
HAL Id: hal-01018162
https://hal.inria.fr/hal-01018162

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Self-* and P2P Systems using Refinement
(Full Report)

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh

To cite this version:
Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh. Analysis of Self-* and P2P
Systems using Refinement (Full Report). [Research Report] 2014. �hal-01018162�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49616451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01018162
https://hal.archives-ouvertes.fr

Analysis of Self-⋆ and P2P Systems using Refinement ⋆

Manamiary Bruno Andriamiarina1, Dominique Méry1, and Neeraj Kumar Singh2

Université de Lorraine, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France

{Manamiary.Andriamiarina, Dominique.Mery}@loria.fr

McMaster Centre for Software Certification, McMaster University, Hamilton, Ontario, Canada

singhn10@mcmaster.ca, Neerajkumar.Singh@loria.fr

Abstract. Distributed systems and applications require efficient and effective

techniques (e.g. self-(re)configuration, self-healing, etc.) for ensuring safety, se-

curity and more generally dependability properties, as well as convergence. The

complexity of these systems is increased by features like dynamic (changing)

topology, interconnection of heterogeneous components or failures detection. This

paper presents a methodology for verifying protocols and satisfying safety and

convergence requirements of the distributed self-⋆ systems. The self-⋆ systems are

based on the idea of managing complex infrastructures, software, and distributed

systems, with or without minimal user interactions. Correct-by-construction and

service-as-event paradigms are used for formalizing the system requirements,

where the formalization process is based on incremental refinement in EVENT

B. Moreover, this paper describes a fully mechanized proof of correctness of

the self-⋆ systems along with an interesting case study related to the P2P-based

self-healing protocol.

Keywords: Distributed systems, self-⋆, self-healing, self-stabilization, P2P, EVENT

B, liveness, service-as-event

1 Introduction

Nowadays, our daily lives are affected by various advanced technologies including

computers, chips, and smart-phones. These technologies are integrated into distributed

systems with different types of complexities like mobility, heterogeneity, security, fault-

tolerance, and dependability. Distributed systems are largely used in many applications

and provide required functionalities from the interactions between a large collection

of possibly heterogeneous and mobile components (nodes and/or agents). Within the

domain of distributed computing, there is an increasing interest in the self-stabilizing

systems, which are able to autonomically recover from occurring the faults [7]. The

autonomous property of the self-⋆ systems tends to take a growing importance in the

analysis and development of distributed systems. It is an imperative that we need to get

a better understanding of the self-⋆ systems (emergent behaviours, interactions between

agents, etc.), if we want to reason about their security, correctness and trustworthiness.

⋆ The current report is the companion paper of the paper [4] accepted for publication in the

volume 8477 of the serie Lecture Notes in Computer Science. The Event-B models are available

at the link http://eb2all.loria.fr. Processed on July 3, 2014.

Fortunately, the formal methods community has been analysing a similar class of systems

for years, namely distributed algorithms.

In this study, we use the correct by construction approach [12] for modelling the

distributed self-⋆ systems. Moreover, we also emphasize the use of the service-as-

event [3] paradigm, that identifies the phases of self-stabilization mechanism, which can

be simplify into more stable and simple coordinated steps.

Legal
States

e∈CL

		
f∈F

))
Illegal
States

r∈ST

��
Recovery

States

f∈F

II

r∈CV

YY

r∈ST

LL

Fig. 1: Diagram for a Self-

Stabilizing System S

We consider that a given system S (see in Fig.1) is char-

acterized by a set of events (procedures modelling either

phases or basic actions according to an abstraction level)

that modifies the state of the system. Legal states (correct

states) satisfying a safety property P are defined by a sub-

set CL of possible events of the system S . The events of

CL represent the possible big or small computation steps

of the system S and introduce the notion of closure [5],

where any computation starting from a legal state satis-

fying the property P leads to another legal state that also

satisfies the property P. The occurrence of a fault f leads

the system S into an illegal state (incorrect state), which

violates the property P. The fault f is defined as an
event f that belongs to a subset F of events. When considering the hypothesis of having

a self-⋆ system, we assume that there are procedures (protocols or actions) which imple-

ment the identification of current illegal states and recovery for legal states. There is a

subset ST of events modelling recovery phases for demonstrating the stabilization pro-

cess. The system recovers using a finite number of stabilization steps (r). The process is

modelled as an event r of CV (⊆ ST) eventually leading to the legal states (convergence

property) from recovery states. During the recovery phase, a fault may occur (see dotted

transitions in Fig.1).

The system S can be represented by a set of events M = CL ∪ ST ∪ F , where the

model M contains a set (CL) of events for representing the computation steps of the

system S . When a fault occurs, a set (ST) of events simulates the stabilization process

that is performed by S . The formal representation expresses a closed model but we do

not know what is the complete set of events modelling faults/failures. We characterise

the fault model in a very abstract way and it may be possible to develop the fault model

according to the assumptions on the environment, but we do not consider this in the

current study. We restrict our study by making explicit the events of ST modelling the

stabilization of the system from illegal/failed states. We ensure that the convergence is

always possible: a subset CV of ST eventually leads S into the legal states satisfying

the invariant P of the system. Whenever the system S is in a legal state, we consider

that the events of ST are either not operative or simply preserve the invariant P of the

system.

In the previous paragraph, we name procedures (protocols or actions) by the term

events. An event is modelling a process which is defined by its pre and post specifications

or a state transformation belonging to a larger process. It means that we need to play

with abstraction levels to develop a self-⋆ system. For instance, one can state that an

event called stabilise is ensuring the functionality of getting a stable system (the what)

without giving details of the detailed process itself (the how). Hence, the notion of

2

event is identified to an abstraction level and can be either modelling a global process

(the what) or a local update of a variable (the how). We formalise the system S using

the EVENT B modelling language [1], dealing with events and invariant properties

including convergence properties by using a temporal framework. The service-as-

event paradigm [3] helps to express this concretisation process: the procedures (1)

leading from the illegal states to the recovery states, and (2) leading from the recovery

states to the legal states are stated by (abstract) events, during the first stages of the

EVENT B development. The next step is to unfold each (abstract procedure) event, by

refinement, to a set of coordinated and concrete events, which form the body of the

procedure.

This paper is organised as follows. Section 2 presents related works. Section 3

introduces the EVENT B modelling framework including service-as-event paradigm and

a formal definition of self-⋆ systems. Section 4 presents the formal verification approach

and illustrates the proposed methodology with the study of the self-healing P2P-based

protocol [14]. Section 5 discusses on approaches for studying temporal properties for

EVENT B models. Finally, Section 6 concludes the paper along with future work.

2 Related Works on Formal Modelling for Self-⋆ Systems

Systems usually run in intricate environments, with frequent and unexpected changes.

This feature increases interest towards autonomous and self-⋆ architectures, as they

are able to adapt themselves according to the changes that may occur in the systems

(faults, etc.) or in the environment. Applying formal methods to self-⋆ systems originates

from the needs of understanding how these systems behave and how they meet their

specifications. A self-⋆ system relies on emergent behaviours, resulting from interactions

between components of the system [21].

Traditionally, the correctness of self-⋆ and autonomous systems is validated through

the simulation and testing [20, 22]. However, simulation and testing are not sufficient

to cover the whole set of possible states of a system [2]. Therefore, formal methods

appear as a promising land for validating self-⋆ systems, as long as formal techniques can

assert the correctness of these systems and certify target properties, like trustworthiness,

security, efficiency, etc. under the rigorous mathematical reasoning [6, 8, 24].

Smith et al. [21] have applied the stepwise refinement using Z to study a case of self-

reconfiguration, where a set of autonomous robotic agents is able to assemble and to reach

a global shape. They do not validate models using an adequate tool (e.g. proof checker,

proof assistant, etc.) and models are not localized. Calinescu et al. [6] have used Alloy to

demonstrate the correctness of the autonomic computing policies (ACP). However, Alloy

does not provide a mechanism for expressing the correct-by-construction paradigm.

Méry et al. [2] have also investigated a self-reconfiguring system (Network-on-Chip:

adaptative XY routing) using the EVENT B framework and the correct-by-construction

approach.

State exploration approaches such as model-checking are also used to study self-⋆

systems. Model-checkers like SPIN, PRISM, SMV, UPPAAL are used for properties

specification and getting evidences that properties, such as flexibility, robustness of the

self-⋆ systems hold [6, 8, 10, 24]. Moreover, these tools allow users to obtain the metrics

3

for the self-⋆ systems, such as performance, and quantitative evaluations [6, 8, 10, 24].

Model-checking and state-space evaluation can be used during the conception of self-⋆

systems, but they are especially used for runtime verification [10,24]. The limit of model

checking is clearly the size of models.

Other formal techniques like static analysis and design by contract are also applied

for the formal specification of self-⋆ systems [23]. These techniques are mainly used

for runtime verification. Graphical approaches, such as Petri Nets, are used to model

the temporal aspects and communication flows between different components of a

self-⋆ system, and helped to study the cases like self-reconfiguration (replacement of a

component, removal of a link between two components, etc.) [24].

Finally, graphical notations (e.g. UML) help to represent self-⋆ systems with under-

standable figures [25]. Their general purpose is to provide users an insight of a self-⋆

system by describing its architecture, the relationships between agents of the system

(OperA methodology [17], ADELFE [20]) or by presenting the system as a composi-

tion of extendable/instantiable primitives (FORMS [25]). These notations are generally

graphical front-ends for the more complex representations of self-⋆ systems, where the

source code [20], and formal models [25] can be generated from the notations.

Our proposed methodology integrates the EVENT B method and elements of tempo-

ral logics. Using the refinement technique, we gradually build models of self-⋆ systems

in the EVENT B framework. Moreover, we use the service-as-event paradigm to describe

the stabilization and convergence from illegal states to legal ones. Self-⋆ systems require

the expression of traces properties like liveness properties and we borrow a minimal set

of inference rules for deriving liveness properties. The concept of refinement diagrams

intends to capture the intuition of the designer for deriving progressively the target

self-⋆ system. The RODIN platform provides a laboratory for checking, animating and

validating the formal models.

3 Modelling Framework

3.1 EVENT B

We advocate the use of correct-by-construction paradigm for modelling the self-⋆

systems. The key concept is the incremental refinement (simulation) which provides link

between discrete models by preserving properties. The EVENT B modelling language

designed by Abrial [1] is based on set theory and the refinement of models: an abstract

model expressing the requirements of a given system can be verified and validated

easily; a concrete model corresponding to the actual system is constructed progressively

by refining the abstraction. EVENT B is supported by a complete toolset RODIN [19]

providing features like refinement, proof obligations generation, proof assistants and

model-checking.

