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Neural network based 2D/3D fusion for robotic
object recognition

Louis-Charles Caron, Yang Song, David Filliat and Alexander Gepperth

ENSTA ParisTech - UIIS Lab
828 Blvd des Maréchaux, 91762 Palaiseau - France

Abstract. We present a neural network based fusion approach for real-
time robotic object recognition which integrates 2D and 3D descriptors
in a flexible way. The presented recognition architecture is coupled to a
real-time segmentation step based on 3D data, since a focus of our inves-
tigations is real-world operation on a mobile robot. As recognition must
operate on imperfect segmentation results, we conduct tests of recogni-
tion performance using complex everyday objects in order to quantify the
overall gain of performing 2D/3D fusion, and to discover where it is par-
ticularly useful. We find that the fusion approach is most powerful when
generalization is required, for example to significant viewpoint changes
and a large number of object categories, and that a perfect segmentation
is apparently not a necessary prerequisite for successful discrimination.

1 Introduction

From the point of view of a mobile robot, the world is a confusing place bom-
barding the robot with a huge amount of information avery second. Only after
an appropriate decomposition or segmentation of scenes and the categorization
of detected obstacles into a possibly large number of classes can any meaning-
ful ”intelligent” behavior take place, while it remains crucial to meet real-time
execution constraints on usually limited hardware. Here, we describe a compu-
tationally efficient robotic segmentation/recognition architecture as visualized in
Fig. 1 and study how the fusion of several information sources from 2D (struc-
ture and color) and 3D (holistic object shape) sensors improves categorization
under realistic conditions, which means in particular working with less-than-
perfect object hypotheses coming from a computational segmentation step. As
the number of classes, N , is large, we choose a neural network-based fusion ap-
proach (which has practical advantages compared to training N support vector
machines) and validate it on a publicly available benchmark database1.

1.1 Related work

The most commonly used 2D object descriptors are SIFT[1] and SURF[2] which
offer convenient invariance properties at a reasonable (SIFT) or optimized (SURF)
computational cost. There is a large number of other approaches which we will
not review here as our focus is on the fusion of multimodal information. Object

1www.gepperth.net/alexander/downloads/2014_fusion.tar.gz
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Fig. 1: Implemented processing architecture as a block diagram.

recognition from 3D data is equally well-studied in the literature, see [3] for sur-
veys. Proposed methods can be grouped into holistic and local approaches. For
the former group, an important technique is iterative closest point estimation
(ICP)[4] where point clouds are stored ”as is” and matched to observations in an
efficient way. If object classes are restricted in advance, descriptors based on the
Generalized Hough Transform can be useful[5] as well. In addition, histogram-
based descriptors are very common, which may be based on surface normal
histograms [6] or other global object features[7, 8]. In contrast to this, local
approaches , e.g., [9, 10] are similar to SIFT/SURF for RGB images, trying to
find a small number of distinctive ”key points” in a point cloud whose associated
descriptors can be matched against stored templates.

1.2 Article structure and key questions

We start out with a description of segmentation, feature computation and fusion
methods in Sec. 2, then goe on to describe the used database and its creation
in Sec. 2.3, and finally present and discuss experimental results in Secs. 3, 4.
The key questions we are seeking to answer are, firstly, whether there is an effi-

cient 3D-based segmentation step that avoid RANSAC. Secondly, we wish
to investigate which are the concrete benefits of multisensory fusion by
comparing the individual and combined performance of all available modalities.

2 Methods

2.1 Segmentation using 3D data

For the segmentation, only the distance information from the RGBD point clouds
is used. All processing is implemented using the free Point Cloud Library library
(PCL, [11]). The 3D point cloud is first filtered to remove distant, noisy points
and the surface normals to each point [12] are calculated.

The first major computational step is the removal of the ground plane. For
this step, the Kinect is assumed to be at a known distance and orientation with
regard to the ground plane, as happens when it is mounted on a wheeled robot.
All points sufficiently close to the theoretical floor plane, and having a normal
approximately perpendicular to the plane, are recognized as part of the ground
and removed from the cloud. The exact floor plane coefficients for this point
cloud are calculated from these points. This method robustly detects the floor
even if the robot accelerates brusquely, bumps into obstacles or faces a slightly
inclined floor sections.



Fig. 2: Examples of segmentation results. Upper row: original images. Lower
row: point cloud segmentation results back-projected into the image plane.
Color code: green = floor, beige = wall, blue = object, white = ignored.

The remaining points are projected onto the ground plane and grouped ac-
cording to their (projected) distance. For this purpose, we use a region-growing
type of algorithm to form groups of 3D points that may correspond to objects.
Fig. 2 shows images of scenes taken with the Kinect along with the color-coded
masks for floor, wall and objects. Segmentation results do not always correspond
to objects: in particular, objects that are too close together, or which are placed
on top of each other are often segmented as a single object.

