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S.1. Trilinear approximation

In the following, we provide a theoretical analysis of the STF and STWV

techniques. In order to treat both tensor methods simultaneously, we use a

different notation for the matrices as in the paper to avoid confusion that

may be caused by discrepancies from the data model of equation (??). Please

note that in the following, for the STF method, the matrix D replaces the

data matrix X, the matrix U corresponds to the spatial mixing matrix H

that we want to extract and the matrix P corresponds to the signal matrix S.

For the STWV method, D replaces the transpose of the data matrix, XT, U
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corresponds to the transpose of the signal matrix ST that is to be identified

and P corresponds to the transpose of the spatial mixing matrix HT.

If a time-frequency or space-wave-vector transform is applied to the sec-

ond dimension of the matrix D = UP where U = [u1, . . . ,ur] ∈ RN×R is the

matrix of interest and P ∈ RR×K , one obtains a tensor with the following

structure:

T =
R∑

r=1

ur ◦Mr (1)

where Mr ∈ CK×J , r = 1, . . . , R, are matrices of rank Lr and ◦ denotes the

outer (tensor) product. Equation (1) corresponds to a block-decomposition

into rank(1, Lr, Lr)-components, which is unique up to scale and permutation

indeterminacies for rank-deficient matrices Mr under certain conditions on

N , K, J , Lr and R (De Lathauwer, 2008). However, in practice, the matrices

Mr generally have full rank. In this case, it is not possible to identify ur and

Mr from the given tensor T . In order to restore identifiability, the matrices

Mr need to be approximated by matrices M̃r of lower rank L̃r such that one

obtains a model of the form:

T̃ =
R∑

r=1

ur ◦ M̃r. (2)

For L̃r = 1, r = 1, . . . , R, the tensor T̃ can then be decomposed using the

CP decomposition, which permits to uniquely identify the vectors of interest

ur up to scale and permutation ambiguities.

The objective thus consists in transforming equation (1) into equation

(2). This can, under certain conditions, be achieved by a truncated SVD
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in one or several modes of the tensor T .1 This procedure can be viewed as

some kind of PCA applied to the data in the transformed (time-frequency or

space-wave-vector) domain.

S.1.1. Sufficient conditions for perfect recovery of U

In the following, we determine the conditions under which the SVD per-

mits to obtain the model of (2) for L̃r = 1. For simplicity, we limit the

considerations in the remainder of this section to the case of R = 2 compo-

nents. Nevertheless, we believe that it is possible to extend our analysis to

cases where R > 2. We define the following notation for the SVD of M1 and

M2:

M1 =

L1∑
l=1

σlvlw
T
l =

[
v1 V2

]σ1 0

0 Σ2

[w1 W2

]T

M2 =

L2∑
l=1

λlxly
T
l =

[
x1 X2

]λ1 0

0 Λ2

[y1 Y2

]T
where V2 = [v2, . . . ,vL], W2 = [w2, . . . ,wL], X2 = [x2, . . . ,xL], Y2 =

[y2, . . . ,yL], σ1 > σ2 > . . . > σL1 , and λ1 > λ2 > . . . > λL2 . Moreover, with-

out loss of generality, we assume that ||u1|| = ||u2|| = 1. For simplicity, we

subsequently base our considerations on the mode-2 unfolding of the tensor

T . The same consideration can be conducted for the mode-3 unfolding in an

analogous way.

1The truncated SVD in mode n is obtained by calculating the SVD of the n-mode
unfolding matrix and setting all but the R greatest singular values to 0. Please note that
a truncated SVD of the first mode does not change the data because the mode-1 unfolding
matrix inherently has rank R.