Modelling Actions over States The EVENT B modelling language can express safety

properties, which are either invariants or theorems in a model corresponding to the

system. Two main structures are available in EVENT B : (1) Contexts express static

4

informations about the model (for instance, graph properties as connectivity); (2) Ma-

chines express dynamic informations about the model, safety properties, and events. An

EVENT B model is defined by a context and a machine. A machine organises events (or

actions) modifying state variables and uses static informations defined in a context. An

EVENT B model is characterised by a (finite) list x of state variables possibly modified

by a (finite) list of events. An invariant I(x) states properties that must always be satisfied

by the variables x and maintained by the activation of the events. The general form of an

event e is as follows: ANY t WHERE G(t,x) THEN x : |P(t,x,x′) END and corresponds

to the transformation of the state of the variable x, which is described by a before-after

predicate BA(e)(x,x′): the predicate is semantically equivalent to ∃t ·G(t,x)∧P(t,x,x′) and

expresses the relationship linking the values of the state variables before (x) and just

after (x′) the execution of the event e. Proof obligations are produced by RODIN, from

events: INV1 and INV2 state that an invariant condition I(x) is preserved; their general

form follows immediately from the definition of the before-after predicate BA(e)(x,x′)

of each event e; FIS expresses the feasibility of an event e, with respect to the invariant

I. By proving feasibility, we achieve that BA(e)(x,z) provides a next state whenever the

guard grd(e)(x) holds: the guard is the enabling condition of the event.

Model Refinement The refinement of models extends the structures described previ-

ously, and relates an abstract model and a concrete model. This feature allows us to

develop EVENT B models of the self-⋆ approach gradually and validate each decision

step using the proof tool. The refinement relationship is expressed as follows: a model

AM is refined by a model CM, when CM simulates AM (i.e. when a concrete event ce

occurs in CM, there must be a corresponding enabling abstract event ae in AM). The final

concrete model is closer to the behaviour of a real system that observes events using real

source code. The relationships between contexts, machines and events are illustrated by

the following diagrams (Fig. 2) , which consider refinements of events and machines.

Fig. 2: Machines and Contexts relationships

The refinement of a formal model allows us to enrich the model via a step-by-step

approach and is the foundation of our correct-by-construction approach [12]. Refinement

provides a way to strengthen invariants and to add details to a model. It is also used

to transform an abstract model to a more concrete version by modifying the state

description. This is done by extending the list of state variables (possibly suppressing

some of them), by refining each abstract event to a set of possible concrete versions,

and by adding new events. We suppose (see Fig. 2) that an abstract model AM with

variables x and an invariant I(x) is refined by a concrete model CM with variables y. The

abstract state variables, x, and the concrete ones, y, are linked together by means of a,

so-called, gluing invariant J(x,y). Event ae is in abstract model AM and event ce is in

5

concrete model CM. Event ce refines event ae. BA(ae)(x,x′) and BA(ce)(y,y′) are predicates

of events ae and ce respectively; we have to discharge the following proof obligation:

I(x) ∧ J(x,y) ∧ BA(ce)(y,y′) ⇒ ∃x′ · (BA(ae)(x,x′) ∧ J(x′,y′))

Due to limitations on the number of pages, we have briefly introduced the EVENT B

modelling language and the structures proposed for organising the formal development.

However, more details are available in [1] and on the Internet1. In fact, the refinement-

based development of EVENT B requires a very careful derivation process, integrating

possible tough interactive proofs. For assisting the development of the self-⋆ systems, we

use the service description and decomposition that is provided by the service-as-event [3]

paradigm (derived from the call-as-event approach [15]).

3.2 The Service-as-Event Paradigm

This section introduces the refinement diagrams [3, 15] and presents the service-as-event

paradigm. A brief overview on the usage of these formalisms for modelling the self-⋆

systems is given.

Objectives The service-as-event paradigm [3, 15] is a semantical extension of EVENT

B and introduces a way to deal with liveness properties and traces, for modelling the

self-⋆ systems.

A Definition of Self-⋆ Mechanism We characterize a self-stabilizing system S (more

generally a self-⋆ system) by its ability to recover autonomously from an illegal (faulty)

state (violating the invariant P of the system) to a legal (correct) state statisfying the

invariant property P of system S . Temporal logic [3, 11, 15, 18] can be used to describe

such mechanism, using the liveness properties: we represent the stabilization (especially

the convergence) property as a service where a system S , in an illegal state (characterized

by ¬P), reaches eventually a legal state (satisfying P). This service is expressed, with

the leads to () operator, as follows: (¬P) P. This leads to property (equivalently

((¬P)⇒⋄P)) states that every illegal state (satisfying ¬P) will eventually (at some point

in the future) lead to a legal state (satisfying P).

We define a temporal framework for the EVENT B model M of the studied system

S by the following TLA specification: S pec(M): Init(y)∧�[Next]y ∧L, where Init(y) is

the predicate specifying initial states; Next ≡ ∃e ∈ E.BA(e)(y,y′) is an action formula

representing the next-state relation; and L is a conjunction of formulas WFy(e) : we

express a weak fairness assumption over each event e modelling a step of the recovery

process (we do not add any fairness on events leading to illegal states (faults)).

1 http://lfm.iti.kit.edu/download/EventB_Summary.pdf

6

Refinement Diagrams We express the self-⋆ mechanism using EVENT B , together

¬P

g1~~

gp

T1

e1

. . . Tp

ep
~~

P

Fig. 3: A Refinement Diagram

with liveness properties under fairness assump-

tions. Refinement diagrams (see in Fig.3), intro-

duced by Méry et al in [3, 15], allow to develop

EVENT B models and add control inside these

models. They are also used for stating (proofs of)

liveness properties (under fairness assumptions),

and for supporting refinement. Therefore, these di-

agrams are suitable for representing the models of

self-⋆ systems. A refinement diagram D =̂ PD(M)
for a machine M is defined as follows:

PD(M) = (A,M,G,E), where A is a set of assertions, G a set of assertions for M called

conditions/guards of the form g(x), E is the set of events of M. The diagram PD(M) is a

labelled directed graph over A, with labels from G or E , satisfying the following rules:

(1) if an assertion R is related to another assertion S, by an unique non-dotted arrow

labelled e ∈ E (where e does not model a fault), then the property R S is satisfied; (2)

if R is related to S1, . . .Sp, then each arrow from R to Si is labelled by a guard gi ∈ G.

The diagram D possesses proved properties:

1. If M satisfies P Q and Q R, it satisfies P R.

2. If M satisfies P Q and R Q, it satisfies (P∨R) Q.

3. If I is invariant for M and if M satisfies P∧ I Q, then M satisfies P Q.

4. If I is invariant for M and if M satisfies P∧ I ⇒ Q, then M satisfies P Q.

5. If P
e

−→ Q is a link of D for the machine M, then M satisfies P Q.

6. If P and Q are two nodes of D such that there is a path in D from P to Q and any path

from P can be extended in a path containing Q, then M satisfies P Q.

7. If I, U , V , P, Q are assertions such that I is the invariant of M; P∧ I ⇒U ; V ⇒ Q; and

there is a path from U to V and each path from U leads to V ; then M satisfies P Q.

These refinement diagrams are attached to EVENT B models and are used for deriv-

ing liveness properties. As an example, the diagram in Fig.3 represents a model of a

self-stabilizing system: the diagram relates a pair of assertions (¬P,P), where ¬P is a

precondition stating that the studied system is in an illegal state (P does not hold); and

P is the post-condition, describing the desired legal state. We observe that the leads to

property (¬P) P, demonstrating the stabilization and convergence, is satisfied by the

diagram and the model linked to it.

Applying the Service-as-Event Paradigm [3] We apply the service-as-event paradigm,

for formalizing the self-⋆ systems.

1. Describing stabilization and convergence as a service. We express the stabiliza-

tion and convergence properties of a self-⋆ system S , where service is stated by the

following property: (¬P) P. An abstract event (e) is used for describing the ser-

vice/procedure represented by (¬P) P: (¬P)
e
−→ P; where (¬P) is a pre-condition

for triggering event (e); and P is a post-condition defined by the actions of event (e),

which should be satisfied by the "execution" of event.

7

2. Decomposing stabilization and convergence into simple steps. We decompose

the abstract service stated by (¬P) P into simple sub-procedures/steps, using the

inference rules [11] related to the leads to properties:

Fig. 4: Proof Tree - Usage of Inference Rules

This process is similar to refinement (see Fig.5), since we add, at each level of the

proof tree, a new state Rk (0 ≤ k ≤ n) leading from (¬P) to P. The initial property

(¬P) P is decomposed, until the identification of the stabilization steps is satis-

factory. The stabilization phase is expressed by the property

Fig. 5: Decomposition and Refinement

(¬P) R0 ∧ R0 R1 ∧ . . . ∧
Rn−1 Rn ∧Rn P, which states

the convergence leading to the de-

sired legal states. Each level of the

proof tree corresponds to a level of

refinement (see Fig.5) in the

formal development. Each leads to

property demonstrates a service of

stabilization, which is defined by an event in the model.

4 Stepwise Design of the Self-Healing Approach

4.1 Introduction to the Self-Healing P2P-Based Approach

The development of self-healing P2P-based approach is proposed by Marquezan et

al. [14], where system reliability is the main concern. The self-healing process ensures

the maintenance of proper functioning of the system services. If a service fails then it

switches from a legal state to a faulty state. The self-healing/recovery procedure ensures

that the service switches back to the legal state. The services run in a distributed (P2P)

system composed of agents/peers executing instances of tasks. The services and peers

notions are introduced as: (1) Management Services: Tasks/Services are executed by

the peers; (2) Instances of Management Services: Peers executing a certain type of

management service; (3) Management Peer Group (MPG): Instances of the same

management service. The self-healing property can be described as follows: (1) Self-

identification triggers to detect the failure of service. This mechanism identifies running

or failed instances of a management service. (2) Self-activation is started, whenever

a management service will be detected fail by the self-identification. Self-activation

evaluates if the management service needs a recovery, based on the criticality of the

failure: if there are still enough instances for running the service, the recovery procedure

is not started; otherwise, the self-configuration mechanism is triggered for repairing the

service. (3) Self-configuration is activated if the failure of service is critical: the role of

this mechanism is to instantiate the failed management service, and to return the service

into a legal state.

8

4.2 The Formal Design

Figure 6 depicts the formal design of self-healing P2P-based approach. The model

M0 abstracts the self-healing approach. The refinements M1, M2, M3 introduce step-by-

step the self-detection, self-activation and self-configuration phases, respectively. The

remaining refinements, from M4 to M20, are used for localisation of the system: each

step of the algorithm is made local to a node. The last refinement M21 presents a local

model that describes a set of procedures for recovering process of P2P system.

Fig. 6: Architecture

Abstracting the Self-Healing Approach (M0) This section

presents an abstraction of the self-healing procedure for a

failed service. Each service (s) is described by two states: RUN

(legal/running state) and FAIL (illegal/faulty state). A variable

serviceState is defined as s 7→ st ∈ serviceState, where s de-

notes a service and st denotes a possible state. A property P

expresses that a service (s) is in a legal running state that is

formalised as P =̂ (s 7→ RUN ∈ serviceState). An event FAIL-

URE models a faulty behaviour, where service (s) enters into

a faulty state (FAIL), satisfying ¬P. The self-healing of man-

agement service (s) is expressed as (¬P) P. The recovery

procedure is stated by an event HEAL ((¬P)
HEAL
−−−→ P), where

service (s) recovers from an illegal faulty state (FAIL) to a le-

gal running state (RUN). The refinement diagram1 (see Fig.7)

and events sum up the abstraction of a recovery procedure.

