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ABSTRACT

Marked point processes have proven their efficiency in solv-

ing object extraction problems from high resolution optical

images. However, these complex mathematical models are

difficult to simulate which usually results in high computation

times. A new parallel sampler has been recently developed.

Nevertheless, this sampler does not yield good results in the

presence of large objects. We propose modifications to the

original parallel sampler to cope with such situations. Fur-

thermore, we implement an additional mask to increase the

speedup in the case of boat extraction.

Index Terms— remote sensing, object extraction, marked

point processes, high performance computing.

1. INTRODUCTION

Marked point process (MPP) models have been successfully

applied to object extraction in high resolution remotely sensed

optical images. Applications range from flamingos and boats

counting to road or building extraction [1]. The configuration

of objects in an image can be viewed as a realization of a

MPP. A complex probability density function is defined to

describe both the interactions between the objects and the

likelihood of such a configuration with respect to the consid-

ered image. To find the best configuration, an optimization

problem has to be solved by means of sampling algorithms

such as Reversible Jump MCMC (RJMCMC) [2]. The main

ideea of RJMCMC resides in the current configuration being

iteratively perturbed by a proposition kernel while an ac-

ceptance ratio is being computed for the new configuration.

Nevertheless, RJMCMC poses a computational burden due to

its sequential nature which results in high computation times

to reach convergence.

Several attempts have been made to improve the optimization

procedure. A first improvement came with the implementa-

tion of Multiple Birth and Death (MBD) [3], an optimization

method which allows for multiple perturbations to be per-

formed simultaneously. This algorithm has been further
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refined to Multiple Birth and Cut (MBC) [4] which com-

bines the advantages of MBD with those of the Graph-Cut

algorithm. The most important advantage of MBC was the

reduction of the number of parameters, thus resulting in an

increased convergence speed. A major breakthough came

with the implementation of the first parallel version of RJM-

CMC [5]. In spite of its sequential nature, RJMCMC has

been successfully parallelized by splitting the search space

in smaller cells and performing the optimization locally and

concurrently in each of them. This approach resulted in an

efficient sampler that yielded small computation times and

brought back the focus on such optimization methods which

were previously considered too slow for real applications.

However, the parallel implementation on GPU presented in

[5] does not take into account important considerations such

as large objects located at the intersection of neighboring

cells, which results in the need of inter-process communica-

tion or access to shared memory. In this paper we propose

modifications to the initial sampler to account for such situ-

ations. Furthermore, we develop a fast and efficient method

to discriminate between water and land areas. This latter

attempt is motivated by our interest in boat detection.

This paper is organized as follows: we start with a brief intro-

duction of the general MPP framework in section 2. Section

3 describes the water/land discrimination method. Section 4

presents the weaknesses of the current parallel sampler de-

scribed in [5] and contains the modifications brought to it.

Results are presented in section 5 and finally conclusions are

drawn in section 6.

2. MARKED POINT PROCESS MODEL FOR BOAT

EXTRACTION

We consider a MPP of ellipses. When seen from above, i.e.

satellite images at nadir, the boats tend to have an elliptical

shape. The object space W , is a bounded set in R
5:

W = [0, XM ]× [0, YM ]× [am, aM ]× [bm, bM ]× [0, π]

where XM and YM are the width and height of the input im-

age, respectively, am and aM are the minimum and the max-

imum of the semi-major axis of the ellipse, bm and bM are



the minimum and the maximum of the semi-minor axis of the

ellipse and ω ∈ [0, π] is the orientation of the ellipse.

We are interested in a particular family of MPPs, namely the

Gibbs processes [6]. Denoting the observed image with y, the

density of the considered MPP is given by:

fθ(X = x|y) =
1

c(θ|y)
exp−Uθ(x,y)

where c(θ|y) is a normalizing function given by:

c(θ|y) =

∫
Ω

exp−Uθ(x,y)µ(dx).

Here, θ is a parameter vector which allows the model to be

flexible and fit different images. It has to be adjusted accord-

ing to the given image. µ(·) is the intensity measure of the

reference Poisson process, Uθ(x,y) is called the energy, Ω is

the configuration space and x denotes the object configura-

tion.