3



With the above definitions, and ⊗ denoting the Kronecker product, the

mode-2 unfolding of the tensor T can be written as

[T ](2) = σ1v1(w1 ⊗ u1)
T + λ1x1(y1 ⊗ u2)

T

+ V2Σ2(W2 ⊗ u1)
T + X2Λ2(Y2 ⊗ u2)

T (3)

= σ1v1(w1 ⊗ u1)
T + λ1x1(y1 ⊗ u2)

T + R. (4)

We would like to obtain the matrix

[T̃ ](2) = σ1v1(w1 ⊗ u1)
T + λ1x1(y1 ⊗ u2)

T, (5)

which corresponds to the CP model

T̃ = σ1u1 ◦ v1 ◦w1 + λ1u2 ◦ x1 ◦ y1 (6)

and would therefore permit us to recover the vectors u1 and u2 from the

mode-2 unfolding matrix [T ](2) by means of a truncated SVD. This is possible

if (4) corresponds to the SVD of [T ](2), which is generally not the case. Our

objective now consists in finding conditons under which the SVD of [T ](2)

takes the form of (4) and under which truncation of (4) leads to (5).

Let us consider the case that vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, and

yT
1 W2 = 0T. The columns of the matrices σ1v1(w1⊗u1)

T and λ1x1(y1⊗u2)
T

are then pairwise orthogonal to the columns of R and the columns of the

matrices σ1(w1 ⊗ u1)v
T
1 and λ1(y1 ⊗ u2)x

T
1 are pairwise orthogonal to the

columns of RT. Due to the correlation between the vectors v1 and x1, the

vectors u1 and u2, and the vectors w1 and y1, the two associated mode-

2 vectors ṽ1 and x̃1 that are obtained by the SVD correspond to a linear

combination of v1 and x1. Furthermore, the vectors ṽ1 and x̃1 are associated

4



with two new singular values, µ1 ≥ max (σ1, λ1) and µ2 ≤ min (σ1, λ1). These

singular values can be computed as the square roots of the eigenvalues of[
σ1v1(w1 ⊗ u1)

T + λ1x1(y1 ⊗ u2)
T
] [
σ1v1(w1 ⊗ u1)

T + λ1x1(y1 ⊗ u2)
T
]T

and are given by

µ1,2 =

√
σ2
1 + λ21 + 2σ1λ1c1c2c3

2
±
√

(σ2
1 + λ21 + 2σ1λ1c1c2c3)2

4
− σ2

1λ
2
1(1− c21c23)(1− c22)

with c1 = uT
1 u2, c2 = vT

1 x1, and c3 = wT
1 y1. If µ2 > ε1, where ε1 is

the highest singular value of R (which can, depending on the correlation

of vectors of X2 and V2 or W2 and Y2 be greater than max(λ2, σ2)), the

truncation of the SVD of [T ](2) yields the matrix [T̃ ](2) of equation (6) and

permits therefore to identify u1 and u2 using the CP decomposition.

Please note that in the special case where u1 and u2 are orthogonal, the

columns of the matrices σ1v1(w1 ⊗ u1)
T and λ1x1(y1 ⊗ u2)

T in equation (4)

are also pairwise orthogonal to the columns of R if only vT
1 X2 = 0T and

xT
1 V2 = 0T. In this case, the conditions wT

1 Y2 = 0T and yT
1 W2 = 0T are

thus not needed.

As a consequence, since the DIAG algorithm (Luciani and Albera, 2011)

is based on a truncated SVD in one mode of the tensor, it permits to perfectly

recover u1 and u2 if it is based on the mode-2 unfolding and the conditions

C1) vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T, and µ2 > ε1 or

C2) vT
1 X2 = 0T, xT

1 V2 = 0T, uT
1 u2 = 0, and µ2 > ε1

are fulfilled. Similar conditions can be derived for a truncated SVD in the

third mode. If the DIAG decomposition is based on the mode-1 unfolding,

the truncated SVD does not change the unfolding matrix, which is already
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of rank R = 2, and therefore does not lead to a loss of information. But

contrary to the unfolding matrix of a tensor that follows the CP model,

the right signal subspace of the mode-1 unfolding matrix does not have a

Kronecker structure. However, this assumed structure is exploited in the

following steps of the DIAG algorithm (more particularly during the JET)

and its absence generally causes errors on the estimated vectors û1 and û2.

These errors are difficult to quantify because they depend on the iterative

optimization of the JEVD algorithm and their analysis is out of the scope of

this paper.