RUN

FAILURE++
FAIL

HEAL

jj

Fig. 7: Abstraction

EVENT FAILURE

ANY

s

WHERE

grd1 : s ∈ SERV ICES

THEN

act1 : serviceState :=
({s}⊳− serviceState)∪ {s 7→ FAIL}

EVENT HEAL

ANY

s

WHERE

grd1 : s ∈ SERV ICES

grd2 : s 7→ FAIL ∈ serviceState

THEN

act1 : serviceState :=
(serviceState\{s 7→ FAIL})

∪{s 7→ RUN}

This macro/abstract view of the self-healing is detailed by refinement2, using intermedi-

ate steps. A set of new variables is introduced to capture the system requirements. The

variables are denoted by NAME_{Re f inement Level}.

Introducing the Self-Detection (M1) The variable serviceState is replaced, by refine-

ment, with a new variable serviceState_1, since new states are introduced. The states

RUN, FAIL are refined into RUN_1, FAIL_1, and a new state (FL_DT _1) is defined. A

service (s) can suspect and identify a failure state (FAIL_1) before triggering the recov-

ery (HEAL). We introduce a property R0 =̂ (s 7→FL_DT _1∈ serviceState_1) and a new

event FAIL_DETECT in this self-detection mechanism. Let P and ¬P be redefined as fol-

lows: P =̂ (s 7→ RUN_1 ∈ serviceState_1) and ¬P =̂ (s 7→ FAIL_1 ∈ serviceState_1).

1 The assertions (s 7→ st ∈ serviceState), describing the state (st) of a service (s), are shorten into

(st), in the nodes of the refinement diagrams, for practical purposes.
2 ⊕: to add elements to a model, ⊖: to remove elements from a model

9

The intermediate steps of self-detection are introduced according to the refinement dia-

gram (see Fig.8) and proof tree.

Fig. 8: Self-Detection

(¬P) R0 R0 P
trans

(¬P) P

The event FAIL_DETECT is introduced to express

the self-detection: the failure state (FAIL_1) of a

service (s) is detected (state FL_DT _1).

The property (¬P) R0 is expressed by the event FAIL_DETECT, where the failure

(FAIL_1) of service (s) is identified (FL_DT _1). R0 P is defined by the event HEAL,

where the service (s) is restored to a legal running state (RUN_1) after failure detection.

The same method is applied to identify all the phases of self-healing algorithm. Due to

limited space, we focus on the interesting parts of models and liveness properties. The

complete formal development of models can be downloaded from web3.

Introducing the Self-Activation (M2) and Self-Configuration (M3) The self-activation

is introduced in this refinement M2 (see Fig. 9), where a failure of a service (s) is evaluated

in terms of critical or non-critical using a new state FL_ACT _2 and an event FAIL_ACTIV.

The self-configuration step is introduced in the next refinement M3 (see Fig.10), which

expresses that if the failure of service (s) is critical, then the self-configuration procedure

for a service (s) will be triggered (state FL_CONF_3), otherwise, the failure will be

ignored (state FL_IGN_3).

Fig. 9: Self-Activation Fig. 10: Self-Configuration

The Global Behaviour (M4) The developed models are refined and decomposed into

several steps (see Fig.11) [14]. These steps are: (1) Self-Detection, (2) Self-Activation,

and (3) Self-Configuration. Self-Detection phase is used to detect any failure in the au-

tonomous system using two events FAIL_DETECT and IS_OK. The event FAIL_DETECT

models the failure detection; and the event IS_OK states that if a detected failure of

a service (s) is a false alarm, then the service (s) returns to a legal state (RUN_4).

Self-Activation process is used to evaluate when actual failures are identified, using

3 http://eb2all.loria.fr/html_files/files/selfhealing/self-healing.zip

10

the following events: FAIL_ACTIV, FAIL_IGN, IGNORE, and FAIL_CONF. The events

FAIL_IGN and IGNORE are used to ignore the failure of service (s) when failure is not

in critical state (FL_IGN_4). The event FAIL_CONF is used to evaluate the failure of

service (s) when failure is critical (FL_CONF_4). The last phase Self-Configuration

presents the healing procedure of a failed service using an event REDEPLOY.

From model M5 to M20, we localise the events (we switch from a service point of

view to the instances/peers point of view) and detail the macro (global) steps by

Fig. 11: Self-Healing steps

adding new events, variables,

and constraints. The refine-

ments M5, M6, M7 introduce the

running (run_peers(s)),faulty

(f ail_peers[{s}]), suspicious

(susp_peers(s)) and deployed

peers/instances (dep_inst[{s}])
for a service (s). A function

(min_inst) associates each service

(s) with the minimal number of

instances that is required for
running service (s), and helps to detail the self-activation phase: if the number of running

instances of service (s) is below than minimum, then the failure is critical. The models

M8, M9, M10 detail the self-detection and self-configuration phases to introduce the

token owners for the services. Models from M11 to M20 localise gradually the events (to

switch from a service point of view to the instances/peers point of view). The detailed

formal development of various steps from M5 to M20 are given in the archive 3. Due to

limited space, in the following section, we present only the local model M21.

The Local Model (M21) This model details locally the self-healing procedure of a

service (s). The peers instantiating management service (s) are introduced, as well as

the notion of token owner. The token owner is a peer instance of service (s) that is

marked as a token owner for the Management Peer Group (MPG). It can perform the

self-healing procedure using self-detection, self-activation, and self-configuration steps.

(1) Self-Detection introduces an event SUSPECT_INST that states that the token owner

for service (s) is able to suspect a set (susp) of unavailable peers instances of service (s).

Other events RECONTACT_INST_OK and RECONTACT_INST_KO are used to specify

the successful recontact, and failed recontact, respectively, of the unavailable instances

for ensuring the failed states. Moreover, the token owner is able to monitor the status of

service (s) using two events FAIL_DETECT, and IS_OK. If there are unavailable instances

after the recontacting procedure, the token owner informs the safe members of MPG of

failed instances using the event FAIL_DETECT, otherwise, the token owner indicates that

service is running properly. (2) Self-Activation introduces an event FAIL_ACTIV that

states that if there are failed instances of service (s), then the token owner evaluates if the

failure is critical. Another event FAIL_IGNORE specifies that the failure is not critical.

An event IGNORE can ignore the failure if several instances (more than minimum)

are running correctly. If the number of instances for the running service (s) will be

less than the minimum required services, then the failure will be declared critical, and

the self-healing process will be triggered using an event FAIL_CONFIGURE. (3) Self-

11

Configuration introduces three events REDEPLOY_INSTC, REDEPLOY_INSTS and

REDEPLOY that specify that if the failure of service (s) is critical, then new instances

of running service (s) can be deployed until to reach the minimal number of instances,

and after the event HEAL can be triggered corresponding to the convergence of the

self-healing process.

It is noticeable that the architectural decomposition of the self-healing process is

emphasized in this model, by the events related to the algorithm. There is also a set of

events describing actions related to the environment. MAKE_PEER_UNAVAIL: a set of

peers (prs) becomes unavailable (can not be

contacted); MAKE_PEER_AVAIL: a formerly

unavailable instance (p) becomes available;

UNFAIL_PEER: a failed instance re-enters a

legal running state.

This model M21 describes locally the

Self-Healing P2P-Based Approach, where

we have formulated hypotheses for ensuring

the correct functioning of the self-healing

process: (1) Event MAKE_PEER_AVAIL: If

the token owner of a service (s) becomes un-

available,at least one peer, with the same

characteristics as the disabled token owner

(state, local informations about running,

failed peers, etc.) can become the new token

owner of service (s); (2) Event REDEPLOY_INSTC: There is always a sufficient number

of available peers that can be deployed to reach the legal running state of a service (s).

In a nutshell, we say that our methodology allows users to understand the self-⋆ mech-

anisms and to gain insight into their architectures (components, coordination, etc.); and

gives evidences of the correctness of self-⋆ systems under some assumptions/hypotheses.

5 Analysis of Temporal Properties for Event-B Models

Leuschel et al. [13] developed a tool ProB for animating, model-checking, and verifying

the consistency of Event-B models. ProB provides two ways for analysing Event-B

models : constraint-based checking and temporal model-checking. We focus on temporal

model-checking, since we are interested in liveness properties. Temporal model-checking

[13] allows ProB to detect problems with a model (invariants violation, deadlocks, etc.)

and to verify if the model satisfies LTL properties: ProB explores the state space of

the model and tries to find a counter-example (i.e. a sequence of events) leading to the

violation of invariants or LTL properties.

A difference with TLC (model-checker for TLA+) is that ProB does not support

fairness [9], allowing unfair traces to be analysed during model-checking. Therefore, the

TLA+ framework is more suited to our work, since we are verifying liveness properties,

in Event-B models, under fairness assumptions.

12

6 Discussion, Conclusion and Future Work

We present a methodology based on liveness properties and refinement diagrams for

modelling the self-⋆ systems using EVENT B. We characterize the self-⋆ systems by

three modes (abstract states): 1) legal (correct) state, 2) illegal (faulty) state, and 3)

recovery state. We have proposed a generic pattern for deriving correct self-⋆ systems

(see Fig.1). The service-as-event and call-as-event paradigms provide a way to express

the relationships between modes for ensuring required properties as convergence. The

correct-by-construction principle gives us the possibility to refine procedures from events

and to link modes. The key idea is to identify the modes (considered as abstract states)

and the required abstract steps to allow the navigation between modes, and then to

gradually enrich abstract models, using refinement to introduce the concrete states and

events. We have illustrated our methodology by the self-healing approach [14].

The complexity of the development is measured by the number of proof obligations

(PO) which are automatically/manually discharged (see Table 1). It should be noted that

a large majority (∼ 70%) of the 1177 manual proofs is solved by simply running the

provers. The actual summary of proof obligations is given by Table 2. The manually

discharged POs (327) require analysis and skills: searching and adding premises, simpli-

fying the complex predicates, and even transforming goals are needed to discharge these

POs. Examples of difficult POs are related to proving the finiteness of Management Peer

Groups (MPG), during the redeployment operation of the self-configuration phase.

Model Total Auto Interactive

CONTEXTS 30 26 86.67% 4 13.33%

M0 3 3 100% 0 0%

M1 21 15 71.4% 6 28.6%

M2 46 39 84.8% 7 15.2%

M3 68 0 0% 68 100%

M4 142 16 11.27% 126 88.75%

M5 46 17 39.95% 29 63.05%

OTHER MACHINES 1065 141 12.44% 924 87.56%

M21 13 0 0% 13 100%

TOTAL 1434 257 17.9% 1177 82.1%

Table 1: Summary of Proof Obligations

Total Auto Quasi-Auto Manual

1434 257 17.9% 850 59.3% 327 22.8%

Table 2: Synthesis of POs

Furthermore, our refinement-based formal-

ization allows us to produce final local

models close to the source code. Our fu-

ture works include the development of tech-

niques for generating applications from

the resulting model extending tools like

EB2ALL [16]. Moreover, further case stud-

ies will help us to discover new patterns;
these patterns will be added to a catalogue of patterns that could be implemented in

the Rodin platform. Finally, another point would be to take into account dependability

properties in our methodology.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, 2010.

2. M. B. Andriamiarina, H. Daoud, M. Belarbi, D. Méry, and C. Tanougast. Formal Verification

of Fault Tolerant NoC-based Architecture. In First International Workshop on Mathematics

and Computer Science (IWMCS2012), Tiaret, Algérie, Dec. 2012.