Using the Maximum A Posteriori (MAP) criterion, the most

likely configuration which allows the extraction of objects

corresponds to the global minimum of the total energy

Uθ(x,y):

x ∈ Argmax
x∈Ω

fθ(X = x|y) = Argmin
x∈Ω

[Uθ(x|y)].

Parameter estimation techniques are presented in detail in [7,

8]. Once the parameter vector θ is determined, a solution to

the resulting optimization problem has to be found. For the

extraction of boats outside the harbor area we use the same

model presented in [3] for flamingo extraction. In the case of

harbor images, details on the model used are presented in [9].

3. WATER/LAND DISCRIMINATION

A first step to improve the performance of this framework is

to limit the search for objects to the area where they are ex-

pected to appear. Since our main interest is to extract boats,

it is meaningful to search for them only in the areas where

water is present. This motivates our attempt to discriminate

between water and land area. The water area can be clearly

Fig. 1. left: Harbor image c©Astrium-EADS; right: Identified

water area

identified as a large area of low radiometric values. Neverthe-

less, the shadows of tall buildings within cities exhibit similar

characteristics, as shown in Figure 1 (left). The difficulty lies

in finding appropriate features to distinguish between these

two area types.

In this paper we focus on a simple approach to make the sep-

aration between water and shadows. We are interested in ex-

tracting the water area under the condition that the number

of misdetection should be zero, whereas the number of false

alarms should be minimal. Given the low radiometric values

of water, a threshold is determined by means of bimodal his-

togram splitting. This approach is motivated by our interest to

distinguish between water and non-water area. This will iden-

tify areas of low radiometric values, which include both water

and shadows. Two main features can be used to differentiate

Component

type
Size Mean Variance

Shadow 1 8641 12.8962 1.03389
Shadow 2 8211 13.0898 1.22846
Shadow 3 9986 13.0068 1.00696

Water 969675 13.2784 0.377285

Table 1. Comparison of characteristics of water and shadow

components

between water and shadows: size of the area and radiometric

variance within it. Table 1 shows the difference in feature val-

ues for the two types of areas. Based on the results presented

in Table 1, we can devise an algorithm to extract the water

area, similar to the one presented in [10]. The main differ-

ence is our emphasis on size. Thus, after we compute the size

and the radiometric variance for each connected component

identified in the threshold image, we retain only those compo-

nents that have both large size and low radiometric variance.

Figure 1 (right) presents the results obtained. We can observe

that the water area has been correctly and entirely identified.

For the purpose of boat extraction, we erode the obtained im-

age with a circular structuring element, twice the size of the

boats we are interested in extracting.

4. HIGH PERFORMANCE COMPUTING

The first major step towards a time-efficient approach to sim-

ulate MPPs came with the development of the parallel sam-

pler devised in [5]. The main idea in the 2D case is to di-

vide the search space using a quadtree K. The cells of the

quadtree are divided into 4 independent sets called mic-sets

and denoted Smic. At each iteration, one mic-set is selected

and the optimization step is performed in parallel within all

the cells, c, contained in it. The general proposition kernel

Q is formulated as a mixture of uniform sub-kernels Qc,γ ,

where γ ∈ Γ = {birth and death, translation, rotation, scale}.

The probability of each proposition kernel is computed as

qc,t = Pr(γ)
# cells in K

. The computational efficiency of the sam-
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Fig. 3. (a), (e) Image of boats in and outside a harbor c©Astrium-EADS; (b),(f) Water/Land discrimination results; (c),(g)

Extraction results; (d),(h) Close-ups on extraction results.

pler has been proven for a large number of applications. The

sampler in [5] makes use of GPU computing to perform the

optimization. GPU computing has confirmed its usefulness in

the case of data-parallel processing. In other words, if there is

no need for individual processors to communicate and share

data between each other, nor to access shared memory, GPU

computing outstands multi-core parallelization approaches.

