s
In this case, the vehicle can perform an automatic action (e.g. automatic
braking) in order to mitigate the danger or avoid the impact;

A3 - dangerous driving: a collision is likely to appear between t2 and t3 = 1.5s.
In this last case, the assistance system can warn the driver of a potential
risk and the driver may react in a way or another

4.3 First experiment : dynamic collisions

The first set of experiments was performed in a mostly controlled environment.
On a parking lot, the experimental vehicle was used to model its environment
and predicts potential collisions. To simulate obstacles, 3 bouncy balls of 55,
65 and 75 centimeter of diameter were thrown around the vehicle and on its
path. The main advantage of the use of balls is the immediate validation of
the existence of a risk. Indeed, on real road data, as actual collisions are not
conceivable, the ground truth for risk is a hard task as it implies a subjective
assessment. In this experiment, the vehicle could hit the obstacles, the collisions
being annotated, confirming a preceding risk without ambiguity. Many scenarios
were staged, including:

– immobile or moving vehicle
– immobile or moving obstacles
– various number of obstacles
– various trajectory options
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– impacts or close crossings

– limited visibility (late appearance of obstacles, occlusions, intersection dur-
ing curves)

Estimated risk values Figure 5-a shows an example of the estimated risk
values while the balls are thrown toward the vehicle. The impacts are annotated
as the vertical purple lines. It appears that for all the impacts, a high risk value
is properly predicted in advance. Figure 5-b shows in more detail an example
of risk prediction before the impact. As expected, the risk corresponding to
TTC ≤ 1.5s rises first (between 1.5s and 2s before the collision), followed by the
risk values corresponding to TTC ≤ 1.0s, and TTC ≤ 0.5s. Figure 5-c shows an
example where the ball crosses close to the car without hitting it. In this case,
the risk corresponding to TTC ≤ 1.5s is high and then decreases as soon as the
uncertainty about a possible collision becomes very low.

(a)

(b) (c)

Fig. 5. (a) Evolution of the collision risk for TTC ≤ 0.5s, 1.0s, 1.5s, in the case of
multiple balls thrown toward the vehicle. (b) detail when a collision happens. (c) detail
in case of the ball passing very near without collision. For 1.5s, a significant risk is
estimated, while for shorter TTC nothing is detected, as expected.

Alerts generation The experiment with the balloons has been repeated about
a hundred times, including cases where the car hits the balloons and other where
the balls come very close to the car without hitting it. This provides the opportu-
nity to evaluate possible thresholds for generating alerts for the different values
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of TTC. Figure 6 shows how the precision and recall rates change with respect
to the threshold.
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Fig. 6. Precision (red dots) and recall (green triangles) of risk detection according to
the threshold selected. From left to right, those are given for a estimation over 0.5s, 1s
and 1.5s.

It appears on the precision/recall curves that efficient detectors can be made
by selectionning the adequate threshold for every time horizon.

4.4 Second experiment : the mannequin

In order to go further more realistic scenarios, we designed a fake pedestrian in
the form of a tissue mannequin filled with bubble wrap. This allows to make
collisions with a human-shaped objects. Figure 7 shows the mannequin and the
system used for hanging it. This system is equipped with a runner, in order to
permit lateral displacements of the pedestrian.

(a) (b)

Fig. 7. (a) Fake pedestrian used for experiments. (b) The mannequin is attached to a
system with a runner, in order to allow lateral displacements.
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(a)

(b)

(c)

(d)

Fig. 8. Results of the system. Are presented each line a visual capture from the em-
bedded camera, the estimated occupancy grid in front of the car (white for occupied,
grey for unknown, black for empty), the estimated motion field (if a case is seen as
dynamic, a red motion vector showing the average velocity in the cell is drawn on the
map) and finally the estimated risk map for 0.5s. The first sequence (a) (b) presents the
appearance of an occluded pedestrian, the second (c) (d) a moving pedestrian heading
towards the road.
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Over the different scenarios of car velocity, pedestrian motion and occlusion
experimented, the system successfully generated risk alarms every time. Figure
8 shows examples of those experiments with the mannequin. The first examples
corresponds to the sudden appearance of a pedestrian which was hidden by
the preceding car. The risk map then shows immediately a important risk at
the position of the pedestrian. It means that the system is reactive enough to
detect a risk appearing at the last moment before the collision. The second one
corresponds to the road crossing of a moving pedestrian. As the system estimate
its motion, a risk appears on the risk map even before the pedestrian is on the
car trajectory.

Fig. 9. First HSBOF and risk estimation results. Left image: output of the HSBOF
process with the filtered occupancy grid (white for empty space, black for occupied
space) and the velocity field (from each moving cell are drawn red rays representing
the velocities). Right image: dangerous cells are reprojected in the camera image.
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4.5 Third experiment: On-road evaluation

HSBOF and risk estimation We have performed experiments on various
recorded sequences of road journey, in highway and downtown environments.
Figure 9 shows the output of the HSBOF and the extraction of cells with a high
shot-term probability of collision. On the first example, the driver arrives too
quickly at the traffic light, the car ahead then generates a collision risk corre-
sponding to a A3 alert. On the second example, we can see that the system
rightly detects the risk of collision with the pedestrian crossing the road, even
through he is not already on the trajectory of the vehicle. Indeed, as the oc-
cupancy dynamics are inferred by the HSBOF, the method predicts the likely
impact.

Figure 10 shows an example of the risk values estimated during a urban
driving sequence. Since we are driving safely, the risk corresponding to TTC ≤

1.0s remains very low. There are a few peaks for the risk corresponding to
TTC ≤ 1.5s. These happen at the end of turning maneuvers where the predicted
trajectory of the car is supposed to be circular, while the driver is about to go
back to a straight trajectory. Thus, these cases do not generate high values of
risk for shorter TTC values.

Fig. 10. Example of a sequence of driving downtown.

Alarms generation on-road In order to evaluate the relevance of the ap-
proach for pre-crash applications, we focus on the A1 alerts. The car is driven in
various road environment (downtown, highway, national roads) to collect data.
A dataset containing 27000 frames, including complex situations is recorded and
the algorithm is applied, with a variable alarm threshold. The curve on figure
11 shows the number of A1 alarms with respect to the risk threshold. With a
risk threshold set to 0.8 (which is relevant with respect to the curves shown on
figure 6) only 4 alarms were generated.
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Fig. 11. Alarms generated for risky situations at TTC ≤ 0.5s while driving in crowded
urban situations, with respect to the risk threshold (tested on 27000 frames).

5 Conclusion

In this paper, we presented a method for short-term collisions-risk estimation.
The method takes advantage of the ability of the HSBOF algorithm to provide
both an occupancy grid and accurate estimation of velocities over an occupancy
grid. The use of this information, combined with the prediction of the vehicle’s
trajectory, allows to estimate Time To Collision for each cell of the grid. The
methods shows several advantages, like the ability to have probabilistic estima-
tion of collision risk, the ability to be implemented efficiently in parallel, and also
to estimate TTC in highly dynamic environment, without any object tracking
algorithm.
A comprehensive evaluation of the algorithm has been proposed, based on both
real road data and controlled situation. This evaluation showed that the method
was able to perform well. In controlled environments the system is very reactive
and every collision is properly detected while in difficult scenarios the system
do not generate abusive alarms. There is still some work to do to deal with the
remaining errors and to validate more extensively the algorithm on hundreds
of kilometers, but the results obtained here from the experiments are promis-
ing. Therefore, we project to couple this perception layer with prototypes of
Human-Machine-Interfaces for testing there use in Advanced Driver Assistance
Systems.
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