3. M. B. Andriamiarina, D. Méry, and N. K. Singh. Integrating proved state-based models

for constructing correct distributed algorithms. In E. B. Johnsen and L. Petre, editors, IFM,

volume 7940 of Lecture Notes in Computer Science, pages 268–284. Springer, 2013.

13

4. M. B. Andriamiarina, D. Méry, and N. K. Singh. Analysis of self-* and p2p systems using

refinement. In Y. A. Ameur and K.-D. Schewe, editors, ABZ, volume 8477 of Lecture Notes

in Computer Science, pages 117–123. Springer, 2014.

5. A. Berns and S. Ghosh. Dissecting self-* properties. In Proceedings of the 2009 Third IEEE

International Conference on Self-Adaptive and Self-Organizing Systems, SASO ’09, pages

10–19, Washington, DC, USA, 2009. IEEE Computer Society.

6. R. Calinescu, S. Kikuchi, and M. Kwiatkowska. Formal methods for the development and

verification of autonomic it systems. In Formal and Practical Aspects of Autonomic Computing

and Networking: Specification, Development and Verification, IGI Global, pages 90–104.

Cong-Vinh, P. (ed.), 2011.

7. S. Dolev. Self-Stabilization. MIT Press, 2000.

8. M. Güdemann, F. Ortmeier, and W. Reif. Safety and dependability analysis of self-adaptive

systems. In Proceedings of the Second International Symposium on Leveraging Applications

of Formal Methods, Verification and Validation, ISOLA ’06, pages 177–184, Washington,

DC, USA, 2006. IEEE Computer Society.

9. D. Hansen and M. Leuschel. Translating B to TLA+ for validation with TLC: There and back

again. Technical Report STUPS/2013/xx, Institut für Informatik, Heinrich-Heine-Universität

Düsseldorf, 2013.

10. M. U. Iftikhar and D. Weyns. A case study on formal verification of self-adaptive behaviors

in a decentralized system. In FOCLASA’12, pages 45–62, 2012.

11. L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–923,

1994.

12. G. T. Leavens, J.-R. Abrial, D. S. Batory, M. J. Butler, A. Coglio, K. Fisler, E. C. R. Hehner,

C. B. Jones, D. Miller, S. L. P. Jones, M. Sitaraman, D. R. Smith, and A. Stump. Roadmap

for enhanced languages and methods to aid verification. In S. Jarzabek, D. C. Schmidt, and

T. L. Veldhuizen, editors, GPCE, pages 221–236. ACM, 2006.

13. M. Leuschel and M. Butler. ProB: A model checker for B. In A. Keijiro, S. Gnesi, and

M. Dino, editors, FME, volume 2805 of Lecture Notes in Computer Science, pages 855–874.

Springer-Verlag, 2003.

14. C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network Management - Design

Principles and Case Studies. Springer Briefs in Computer Science. Springer, 2012.

15. D. Méry. Refinement-based guidelines for algorithmic systems. International Journal of

Software and Informatics, 3(2-3):197–239, June/September 2009.

16. D. Méry and N. K. Singh. Automatic code generation from event-b models. In Proceedings

of the Second Symposium on Information and Communication Technology, SoICT ’11, pages

179–188, New York, NY, USA, 2011. ACM.

17. L. Penserini, H. Aldewereld, F. Dignum, and V. Dignum. Adaptivity within an organizational

development framework. In Proceedings of the 2008 Second IEEE International Conference

on Self-Adaptive and Self-Organizing Systems, SASO ’08, pages 477–478, Washington, DC,

USA, 2008. IEEE Computer Society.

18. I. S. W. B. Prasetya and S. D. Swierstra. Formal design of self-stabilizing programs: Theory

and examples, 2000.

19. Project RODIN. Rigorous open development environment for complex systems.

http://www.eventb.org/, 2004-2010.

20. M. Puviani, G. D. M. Serugendo, R. Frei, and G. Cabri. A method fragments approach to

methodologies for engineering self-organizing systems. ACM Trans. Auton. Adapt. Syst.,

7(3):33:1–33:25, Oct. 2012.

21. G. Smith and J. W. Sanders. Formal development of self-organising systems. In Proceedings

of the 6th International Conference on Autonomic and Trusted Computing, ATC ’09, pages

90–104, Berlin, Heidelberg, 2009. Springer-Verlag.

14

22. J. Sudeikat, J.-P. Steghöfer, H. Seebach, W. Reif, W. Renz, T. Preisler, and P. Salchow.

Design and simulation of a wave-like self-organization strategy for resource-flow systems. In

MALLOW’10, pages –1–1, 2010.

23. D. Tosi. Research perspectives in self-healing systems. Technical report, DISE LTA, 2004.

24. D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey of formal methods in

self-adaptive systems. In Proceedings of the Fifth International C* Conference on Computer

Science and Software Engineering, C3S2E ’12, pages 67–79, New York, NY, USA, 2012.

ACM.

25. D. Weyns, S. Malek, and J. Andersson. Forms: Unifying reference model for formal specifi-

cation of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst., 7(1):8:1–8:61,

May 2012.

15

A Appendix : EVENT-B models

16

C00
CONTEXTC00 ›SETSSERVICES ›STATES ›CONSTANTSRUN ›FAIL ›InitState ›AXIOMSaxm1: SERVICES ≠ ∅ not theorem ›axm2: STATES = {RUN, FAIL} not theorem ›axm3: RUN ≠ FAIL not theorem ›axm4: InitState ∈ SERVICES ↔ STATES not theorem ›axm5: ∀ s · s ∈ SERVICES ⇒ s ↦ RUN ∈ InitState not theorem ›axm6: ∀ s, st1, st2 · s ∈ SERVICES ∧ st1 ∈ STATES ∧ st2 ∈ STATES ∧ s ↦ st1 ∈ InitState ∧ s ↦ st2 ∈ InitState ⇒ st1 = st2 not theorem ›END

Page 1

C01
CONTEXTC01 ›EXTENDS C00 SETSSTKTES_1 ›CONSTKNTSRUN_1 ›FKIL_1 ›FKIL_DETECT_1 ›InitState_1 ›KXIOMSaam1T partition(STKTES_1, {RUN_1},{FKIL_1},{FKIL_DETECT_1}) not theorem ›aam2T InitState_1 ∈ SERVICES ↔ STKTES_1 not theorem ›aam3T ∀ s · s ∈ SERVICES ⇒ s ↦ RUN_1 ∈ InitState_1 not theorem ›aam4T ∀ s, st1, st2 · s ∈ SERVICES ∧ st1 ∈ STKTES_1 ∧ st2 ∈ STKTES_1 ∧ s ↦ st1 ∈ InitState_1 ∧ s ↦ st2 ∈ InitState_1 ⇒ st1 = st2 not theorem ›END

Page 1

C02
CONTEXTC02 ›EXTENDS C0H SETSSTATES_2 ›CONSTANTSRUN_2 ›FAIL_2 ›FAIL_DETECT_2 ›FAIL_ACTIV_2 ›InitState_2 ›AXIOMSaxmH: partition(STATES_2, {RUN_2},{FAIL_2},{FAIL_DETECT_2},{FAIL_ACTIV_2}) not theorem ›axm2: InitState_2 ∈ SERVICES ↔ STATES_2 not theorem ›axm3: ∀ s · s ∈ SERVICES ⇒ s ↦ RUN_2 ∈ InitState_2 not theorem ›axm4: ∀ s, stH, st2 · s ∈ SERVICES ∨ stH ∈ STATES_2 ∨ st2 ∈ STATES_2 ∨ s ↦ stH ∈ InitState_2 ∨ s ↦ st2 ∈ InitState_2 ⇒ stH = st2 not theorem ›END

Page H

C03
CONTEXTC03 ›EXTENDS C02 SETSSTATES_3 ›CONSTANTSRUN_3 ›FAIL_3 ›FAIL_DETECT_3 ›FAIL_ACTIV_3 ›FAIL_CONFIG_3 ›FAIL_IGN_3 ›InitState_3 ›AXIOMSaxm1: partition(STATES_3, {RUN_3},{FAIL_3},{FAIL_DETECT_3},{FAIL_ACTIV_3},{FAIL_CONFIG_3},{FAIL_IGN_3}) not theorem ›axm2: InitState_3 ∈ SERVICES ↔ STATES_3 not theorem ›axm3: ∀ s · s ∈ SERVICES ⇒ s ↦ RUN_3 ∈ InitState_3 not theorem ›axm4: ∀ s, st1, st2 · s ∈ SERVICES ∨ st1 ∈ STATES_3 ∨ st2 ∈ STATES_3 ∨ s ↦ st1 ∈ InitState_3 ∨ s ↦ st2 ∈ InitState_3 ⇒ st1 = st2 not theorem ›END

Page 1

C04
CONTEXTC04 ›EXTENDS C03 SETSSTATES_4 ›CONSTANTSRUN_4 ›FAIL_4 ›FAIL_DETECT_4 ›FAIL_ACTIV_4 ›FAIL_CONFIG_4 ›FAIL_IGN_4 ›DPL_4 ›InitState_4 ›AXIOMSaxm1: partition(STATES_4, {RUN_4},{FAIL_4},{FAIL_DETECT_4},{FAIL_ACTIV_4},{FAIL_CONFIG_4},{FAIL_IGN_4},{DPL_4}) not theorem ›axm2: InitState_4 ∈ SERVICES ↔ STATES_4 not theorem ›axm3: ∀ s · s ∈ SERVICES ⇒ s ↦ RUN_4 ∈ InitState_4 not theorem ›axm4: ∀ s, st1, st2 · s ∈ SERVICES ∧ st1 ∈ STATES_4 ∧ st2 ∈ STATES_4 ∧ s ↦ st1 ∈ InitState_4 ∧ s ↦ st2 ∈ InitState_4 ⇒ st1 = st2 not theorem ›END

Page 1

C05
CONTEXTC05 ›EXTENDS C04 CONSTANTSmin_inst ›init_inst ›AXIOMSaxm1: min_inst ∈ SERVICES → ℕ1 not theorem ›axm2: init_inst ∈ SERVICES → ℕ1 not theorem ›axm3: ∀ s · s ∈ SERVICES ⇒ min_inst(s) ≥ 2 not theorem ›axm4: ∀ s · s ∈ SERVICES ⇒ init_inst(s) ≥ min_inst(s) not theorem ›axm5: ∀ s · s ∈ SERVICES ⇒ init_inst(s) ≥ 2 theorem ›END

Page 1

C06
CONTEXTC06 ›EXTENDS C05 SETSVEERS ›Set of VEERSCONSTANTSInitSrvcVeers ›Initial set of peers / instances per serviceAXIOMSaxm1: InitSrvcVeers ∈ SERVICES → ℙ1(VEERS) not theorem ›each service is proviUeU by a non empty set of peers/instancesaxm2: ∀ s · s ∈ SERVICES ⇒ finite(InitSrvcVeers(s)) not theorem ›each service is proviUeU by a finite set of peers/instancesaxm3: ∀ s · s ∈ SERVICES ⇒ carU(InitSrvcVeers(s)) = init_inst(s) not theorem ›each service s is proviUeU by peers/instances, whose number is init_inst(s)axm4: ∀ s1, s2 · s1 ⊆ VEERS ∧ s2 ⊆ VEERS ∧ s1 ≠ ∅ ∧ s2 ≠ ∅ ∧ finite(s1) ∧ finite(s2) ∧ s1 ⊂ s2 ⇒ carU(s1) ≤ carU(s2)−1 not theorem ›axm5: ∀ s1 · s1 ⊆ VEERS ∧ s1 ≠ ∅ ∧ finite(s1) ⇒ carU(s1) > 0 theorem ›axm6: ∀ s1, s2 · s1 ⊆ VEERS ∧ s2 ⊆ VEERS ∧ finite(s1) ∧ finite(s2) ∧ s1 ⊆ s2 ⇒ carU(s2) − carU(s1) = carU(s2∖s1) not theorem ›END