Fig. 2. (a) A large boat split in two due to the space par-

titioning; (b), (c) Errors which arise when processing cells

independently of each other

However, this is not our case. One object can be contained

in two neighboring cells, as shown in Figure 2 (a). Imposing

data-parallel processing in each cell independently results in

two possible types of detection errors:

1. The object is split at cell boundary and thus, two

smaller objects are detected (see Figure 2 (b));

2. Ellipses are allowed to cross the boundary of a cell but

this approach leads to several detections of the same

object (see Figure 2 (c))

To overcome this problem, we implement a multi-core ver-

sion of the sampler with a shared memory between the cores.

Algorithm 1 Parallel sampler

1. Initialize X0 = x0 and t = 0;

2. Compute the water mask;

3. Compute the data-driven space partitioning tree K and

truncate it based on the water mask;

4. At iteration t with Xt = x:

• Choose a mic-set Smic ∈ K and a kernel type

γ ∈ Γ according to the probability
∑

c∈Smic
qc,γ

• For each cell c in Smic:

– Perturb x in cell c to a configuration x
′ ac-

cording to Qc,γ(x → ·);

– Retrieve the configuration z from the neigh-

boring cells;

– Compute the Green ratio:

R =
Qc,γ(x

′ ∪ z → x ∪ z)

Qc,γ(x ∪ z → x′ ∪ z)
exp

U(x ∪ z)− U(x′ ∪ z)

Tt

– Choose Xt+1 = x
′ with probability

min(1, R) and Xt+1 = x otherwise;

• Update Tt+1 = αTt (in our tests α = 0.95).

At each iteration, for each cell in a chosen mic-set Smic, the

configurations within the neighboring cells are taken into con-



# CPU’s
Computation times for Figure 3 (a) Computation times for Figure 3 (d)

Water mask No water mask Water mask No water mask

1 1h 38min 57sec 2h 4min 5sec 1h 27min 48sec 2h 9min 35sec

2 1h 20min 23sec 1h 45min 41sec 33min 43sec 40min 21sec

4 53min 37sec 1h 01min 12sec 11min 29sec 15min 26sec

8 44min 7sec 49min 23sec 4min 59sec 5min 46sec

16 20min 19sec 23min 1sec 3min 53sec 4min 31sec

24 9min 41sec 12min 54sec 2min 32sec 3min 8sec

Table 2. Comparison of characteristics of water and shadow components

sideration. Note that this does not give rise to synchronization

problems when accessing the shared memory since proces-

sors only read information in the neighboring cells and do not

modify it. The modified parallel sampler is detailed in Algo-

rithm 1.

5. RESULTS AND DISCUSSIONS

Figure 3 presents the extraction results. Figure 3 (a) of size

1620 × 1450 represents an image of a harbor with a large

number of objects, while Figure 3 (e) of size 2862 × 2676
represents a large area outside of a harbor with only a few

boats. Figures 3 (b) and (f) show the area used for boat ex-

traction after identifying the water area.

A multi-core computer with 18 Intel Xeon(R) 2.30 GHz phys-

ical CPU’s and 6 virtual CPU’s was used for the computa-

tions. The computation time needed for each of the two im-

ages with respect to the number of CPU’s and the use of the

water mask are presented in Table 2. A birth map was con-

sidered for each extraction, independent of the existence of

the water mask. As expected, the extraction times drop con-

siderably with the increase in the number of CPU’s. Results

show that an increase in the number of objects present in the

scene translates into a considerable increase in computation

time. Finally, the usefulness of the water mask is proven by

an additional decrease in computation time in both cases.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented two approaches for increas-

ing the efficiency of simulating marked point process models

for boat extraction. We discriminated between water and land

area to reduce the search space. Furthermore, we have mod-

ified the parallel sampler devised in [5] to cope with large

objects and implemented it on a multi-core computer with

shared memory access between the processors. This approach

was motivated by the necessity to access the configurations in

the neighborng cells. This resulted in improved extraction re-

sults and low computation times. Future work will include an

extension of this framework to time series.
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