S.1.2. Discrepancies from the above conditions

If the conditions on orthogonality are not fulfilled, which is usually the

case in practice, the vectors u1 and u2 cannot be correctly recovered, leading

to errors of the estimated vectors û1 and û2. For small correlation coefficients

between v1 and X2, w1 and Y2, x1 and V2, and y1 and W2 or correlation of

v1, w1, x1, and y1 with vectors that are associated with very small singular

values, the errors on the estimated vectors û1 and û2 can be regarded as

negligible. In this case, the STF and STWV methods yield good results

for the space or time characteristics of each patch. On the other hand, for

large correlation coefficients between the singular vectors of M1 and M2 and

especially in the case where the condition on the singular values (µ2 > ε1)

is not fulfilled (which occurs, for example, if the singular values of M1 and

M2 do not decrease quickly or if one source is much stronger than the other

source), the result of the CP decomposition can be seriously perturbed (up

to containing only information about one of the sources) and does not permit

to obtain an adequate estimate of the vectors u1 and u2. In this case, the
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STF or STWV analysis fails.

S.1.3. Interpretation of the mathematical conditions with respect to the STF
and STWV analyses

In the following, we consider three types of conditions that are involved

in C1) and C2) and point out how they intervene in the STF and STWV

analyses of EEG data.

µ2 > ε1 The validity of this condition depends on the one hand on the sin-

gular value profiles of the time-frequency or space-wave-vector matrices

of the patches (matrices M1 and M2) and on the other hand on the

source strengths. For slowly decreasing singular values, it requires the

source strengths to be approximately equal whereas quickly decreas-

ing singular value profiles enable the STF and STWV techniques to

tolerate a certain difference in source strength, which may be due to

different patch sizes, different patch locations, or different signal am-

plitudes. This is the case for the STF analysis, for oscillatory signals,

where one can assume that there is one dominant frequency charac-

teristic for each source, yielding time-frequency matrices Mr with only

one great singular value. In a similar way, superficial patches generate

focused spatial distributions that can be described by one dominant

spatial component per patch, leading to a quickly decreasing singular

value profile of the space-wave-vector matrix.

uT
1 u2 = 0 In case of the STF analysis, the vectors u1 and u2 correspond to

the spatial mixing vectors of the patches. This condition thus requires

the spatial mixing vectors to be uncorrelated. The correlation of the

spatial mixing vectors is related to the patch distance and is generally
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small for distant patches and high for close patches. For the STWV

method, the source time signals are required to be uncorrelated as the

vectors u1 and u2 characterize the time courses of the patch amplitudes.

In practice, small correlation coefficients are usually sufficient to obtain

reasonably good results (cf. previous paragraph).

vT
1 X2 = 0T, xT

1 V2 = 0T, wT
1 Y2 = 0T, yT

1 W2 = 0T These orthogonality

conditions concern correlations of the time-frequency or space-wave-

vector profiles of the two patches and are difficult to interpret in prac-

tice. For the STF analysis, this is the case for sufficiently different time

and frequency characteristics of two sources (for example sources with

uncorrelated time signals involving different frequency bands) whereas

this is achieved for sufficiently distant patches giving rise to different

dominant spatial components in the case of the STWV analysis. The

influence of each of these correlation coefficients also depends on the

associated singular values. Quickly decreasing singular value profiles

of the time-frequency of space-wave vector matrix considerably reduce

the importance of a large number of correlation coefficients.

S.1.4. Theoretical analysis of selected two patch scenarios

In the following, we establish a link between the theoretical findings de-

scribed above and the simulation results of the STWV-DA algorithm pre-

sented in Section ?? of the paper. To this end, we analyze what happens

when applying the STWV analysis to two examples of two patch scenarios

and explain the consequences on the source localization results. More par-

ticularly, we are interested in the impact that the application of the DIAG
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algorithm for the CP decomposition has on the STWV tensor when the model

is not exactly trilinear. As explained above, the first step of DIAG consists

in truncating the SVD of, e.g., the mode-2 unfolding matrix, which ideally

leads to a trilinear model where each component corresponds to one source

(cf. equations (4) to (6)). In the following, we examine whether this step is

successful for the STWV data of our simulation examples. This determines

whether the patches are correctly separated and thus has a high impact on

the performance of the source localization.