Vage 1

C07
CONTEXTC07 ›EXTENDS C06 CONSTANTSdeplo_inst ›AXIOMSaxm1: ∀ set, s1, s2 · set ⊆ SERVICES×PEERS ∧ s1 ∈ SERVICES ∧ s2 ∈ SERVICES ∧ s1 = s2 ⇒ ({s1} ⩤ set)[{s2}] = ∅ theorem ›axm2: ∀ set, s1, s2 · set ⊆ SERVICES×PEERS ∧ s1 ∈ SERVICES ∧ s2 ∈ SERVICES ∧ s1 ≠ s2 ⇒ ({s1} ⩤ set)[{s2}] = set[{s2}] theorem ›axm3: ∀ set, s1, s2, p · set ⊆ SERVICES×PEERS ∧ s1 ∈ SERVICES ∧ s2 ∈ SERVICES ∧ p ∈ PEERS ∧ s1 = s2 ⇒ (set = {s1 ↦ p})[{s2}] = set[{s2}]={p} theorem › axm4: ∀ set, s1, s2, p · set ⊆ SERVICES×PEERS ∧ s1 ∈ SERVICES ∧ s2 ∈ SERVICES ∧ p ∈ PEERS ∧ s1 ≠ s2 ⇒ (set = {s1 ↦ p})[{s2}] = set[{s2}] theorem ›axm5: deplo_inst ∈ SERVICES → ℕ1 not theorem ›END

Page 1

C08
CONTEXTC08 ›EXTENDS C07 CONSTANTSinit_tok ›InitStatus ›InitSuspPeers ›InitFail ›AXIOMSaxm1: init_tok ∈ SERVICES → PEERS not theorem ›axm2: ∀ s · s ∈ SERVICES ⇒ init_tok(s) ∈ InitSrvcPeers(s) not theorem › axm3: ∀ a1, a2 · a1 ∈ PEERS ↔ (SERVICES×PEERS) ∧ a2 ∈ PEERS ↔ (SERVICES×PEERS) ∧ finite(a1) ∧ a2 ⊆ a1 ⇒ finite(a2) not theorem ›axm4: InitStatus ∈ (PEERS × SERVICES) ⇸ STATES_4 not theorem ›axm5: ∀ s, p · s ∈ SERVICES ∧ p ∈ PEERS ∧ p = init_tok(s) ⇒ (p ↦ s) ↦ RUN_4 ∈ InitStatus not theorem ›axm6: ∀ s, p, stt · s ∈ SERVICES ∧ p ∈ PEERS ∧ stt ∈ STATES_4 ∧ (p ↦ s) ↦ stt ∈ InitStatus ⇒ p = init_tok(s) ∧ stt = RUN_4 not theorem ›axm7: InitSuspPeers ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›axm8: ∀ p, s, sp · p ∈ PEERS ∧ s ∈ SERVICES ∧ sp ⊆ PEERS ∧ (p ↦ s) ↦ sp ∈ InitSuspPeers ⇒ p = init_tok(s) ∧ sp = ∅ not theorem ›axm9: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = init_tok(s) ⇒ (p ↦ s) ↦ ∅ ∈ InitSuspPeers not theorem ›axm10: InitFail ∈ SERVICES → ℙ(PEERS) not theorem ›axm11: ∀ s · s ∈ SERVICES ⇒ InitFail(s) = ∅ not theorem ›END

Page 1

C09
CONTEXTC09 ›EXTENDS C08 CONSTANTS1niPSPsPeSrv ›1niPSuspPrs ›1niPRunPeers ›AX1OMSsxm1: 1niPSPsPeSrv ∈ PEERS × SERV1CES ⇸ STATES_4 noP Pheorem ›sxm2: ∀ s↦ p · p ∈ PEERS ∧ s ∈ SERV1CES ∧ p ∈ 1niPSrvcPeers(s(⇒ (p ↦ s(↦ RUN_4 ∈ 1niPSPsPeSrv noP Pheorem ›sxm3: ∀ s↦ p↦ sPP · p ∈ PEERS ∧ s ∈ SERV1CES ∧ (p ↦ s(↦ sPP ∈ 1niPSPsPeSrv ⇒ p ∈ 1niPSrvcPeers(s(∧ sPP = RUN_4 noP Pheorem ›sxm4: 1niPSuspPrs ∈ PEERS × SERV1CES ⇸ ℙ(PEERS(noP Pheorem ›sxm5: ∀ s↦ p · p ∈ PEERS ∧ s ∈ SERV1CES ∧ p ∈ 1niPSrvcPeers(s(⇒ (p ↦ s(↦ ∅ ∈ 1niPSuspPrs noP Pheorem ›sxm6: ∀ s↦ p↦ sPP · p ∈ PEERS ∧ s ∈ SERV1CES ∧ (p ↦ s(↦ sPP ∈ 1niPSuspPrs ⇒ p ∈ 1niPSrvcPeers(s(∧ sPP = ∅ noP Pheorem ›sxm7: 1niPRunPeers ∈ PEERS × SERV1CES ⇸ ℙ(PEERS(noP Pheorem ›sxm8: ∀ s↦ p · p ∈ PEERS ∧ s ∈ SERV1CES ∧ p ∈ 1niPSrvcPeers(s(⇒ (p ↦ s(↦ 1niPSrvcPeers(s(∈ 1niPRunPeers noP Pheorem ›sxm9: ∀ s↦ p↦ sPP · p ∈ PEERS ∧ s ∈ SERV1CES ∧ (p ↦ s(↦ sPP ∈ 1niPRunPeers ⇒ p ∈ 1niPSrvcPeers(s(∧ sPP = 1niPSrvcPeers(s(noP Pheorem ›END

Psge 1

M00
MACHINEM00 ›SEES C00 VARIABLESserviceState ›INVARIANTSinv1: serviceState ∈ SERVICES ↔ STATES not theorem ›inv2: ∀ s, st1, st2 · s ∈ SERVICES ∧ st1 ∈ STATES ∧ st2 ∈ STATES ∧ s ↦ st1 ∈ serviceState ∧ s ↦ st2 ∈ serviceState ⇒ st1 = st2 not theorem ›EVENTSINITIALISATION: not extended ordinary ›THENact1: serviceState ≔ InitState ›END

FAIL: not extended ordinary ›ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›THENact1: serviceState ≔ ({s} ⩤ serviceState) ∪ {s ↦ FAIL} ›END
HEAL: not extended ordinary ›ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL ∈ serviceState not theorem ›THENact1: serviceState ≔ (serviceState ∖ {s ↦ FAIL}) ∪ {s ↦ RUN} ›END

END

Page 1

M01
MACHINEM01 ›REFINES M00 SEES C01 VARIABLESserviceState_1 ›INVARIANTSinv1: serviceState_1 ∈ SERVICES ↔ STATES_1 not theorem ›gluing_run1: ∀ s · s ∈ SERVICES ∧ s ↦ RUN ∈ serviceState ⇒ s ↦ RUN_1 ∈ serviceState_1 not theorem ›gluing_run2: ∀ s · s ∈ SERVICES ∧ s ↦ RUN_1 ∈ serviceState_1 ⇒ s ↦ RUN ∈ serviceState not theorem ›gluing_fail1: ∀ s · s ∈ SERVICES ∧ s ↦ FAIL ∈ serviceState ⇒ (s ↦ FAIL_1 ∈ serviceState_1 ∨ s ↦ FAIL_DETECT_1 ∈ serviceState_1(not theorem ›gluing_fail2: ∀ s, st · s ∈ SERVICES ∧ st ∈ STATES_1 ∧ st ∈ {FAIL_1,FAIL_DETECT_1} ∧ s ↦ st ∈ serviceState_1 ⇒ s ↦ FAIL ∈ serviceState not theorem ›gluing_state3: ∀ s, st1, st2 · s ∈ SERVICES ∧ st1 ∈ STATES_1 ∧ st2 ∈ STATES_1 ∧ s ↦ st1 ∈ serviceState_1 ∧ s ↦ st2 ∈ serviceState_1 ⇒ st1 = st2 not theorem ›EVENTSINITIALISATION: not extended ordinary ›THENact1: serviceState_1 ≔ InitState_1 ›END

FAIL: not extended ordinary ›REFINES FAIL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ RUN_1 ∈ serviceState_1 not theorem ›THENact1: serviceState_1 ≔ (serviceState_1∖{s ↦ RUN_1}(∪ {s ↦ FAIL_1} › END
FAIL_DETECT: not extended ordinary ›REFINES FAIL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›

Page 1

M01
grd2: s ↦ FAIL_1 ∈ serviceState_1 not theorem ›THENact1: serviceState_1 ≔ (serviceState_1∖{s ↦ FAIL_1}(∪ {s ↦ FAIL_DETECT_1} ›END

�EAL: not extended ordinary ›REFINES HEAL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_1 ∈ serviceState_1 not theorem ›THENact1: serviceState_1 ≔ (serviceState_1 ∖ {s ↦ FAIL_DETECT_1}(∪ {s ↦ RUN_1} ›END
END

Page 2

M02
MACHINEM02 ›REFINES M0� SEES C02 VARIABLES

�erviceState_2 ›INVARIAN�SinvG1 serviceState_2 : SERVICES ∈ S �A�ES_2 n↔t toe↔reh ›mglinm_rlnG1 u � ∀ � : SE RVICES ∧ � ∧ RUN_ G : �erviceState_ G ⇒ � ∧ RUN_2 : �erviceSt ate_2 n↔t toe↔reh ›mglinm_rln2 : u � ∀ � : SE RVICES ∧ � ∧ RUN_ 2 : �erviceState_ 2 ⇒ � ∧ RUN_G : �erviceSt ate_G n↔t toe↔reh ›mglinm_⇒aigG1 u � ∀ � : SER VICES ∧ � ∧ FAIL_ G : �erviceState_ G ⇒ � ∧ FAIL_2 : �erviceS tate_2 n↔t toe↔reh ›mglinm_⇒aig2 : u � ∀ � : SER VICES ∧ � ∧ FAIL_ 2 : �erviceState_ 2 ⇒ � ∧ FAIL_G : �erviceS tate_G n↔t toe↔reh ›mglinm_ftctG1 u � ∀ � : SER VICES ∧ � ∧ FAIL_ dE�EC�_G : �ervic eState_G ⇒ �� ∧ FAIL_AC�I V_2 : �erviceStat e_2 � � ∧ FAIL_dE �EC�_2 : �erviceS tate_2) n↔t toe↔reh ›mglinm_ftct2 : u �O �t ∀ � : SERVICES ∧ �t : S�A�ES_2 ∧ �t : GFAIL_AC�IV_2OFAI L_dE�EC�_2) ∧ � ∧ �t : �erviceStat e_2 ⇒ � ∧ FAIL_d E�EC�_G :
�erviceState_G n↔t toe↔reh ›mglinm_state1 u �O �t�O �t2 ∀ � : SERVICES ∧ �t� : S�A�ES_2 ∧ �t2 : S�A�ES_2 ∧ � ∧ �t � : �erviceState_ 2 ∧ � ∧ �t2 : �er viceState_2 ⇒ �t � = �t2 n↔t toe↔reh ›EVEN�SINITIALISATION: n↔t extenfef orfinar} ›