2.2 Fusion approach for recognition

We use texture, color and shape feature vectors as input to a multi-class neural
network classifier and compare the results when using these vectors either sepa-
rately or jointly (by simple concatenation). The neural network has a topology
of K − 50−N (where K,N denote the dimensionality of input and the number
of classes, respectively) using sigmoid activation functions for the hidden and
a softmax one for the output layer, with bias units in all layers, and is imple-
mented using the PyBrain library[13]. For obtaining a category decision, we find
the output neuron with the highest activity which exceeds a rejection threshold.
If no such neuron exists, we reject the input and take no decision.

2.2.1 Bag of words (SIFT)

Texture description is performed using a bag of words (BOW) approach [14]
applied to visual recognition. SIFT features are computed from each image of the
learning database to extract a visual description of all objects. These descriptors
are then clustered using k-means, each found cluster center forming a word in
the dictionary. To describe an unknown object, the SIFT descriptors extracted
from its RGB image mask are matched to the dictionary, and a histogram of
occurrence of the dictionary descriptors is built. The resulting feature vector
has the size of the dictionary, which is 100.



Fig. 3: Example image of the objects used in the experiments.

2.2.2 Bag of words (color)

Due the value of color information in indoor scenes, we implemented an addi-
tional color-based descriptor. The processing is similar to what is described in
Sec. 2.2.1, but this time the features are local hue histograms that are computed
on regularly spaced windows as detailed in [15]. The resulting histogram has
again dimensionality 100.

2.2.3 Surflet histograms

Following [6], we obtain the descriptor of a point cloud as follows: we randomly
choose a set P = {(pi, pj)}i6=j containing N point pairs and calculate the angles
between the points’ normal vectors, as well as the angles between the normal
vectors and the difference vector between the points. Additionally, we compute
the distance between the points and normalize it by the largest distance be-
tween any two point pairs sampled in this point cloud. These four numbers are
discretized into 5 bins, and used to compute a histogram of 625 entries.

2.3 Database

Using a Kinect mounted on a pioneer robot, a custom database of 53 common
objects was made. The objects were shot from 6 different angles of view, taking
one hundred point clouds per angle while the robot moved back and forth in
front of the objects, at a distance of 1 to 4 meters. This database is segmented
using the algorithm described in Sec.2.1 to get cropped images and point clouds
of the objects. As the data is taken by an moving robot, overall data quality is
mediocre as some objects are badly segmented. Figure 3 shows examples of the



Fig. 4: Results of the 3-classes experiments. Upper row: rejection ratio (rejected
good classifications / good classifications). The rejection ratio is 1 for a threshold
value of 1. Lower row: recognition ratio (accepted good classifications / accepted
classifications). The recognition ratio is undefined for a threshold of 1.

objects in the database,showing also some common segmentation errors. The
red chair’s mask is misaligned, probably because the robot was turning when
the point cloud was captured, and half of the right-hand side of the computer is
missing because its surface is too reflective for the Kinect to perceive it.

3 Experiments

Four types of experiments were conducted to demonstrate the capabilities of
the proposed algorithm and the benefit of the 2D/3D fusion. In the recognition
experiments, 0◦ and 60◦ angles of view are used to train and test the algorithm.
In the generalization experiments, 0◦ and 60◦ angles of view are used for training
and angles 120◦ and 300◦ for testing. In a first series of experiments, the 7 objects
from the 3 classes cabinet, chair and sofa are used. In a second series, objects
from all 7 classes shown in figure 3 are used. In all experiments, half of the data
was used for training, and the other half for testing. Figure 4 shows the rejection
ratio (rejected good classifications / good classifications) and recognition ratio
(accepted good classifications / accepted classifications) for the first series of
experiments when varying the threshold on decision making. Comparable results
are obtained for the second series.

4 Discussion and Outlook

Several facts are revealed by the experiments. Firstly, the 3D features alone are
excellent at distinguishing objects. For the recognition experiments, this tech-
nique always yielded better results than the 2D/3D fusion. The fact that this
technique is oblivious to the color of the objects is however a severe drawback.



Secondly, the 3D recognition’s maximum rejection ratio increases from 0.2 to
0.55 with the second series’ larger number of objects. The performance of the
fusion algorithm is more stable, and the rejection ratio remains low even with
an increased number of object classes (always below 0.15). Lastly, the fusion
algorithm produces much better results than the 3D alone when in the general-
ization setting. This is the most valuable asset of the fusion, as the algorithm
is intended to be used online in a exploration experiment for semantic mapping
[16]. In an online experiment, partial views, unseen angles, and occlusions will
be commonplace and the generalization capabilities of the 2D/3D fusion will be
important.
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