In order to avoid perturbations that are not directly related to the STWV

preprocessing and would complicate the evaluation of the results, we generate

realistic simulation data as described in Section ??, but without background

activity or noise. Furthermore, we attribute the same signal to all dipoles

that belong to the same patch. In a first step, we then compute the STWV

tensors F1 and F2 separately for each of the two patches. For each of these

tensors, we determine the two dominant left singular vectors of the space-

wave-vector matrices (vectors v1 and v2 for tensor F1, and x1 and x2 for

tensor F2), which contain information about the spatial distribution. In a

second step, we calculate the SVD of the mode-1 unfolding matrix of the

combined data tensor F = F1 +F2 and truncate it to obtain a rank-2 matrix

(for R = 2 patches). If the condition C1) or C2) of Section ?? is fulfilled, the

resulting two left singular vectors z1 and z2 should (at least approximately)

span the same subspace as the vectors v1 and x1. Otherwise, the separation

of the two patches using the STWV analysis fails.

Figure 1 corresponds to the scenario of two distant sources and shows

the absolute value of the interpolated spatial distributions described by the
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two dominant singular vectors v1 and v2 of the patch Frsup-rost and the

two dominant singular vectors x1 and x2 of the patch Occsup, as well as

the left singular vectors z1 and z2 recovered from the truncated SVD of

the mode-1 unfolding matrix of the tensor F . Obviously, the first singular

vector z1 corresponds to the dominant x1 of the patch Occsup, while the

second singular vector z2 corresponds to the dominant vector vector v1 of

the patch Frsup-rost. Therefore, the STWV analysis leads to a separation of

the two patches and allows for an accurate localization (see Section ??).

Figure 1: Dominant components of the patch Frsup-rost (left), dominant components of
the patch Occsup (middle) and components recovered with the truncated SVD (right).

Figure 2 shows the corresponding interpolated spatial distributions for

the scenario of deep patches MidTe and Hipp. In this case, the left singular

vectors z1 and z2 look like slightly perturbed versions of the two dominant
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vectors v1 and v2 of the patch MidTe, which leads to the conclusion that the

patch MidTe yields observations with higher amplitudes than the patch Hipp.

This means that the condition on the singular values µ2 and ε1 is not fulfilled.

The slight perturbation of the vectors v1 and v2 could be explained by an

additional violation of the orthogonality conditions. In short, the STWV

analysis fails in this case because it looses the information about the patch

Hipp. This explains the bad performance of STWV-DA for this scenario (cf.

Section ??).

Figure 2: Dominant components of the patch Temoy (left), dominant components of the
patch Hipp (middle) and components recovered with the truncated SVD (right).
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S.2. Computational complexity

Number of real-valued multiplications

STF analysis
Tensor construction N2

t NrNf

Tensor decomposition (12R + 7)NrNtNf

+(Nr +Nt +Nf )NswR(R2 + 1
2
R− 3

2
)

STWV analysis
Tensor construction 2N ′rNNtNk

Tensor decomposition (48R + 28)N ′rNtNk

+ 56R(R− 1)Nsw(N ′r +Nt +Nk)
+9NiterRN

′
rNtNk

Disk algorithm 3RNdDmaxNr

sLORETA
Generalized inverse comp. 3

2
N2

rNd + 1
6
N3

r

Application NrNd

cLORETA
Generalized inverse comp. 1

2
N2

rNd + 1
6
N3

r

Application NrNd

4-ExSo-MUSIC
Cumulant estimation + EVD 1

24
N4

rNt + 1
6
N6

r

Spectrum estimation 1
4
NdDmaxN

3
r + 5

4
N2

rNdDmax

Table 1: Computational complexity in terms of real-valued multiplications for the tensor-
based preprocessing methods and different source localization algorithms.
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