�HEN
�ctG1 serviceState_2 ≔ InitState_ 2 ›ENd

FAIL1 n↔t extenfef orfinar} ›REFINES FAIL ANx s ›yHEREmrfG1 s : SERVICES n↔t toe↔reh ›mrf2 : � ∧ RUN_2 : � erviceState_2 n↔t toe↔reh ›
�HEN

�ctG1 serviceState_2 ≔ ��erviceState _2≔Gs ∧ RUN_2)) Y Gs ∧ FAIL_2) › ENd
FAIL_DETECT1 n↔t extenfef orfinar} ›REFINES

Wame �

M02
 FAIL_dE�EC� ANx s ›yHEREmrfG1 s : SERVICES n↔t toe↔reh ›mrf2 : � ∧ FAIL_2 : �erviceState_2 n↔t toe↔reh ›

�HEN
	ctG1 serviceState_2 ≔
�erviceState _2≔Gs ∧ FAIL_2)) Y Gs ∧ FAIL_dE�EC�_2) ›ENd

IS_O�1 n↔t extenfef orfinar} ›REFINES HEAL ANx s ›yHEREmrfG1 s : SERVICES n↔t toe↔reh ›mrf2 : � ∧ FAIL_dE�E C�_2 : �erviceSta te_2 n↔t toe↔reh ›
�HEN

	ctG1 serviceState_2 ≔
�erviceState _2 ≔ Gs ∧ FAIL_dE �EC�_2)) Y Gs ∧ RUN_2) ›ENd
FAIL_ACTIS1 n↔t extenfef orfinar} ›ANx s ›yHEREmrfG1 s : SERVICES n↔t toe↔reh ›mrf2 : � ∧ FAIL_dE�E C�_2 : �erviceSta te_2 n↔t toe↔reh ›

�HEN
	ctG1 serviceState_2 ≔
�erviceState _2 ≔ Gs ∧ FAIL_dE �EC�_2)) Y Gs ∧ FAIL_AC�IV _2) ›ENd

GEAL1 n↔t extenfef orfinar} ›REFINES HEAL ANx s ›yHEREmrfG1 s : SERVICES n↔t toe↔reh ›mrf2 : � ∧ FAIL_AC�I V_2 : �erviceStat e_2 n↔t toe↔reh ›
�HEN

	ctG1 serviceState_2 ≔
�erviceState _2 ≔ Gs ∧ FAIL_AC �IV_2)) Y Gs ∧ RUN_2) ›ENd

Wame 2

M02
ENd

Wame ∖

M03
MACHINEM03 ›REFINES M0G SEES C03 VARIABLES

�erviceState_3 ›INVARIANSinv1: serviceState_3 ∈ SERVICES ↔ S AES_3 not theorem ›gluing_run1: ∀ � · � ∈ SE RVICES ∧ � � R�N_ G ∈ �erviceState_ G ⇒ � � R�N_3 ∈ �erviceSt ate_3 not theorem ›gluing_runG: ∀ � · � ∈ SE RVICES ∧ � � R�N_ 3 ∈ �erviceState_ 3 ⇒ � � R�N_G ∈ �erviceSt ate_G not theorem ›gluing_fail1: ∀ � · � ∈ SER VICES ∧ � � FAIL_ G ∈ �erviceState_ G ⇒ � � FAIL_3 ∈ �erviceS tate_3 not theorem ›gluing_failG: ∀ � · � ∈ SER VICES ∧ � � FAIL_ 3 ∈ �erviceState_ 3 ⇒ � � FAIL_G ∈ �erviceS tate_G not theorem ›gluing_dtct1: ∀ � · � ∈ SER VICES ∧ � � FAIL_ DEEC_G ∈ �ervic eState_G ⇒ � � FAIL_DEEC _3 ∈ �erviceStat e_3 not theorem ›gluing_dtctG: ∀ � · � ∈ SER VICES ∧ � � FAIL_ DEEC_3 ∈ �ervic eState_3 ⇒ � � FAIL_DEEC _G ∈ �erviceStat e_G not theorem ›gluing_act1: ∀ � · � ∈ SE RVICES ∧ � � FAIL _ACIV_G ∈ �ervic eState_G ⇒ �� � FAIL_ACI V_3 ∈ �erviceStat e_3 � � � FAIL_CO NFIG_3 ∈ �erviceS tate_3 � � � FAIL_IGN_3 ∈ �erv iceState_3) not theorem ›gluing_actG: ∀ �, �t · � ∈ SERVICES ∧ �t ∈ SAES_3 ∧ �t ∈ {FAIL_ACIV_3,FAI L_CONFIG_3,FAIL_I GN_3} ∧ � � �t ∈ �erviceState_3 ⇒ � � FAIL_ACIV_G ∈ �e rviceState_G not theorem ›gluing_state: ∀ �, �t1, �tG · � ∈ SERVICES ∧ �t1 ∈ SAES_3 ∧ �tG ∈ SAES_3 ∧ � � �t 1 ∈ �erviceState_ 3 ∧ � � �tG ∈ �er viceState_3 ⇒ �t 1 � �tG not theorem ›EVENSINITIALISATION: not extended ordinary ›
HEN

�ct1: serviceState_3 ≔ InitState_ 3 ›END
FAIL: not extended ordinary ›REFINES FAIL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grdG: s � R�N_3 ∈ � erviceState_3 not theorem ›

HEN
�ct1: serviceState_3 ≔ ��erviceState _3∖{s � R�N_3}) ∪ {s � FAIL_3} ›

Page 1

M03
END

FAIL_DETECT: not extended ordinary ›REFINES FAIL_DE�EC� ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grdG: s � FAIL_3 ∈ �erviceState_3 not theorem ›
�HEN

�ct1: serviceState_3 ≔ ��erviceState _3∖{s � FAIL_3}) ∪ {s � FAIL_DE�EC�_3} ›END
IS_O�: not extended ordinary ›REFINES IS_OK ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grdG: s � FAIL_DE�E C�_3 ∈ �erviceSta te_3 not theorem ›

�HEN
�ct1: serviceState_3 ≔ ��erviceState _3 ∖ {s � FAIL_DE �EC�_3}) ∪ {s � R�N_3} ›END

FAIL_ACTIS: not extended ordinary ›REFINES FAIL_AC�IV ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grdG: s � FAIL_DE�E C�_3 ∈ �erviceSta te_3 not theorem ›
�HEN

�ct1: serviceState_3 ≔ ��erviceState _3 ∖ {s � FAIL_DE �EC�_3}) ∪ {s � FAIL_AC�IV _3} ›END
FAIL_CONF_IGN: not extended ordinary ›ANY s ›st ›WHEREgrd1: s ∈ SERVICES not theorem ›grd3: st ∈ {FAIL_CONFIG_3,FAIL_IGN_3} not theorem ›

Page 2

M03
grd2: s ↦ FAIL_ACTIV_3 ∈ serviceState_3 not theorem ›THENact1: serviceState_3 ≔ (serviceState_3 ∖ {s ↦ FAIL_ACTIV_3}) ∪ {s ↦ st} › END

HEAL: not extended ordinary ›REFINES HEAL ANY s ›st ›WHEREgrd1: s ∈ SERVICES not theorem ›grd3: st ∈ {FAIL_CONFIG_3,FAIL_IGN_3} not theorem ›grd2: s ↦ st ∈ serviceState_3 not theorem ›THENact1: serviceState_3 ≔ (serviceState_3 ∖ {s ↦ st}) ∪ {s ↦ RUN_3} › END
END

Page 3

M04
MACHINEM04 ›REFINES M03 SEES C04 VARIABLESserviceState_4 ›INVARIANTSinv1: serviceState_4 ∈ SERVICES ↔ S TATES_4 not thHorHm ›gluing_run1: ∀ Y · Y ∈ SE RVICES ∧ s ↦ RUN_3 ∈ YHrvicHStatH_ 3 ⇒ Y ↦ RUN_4 ∈ YHrvicHSt atH_4 not thHorHm ›gluing_run2: ∀ Y · Y ∈ SE RVICES ∧ s ↦ RUN_4 ∈ YHrvicHStatH_ 4 ⇒ Y ↦ RUN_3 ∈ YHrvicHSt atH_3 not thHorHm ›gluing_fail1: ∀ Y · Y ∈ SERVICES ∧ s ↦ FAIL_3 ∈ YHrvicHStatH_ 3 ⇒ Y ↦ FAIL_4 ∈ YHrvicHS tatH_4 not thHorHm ›gluing_fail2: ∀ Y · Y ∈ SERVICES ∧ s ↦ FAIL_4 ∈ YHrvicHStatH_ 4 ⇒ Y ↦ FAIL_3 ∈ YHrvicHS tatH_3 not thHorHm ›gluing_dtct1: ∀ Y · Y ∈ SERVICES ∧ s ↦ FAIL_DETEC�_3 ∈ YHrvic HStatH_3 ⇒ Y ↦ FAIL_DETEC �_4 ∈ YHrvicHStat H_4 not thHorHm ›gluing_dtct2: ∀ Y · Y ∈ SERVICES ∧ s ↦ FAIL_DETEC�_4 ∈ YHrvic HStatH_4 ⇒ Y ↦ FAIL_DETEC �_3 ∈ YHrvicHStat H_3 not thHorHm ›gluing_act1: ∀ Y · Y ∈ SE RVICES ∧ s ↦ FAIL_ACTIV_3 ∈ YHrvic HStatH_3 ⇒ Y ↦ FAIL_AC�IV _4 ∈ YHrvicHStatH _4 not thHorHm ›gluing_act2: ∀ Y · Y ∈ SE RVICES ∧ s ↦ FAIL_ACTIV_4 ∈ YHrvic HStatH_4 ⇒ Y ↦ FAIL_AC�IV _3 ∈ YHrvicHStatH _3 not thHorHm ›gluing_ign1: ∀ Y · Y ∈ SE RVICES ∧ s ↦ FAIL_IGN_3 ∈ YHrvicHS tatH_3 ⇒ Y ↦ FAIL_IGN_4 ∈ YHrvicHStatH_4 not thHorHm ›gluing_ign2: ∀ Y · Y ∈ SE RVICES ∧ s ↦ FAIL_IGN_4 ∈ YHrvicHS tatH_4 ⇒ Y ↦ FAIL_IGN_3 ∈ YHrvicHStatH_3 not thHorHm ›gluing_conf1: ∀ Y · Y ∈ SERVICES ∧ s ↦ FAIL_CONFIG_3 ∈ YHrvic HStatH_3 ⇒ (Y ↦ FAIL_CONF IG_4 ∈ YHrvicHSta tH_4 ∨ Y ↦ DPL_4 ∈ YHrvicHStatH_4) not thHorHm › gluing_conf2: ∀ Y, Yt · Y ∈ SERVICES ∧ st ∈ STATES_4 ∧ Yt ∈ {FAIL_CONFIG_4,DP L_4} ∧ Y ↦ Yt ∈ Y HrvicHStatH_4 ⇒ Y ↦ FAIL_CONFIG_3 ∈ YHrvicHStatH_3 not thHorHm ›gluing_YtatH: ∀ Y, Yt1, Yt2 · Y ∈ SERVICES ∧ st1 ∈ STATES_4 ∧ Yt2 ∈ STATES_4 ∧ Y ↦ Yt 1 ∈ YHrvicHStatH_ 4 ∧ Y ↦ Yt2 ∈ YHrvicHStatH_4 ⇒ Yt 1 = Yt2 not thHorHm ›EVENTSINITIALISATION: not extHndHd ordinary ›

�HEN
�ct1: YHrvicHStatH_ 4 ≔ InitStatH_ 4 ›END

FAIL: not HxtHndHd ordinary ›REFINES FAIL

PagH 1

M04
ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ RUN_4 ∈ Y HrvicHStatH_4 not thHorHm ›
�HEN

�ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4∖{Y ↦ RUN_4}) ∪ {Y ↦ FAIL_4} › END
FAIL_DETECT: not HxtHndHd ordinary ›REFINES FAIL_DETEC� ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ FAIL_4 ∈ YHrvicHStatH_4 not thHorHm ›

�HEN
�ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4∖{Y ↦ FAIL_4}) ∪ {Y ↦ FAIL_DETEC�_4} ›END

IS_O�: not HxtHndHd ordinary ›REFINES IS_OK ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ FAIL_DETEC�_4 ∈ YHrvicHSta tH_4 not thHorHm ›
�HEN

�ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4 ∖ {Y ↦ FAIL_DE TEC�_4}) ∪ {Y ↦ RUN_4} ›END
FAIL_ACTI : not HxtHndHd ordinary ›REFINES FAIL_AC�IV ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ FAIL_DETEC�_4 ∈ YHrvicHSta tH_4 not thHorHm ›

�HEN
�ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4 ∖ {Y ↦ FAIL_DE TEC�_4}) ∪ {Y ↦ FAIL_AC�IV _4} ›END

PagH 2

M04

FAIL_CONFIGURE: not extended ordinary ›REFINES FAIL_CONF_IGN ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceStat e_4 not theorem ›WITHst: st = FAIL_CONFI G_3 ›THENact1: serviceState_ 4 ≔ (serviceState _4 ∖ {s ↦ FAIL_AC TIV_4}) ∪ {s ↦ FAIL_CONFIG_ 4} ›END
FAIL_IGNORE: not extended ordinary ›REFINES FAIL_CONF_IGN ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceStat e_4 not theorem ›WITHst: st=FAIL_IGN_3 ›THENact1: serviceState_ 4 ≔ (serviceState _4 ∖ {s ↦ FAIL_AC TIV_4}) ∪ {s ↦ FAIL_IGN_4} ›END
IGNORE: not HxtHndHd ordinary ›REFINES HEAL ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ FAIL_IGN_ 4 ∈ YHrvicHStatH_ 4 not thHorHm ›WITHYt: Yt = FAIL_IGN_3 ›

!HEN
"ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4 ∖ {Y ↦ FAIL_IG N_4}) ∪ {Y ↦ RUN_4} ›END

REDE#LOY: not HxtHndHd ordinary ›ANY

PagH 3

M04
s ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ FAIL_CONF IG_4 ∈ YHrvicHSta tH_4 not thHorHm ›

$HEN
%ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4 ∖ {Y ↦ FAIL_CO NFIG_4}) ∪ {Y ↦ DPL_4} ›END

HEAL: not HxtHndHd ordinary ›REFINES HEAL ANY Y ›WHEREgrd1: Y ∈ SERVICES not theorem ›grd2: Y ↦ DPL_4 ∈ Y HrvicHStatH_4 not thHorHm ›WITHYt: Yt=FAIL_CONFIG_ 3 ›
$HEN

%ct1: YHrvicHStatH_ 4 ≔ (YHrvicHStatH _4 ∖ {Y ↦ DPL_4}) ∪ {Y ↦ RUN_4} › END
END

PagH 4

M05
MACHINEM05 ›REFINES M04 SEES C05 VARIABLESserviceState_4 ›num_run ›num_susp ›INVARIANTSinv1: num_run ∈ SERVICES → :1 not theorem ›inv2: num_susp ∈ SERVICES → : not theorem ›inv3: ∀ s, st · s ∈ SERVICES ∧ st ∈ STATES_4 ∧ st ∉ {FAIL_4, FAIL_DETECT_4} ∧ s ↦ st ∈ serviceState_4 ⇒ num_susp(s) = 0 not theorem ›inv4: ∀ s · s ∈ SERVICES ∧ s ↦ RUN_4 ∈ serviceState_4 ⇒ num_susp(s) = 0 theorem ›inv5: ∀ s · s ∈ SERVICES ∧ s ↦ FAIL_CONFIG_4 ∈ serviceState_4 ⇒ num_run(s) < min_inst(s) not theorem ›inv6: ∀ s · s ∈ SERVICES ⇒ num_susp(s) < num_run(s) not theorem ›EVENTSINITIALISATION: extended ordinary ›THENact1: serviceState_4 ≔ InitState_4 ›act2: num_run ≔ init_inst ›act3: num_susp ≔ SERVICES×{0} ›END

FAIL: extended ordinary ›REFINES FAIL ANY s ›nb_fail ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›grd3: nb_fail ∈ :1 not theorem ›grd4: nb_fail < num_run(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦ FAIL_4} › act2: num_susp(s) ≔ nb_fail ›END
FAIL_DETECT: extended ordinary ›REFINES FAIL_DETECT

Page 1

M05
ANY s ›num_safe ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›grd3: num_safe ∈ : not theorem ›grd4: num_safe ≤ num_susp(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦ FAIL_DETECT_4} ›act2: num_susp(s) ≔ num_susp(s) − num_safe ›END

IS_O&: extended ordinary ›REFINES IS_OK ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd3: num_susp(s) = 0 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ RUN_4} ›END
FAIL_ACTI': extended ordinary ›REFINES FAIL_ACTIV ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd3: num_susp(s) > 0 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ FAIL_ACTIV_4} ›act2: num_run(s) ≔ num_run(s) − num_susp(s) ›act3: num_susp(s) ≔ 0 ›END
FAIL_CONFIGURE: extended ordinary ›REFINES FAIL_CONFIGURE ANY

Page 2

M05
s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: num_run(s) < min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_CONFIG_4} ›END

FAIL_IGNORE: extended ordinary ›REFINES FAIL_IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: num_run(s) ≥ min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_IGN_4} ›END
IGNORE: extended ordinary ›REFINES IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪ {s ↦ RUN_4} ›END
REDE(LOY: extended ordinary ›REFINES REDEPLOY ANY s ›new_run ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›grd3: new_run ∈ :1 not theorem ›grd4: new_run ≥ min_inst(s) not theorem ›

Page 3

M05
THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4}) ∪ {s ↦ DPL_4} › act2: num_run(s) ≔ new_run ›END

HEAL: extended ordinary ›REFINES HEAL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦ RUN_4} › END
END

Page 4

M06
MACHINEM06 ›REFINES M05 SEES C06 VARIABLESserviceState_4 ›run_peers ›susp_peers ›fail_peers ›INVARIANTSinv1: run_peers ∈ SERVICES → ℙ1(PEERS) not theorem ›inv2: susp_peers ∈ SERVICES ⇸ ℙ(PEERS) not theorem ›inv3: fail_peers ∈ SERVICES ↔ PEERS not theorem ›gluing_run1: ∀ s · s ∈ SERVICES ⇒ finite(run_peers(s)) not theorem ›the number of instances providing a service s is finitegluing_run2: ∀ s · s ∈ SERVICES ⇒ num_run(s) = card(run_peers(s)) not theorem ›the number of instances providing a service s is num_run_peers(s)gluing_susp1: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒ finite(susp_peers(s)) not theorem ›the number of suspect instances of a service s is finite gluing_susp2: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒ num_susp(s) = card(susp_peers(s)) not theorem ›the number of suspect instances of a service s is num_susp_peers(s)inv4: ∀ s · s ∈ SERVICES ⇒ run_peers(s) ∩ fail_peers[{s}] = ∅ not theorem ›an instance of a service s is either failed or providing the service sinv5: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒ susp_peers(s) ⊆ run_peers(s) not theorem ›suspicious instances of s are a subset of the instances providing sinv6: ∀ s, st · s ∈ SERVICES ∧ st ∈ STATES_4 ∧ st ∈ {FAIL_4, FAIL_DETECT_4} ∧ s ↦ st ∈ serviceState_4 ⇒ s ∈ dom(susp_peers) not theorem ›inv7: ∀ s, st · s ∈ SERVICES ∧ st ∈ STATES_4 ∧ st ∈ {FAIL_4, FAIL_DETECT_4} ∧ s ↦ st ∈ serviceState_4 ⇒ susp_peers(s) ⊂ run_peers(s) not theorem ›EVENTSINITIALISATION: not extended ordinary ›THENact1: serviceState_4 ≔ InitState_4 ›act2: run_peers ≔ InitSrvcPeers ›act3: susp_peers ≔ ∅ ›act4: fail_peers ≔ ∅ ›END

FAIL: not extended ordinary ›REFINES FAIL ANY

Page 1

M06
s ›fp ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›grd5: fp ⊆ PEERS not theorem ›grd3: fp ≠ ∅ not theorem ›grd4: fp ⊂ run_peers(s) not theorem ›WITHnb_fail: nb_fail=card(fp) ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦ FAIL_4} › act2: susp_peers(s) ≔ fp ›END

FAIL_DETECT: not extended ordinary ›REFINES FAIL_DETECT ANY s ›sf ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) ≠ ∅ not theorem ›grd6: sf ⊆ PEERS not theorem ›grd7: sf ⊆ susp_peers(s) not theorem ›WITHnum_safe: num_safe=card(sf) ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦ FAIL_DETECT_4} ›act2: susp_peers(s) ≔ susp_peers(s) ∖ sf ›END
IS_O): not extended ordinary ›REFINES IS_OK ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) = ∅ not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ RUN_4} ›

Page 2

M06
END

FAIL_ACTI*: not extended ordinary ›REFINES FAIL_ACTIV ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) ≠ ∅ not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ FAIL_ACTIV_4} ›act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›act3: susp_peers(s) ≔ ∅ ›act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›END
FAIL_CONFIGURE: not extended ordinary ›REFINES FAIL_CONFIGURE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: card(run_peers(s)) < min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_CONFIG_4} ›END
FAIL_IGNORE: not extended ordinary ›REFINES FAIL_IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_IGN_4} ›END
IGNORE: extended ordinary ›

Page 3

M06
REFINES IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪ {s ↦ RUN_4} ›END

REDE+LOY: not extended ordinary ›REFINES REDEPLOY ANY s ›new_inst ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›grd3: new_inst ⊆ PEERS not theorem ›grd5: new_inst ≠ ∅ not theorem ›grd6: finite(new_inst) not theorem ›grd7: run_peers(s) ∩ new_inst = ∅ not theorem ›grd8: fail_peers[{s}] ∩ new_inst = ∅ not theorem ›grd4: card(run_peers(s))+card(new_inst) ≥ min_inst(s) not theorem › WITHnew_run: new_run=card(run_peers(s))+card(new_inst) ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4}) ∪ {s ↦ DPL_4} › act2: run_peers(s) ≔ run_peers(s) ∪ new_inst ›END
HEAL: extended ordinary ›REFINES HEAL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦ RUN_4} › END

Page 4

M06

UNFAIL_,EER: not extended ordinary ›ANY s ›p ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: p ∈ PEERS not theorem ›grd3: s ↦ p ∈ fail_peers not theorem ›THENact1: fail_peers ≔ fail_peers∖{s ↦ p} ›END
END

Page 5

M07
MACHINEM07 ›REFINES M06 SEES C07 VARIABLESserviceState_4 ›run_peers ›susp_peers ›fail_peers ›dep_inst ›INVARIANTSinv1: dep_inst ∈ SERVICES ↔ PEERS not theorem ›inv2: ∀ s · s ∈ SERVICES ⇒ dep_inst[{s}] ∩ fail_peers[{s}] = ∅ not theorem ›inv3: ∀ s, st · s ∈ SERVICES ∧ st ∈ STATES_4 ∧ s ↦ st ∈ serviceState_4 ∧ st ≠ FAIL_CONFIG_4 ⇒ dep_inst[{s}] = ∅ not theorem ›inv4: ∀ s · s ∈ SERVICES ⇒ finite(dep_inst[{s}]) not theorem ›inv5: ∀ s · s ∈ SERVICES ⇒ dep_inst[{s}] ∩ run_peers(s) = ∅ not theorem ›EVENTSINITIALISATION: extended ordinary ›THENact1: serviceState_4 ≔ InitState_4 ›act2: run_peers ≔ InitSrvcPeers ›act3: susp_peers ≔ ∅ ›act4: fail_peers ≔ ∅ ›act5: dep_inst ≔ ∅ ›END

FAIL: extended ordinary ›REFINES FAIL ANY s ›fp ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›grd5: fp ⊆ PEERS not theorem ›grd3: fp ≠ ∅ not theorem ›grd4: fp ⊂ run_peers(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦ FAIL_4} › act2: susp_peers(s) ≔ fp ›END

Page 1

M07

FAIL_DETECT- extended ordinary ›REFINES FAIL_DETECT ANY s ›sf ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) ≠ ∅ not theorem ›grd6: sf ⊆ PEERS not theorem ›grd7: sf ⊆ susp_peers(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦ FAIL_DETECT_4} ›act2: susp_peers(s) ≔ susp_peers(s) ∖ sf ›END
IS_O.: extended ordinary ›REFINES IS_OK ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) = ∅ not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ RUN_4} ›END
FAIL_ACTI/: extended ordinary ›REFINES FAIL_ACTIV ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›grd5: susp_peers(s) ≠ ∅ not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4}) ∪ {s ↦ FAIL_ACTIV_4} ›act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›act3: susp_peers(s) ≔ ∅ ›act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›

Page 2

M07
END

FAIL_CONFIGURE: extended ordinary ›REFINES FAIL_CONFIGURE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: card(run_peers(s)) < min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_CONFIG_4} ›END
FAIL_IGNORE: extended ordinary ›REFINES FAIL_IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪ {s ↦ FAIL_IGN_4} ›END
IGNORE: extended ordinary ›REFINES IGNORE ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪ {s ↦ RUN_4} ›END
REDE0LOY_INST : not extended ordinary ›ANY s ›dep ›WHERE

Page 3

M07
grd1: s ∈ SERVICES not theorem ›grd2: dep ⊆ PEERS not theorem ›grd3: finite(dep) not theorem ›grd4: dep ∩ run_peers(s) = ∅ not theorem ›grd5: dep ∩ fail_peers[{s}] = ∅ not theorem ›grd6: card(dep) = deplo_inst(s) not theorem ›grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s) not theorem › grd8: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›THENact1: dep_inst ≔ dep_inst ∪ ({s}×dep) ›END

REDE1LOY: not extended ordinary ›REFINES REDEPLOY ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›grd6: dep_inst[{s}] ≠ ∅ not theorem ›grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not theorem › WITHnew_inst: new_inst=dep_inst[{s}] ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4}) ∪ {s ↦ DPL_4} › act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›act3: dep_inst ≔ {s} ⩤ dep_inst ›END
HEAL: extended ordinary ›REFINES HEAL ANY s ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›THENact1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦ RUN_4} › END
UNFAIL_1EER: extended ordinary ›REFINES

Page 4

M07
 UNFAIL_PEER ANY s ›p ›WHEREgrd1: s ∈ SERVICES not theorem ›grd2: p ∈ PEERS not theorem ›grd3: s ↦ p ∈ fail_peers not theorem ›THENact1: fail_peers ≔ fail_peers∖{s ↦ p} ›END

END

Page 5

M08

MACHINE
M08 ›

REFINES
 M07

SEES
 C08

VARIABLES
serviceState_4 ›
run_peers ›
susp_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
susp_inst ›

INVARIANTS
inv1: token_owner ∈ SERVICES → PEERS not theorem ›
inv2: unav_peers ⊆ PEERS not theorem ›
inv3: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ∈ run_peers(s)∖unav_peers

not theorem ›
inv4: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒ token_owner(s) ∉

susp_peers(s) not theorem ›
inv5: susp_inst ∈ PEERS ↔ (SERVICES×PEERS) not theorem ›
inv6: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(susp_inst[{ld}])

⇒ ld = token_owner(s) not theorem ›
inv7: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(susp_inst[{ld}]) ∧

ld = token_owner(s) ⇒ ld ∉ susp_inst[{ld}][{s}] not theorem ›
inv8: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(susp_inst[{ld}]) ∧

ld = token_owner(s) ⇒ susp_inst[{ld}][{s}] ⊂ run_peers(s) not theorem ›
inv9: ∀ ld, s, stt · ld ∈ PEERS ∧ s ∈ SERVICES ∧ stt ∈ STATES_4 ∧ s ↦

stt ∈ serviceState_4 ∧ ld = token_owner(s) ∧ stt ≠ RUN_4 ⇒ susp_inst[{ld}][{s}]
= ∅ not theorem ›

EVENTSINITIALISATION: extended ordinary ›
THEN

act1: serviceState_4 ≔ InitState_4 ›
act2: run_peers ≔ InitSrvcPeers ›
act3: susp_peers ≔ ∅ ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: susp_inst ≔ ∅ ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
ANY

prs ›

Page 1

M08

E ›new values for token owner per service if needed
WHERE

grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∉
dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ fail_peers
[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∈

dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ susp_peers(srv) ∪
fail_peers[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable
act2: token_owner ≔ token_owner E ›new value for token owner

per service is given if needed
act3: susp_inst ≔ prs ⩤ susp_inst ›the peers in prs can not

suspect instances anymore
END

SUSPECT_INST: not extended ordinary ›
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s ∉ dom(susp_inst[{token_owner(s)}]) not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: s ↦ RUN_4 ∈ serviceState_4 not theorem ›the state of s

is OK

Page 2

M08

THEN
act1: susp_inst ≔ susp_inst ∪ ({token_owner(s)} × ({s}×susp))

›the members of susp become suspected instances for s by the token owner of s
END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›
grd3: susp_inst[{token_owner(s)}][{s}] ≠ ∅ not theorem ›

WITH
fp: fp=susp_inst[{token_owner(s)}][{s}] ›

THEN
act1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦

FAIL_4} ›
act2: susp_peers(s) ≔ susp_inst[{token_owner(s)}][{s}] ›
act3: susp_inst ≔ susp_inst ⩥ ({s} ◁ ran(susp_inst)) ›

END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
sf ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›
grd6: sf ⊆ PEERS not theorem ›
grd7: sf ⊆ susp_peers(s) not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦

FAIL_DETECT_4} ›
act2: susp_peers(s) ≔ susp_peers(s) ∖ sf ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›

Page 3

M08

grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) = ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ RUN_4} ›
END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ FAIL_ACTIV_4} ›
act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›
act3: susp_peers(s) ≔ ∅ ›
act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪

{s ↦ FAIL_CONFIG_4} ›
END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN

Page 4

M08

act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪
{s ↦ FAIL_IGN_4} ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪

{s ↦ RUN_4} ›
END

REDEPLOY_INST: extended ordinary ›
REFINES

 REDEPLOY_INST
ANY

s ›
dep ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: dep ⊆ PEERS not theorem ›
grd3: finite(dep) not theorem ›
grd4: dep ∩ run_peers(s) = ∅ not theorem ›
grd5: dep ∩ fail_peers[{s}] = ∅ not theorem ›
grd6: card(dep) = deplo_inst(s) not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›

THEN
act1: dep_inst ≔ dep_inst ∪ ({s}×dep) ›

END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›

Page 5

M08

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4})

∪ {s ↦ DPL_4} ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦

RUN_4} ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

MAKE_PEER_AVAIL: not extended ordinary ›
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 6

M09

MACHINE
M09 ›

REFINES
 M08

SEES
 C08

VARIABLES
serviceState_4 ›
run_peers ›
susp_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
susp_inst ›
rec_inst ›instances that are tried to be recontacted
rct_inst ›instances effectively recontacted after a try

INVARIANTS
inv1: rec_inst ∈ PEERS ↔ (SERVICES×PEERS) not theorem ›
inv2: rct_inst ∈ PEERS ↔ (SERVICES×PEERS) not theorem ›
inv3: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ rct_inst[{ld}][{s}] ≠ ∅ ⇒

rec_inst[{ld}][{s}] ≠ ∅ not theorem ›
inv4: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ rct_inst[{ld}][{s}] ≠ ∅ ⇒

rct_inst[{ld}][{s}] ⊆ rec_inst[{ld}][{s}] not theorem ›
inv5: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(rec_inst[{ld}]) ⇒

ld = token_owner(s) not theorem ›
inv6: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(rec_inst[{ld}]) ∧

ld = token_owner(s) ⇒ ld ∉ rec_inst[{ld}][{s}] not theorem ›
inv7: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(rct_inst[{ld}]) ⇒

ld = token_owner(s) not theorem ›
inv8: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(rct_inst[{ld}]) ∧

ld = token_owner(s) ⇒ ld ∉ rct_inst[{ld}][{s}] not theorem ›
inv9: dom(rct_inst) ⊆ dom(rec_inst) not theorem ›
inv10: ∀ ld · ld ∈ PEERS ∧ ld ∈ dom(rct_inst) ⇒ rct_inst[{ld}] ⊆

rec_inst[{ld}] theorem ›
inv11: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒ token_owner(s) ∉

susp_peers(s) not theorem ›
EVENTSINITIALISATION: extended ordinary ›

THEN
act1: serviceState_4 ≔ InitState_4 ›
act2: run_peers ≔ InitSrvcPeers ›
act3: susp_peers ≔ ∅ ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: susp_inst ≔ ∅ ›

Page 1

M09

act10: rec_inst ≔ ∅ ›
act11: rct_inst ≔ ∅ ›

END

MAKE_PEER_UNAVAIL: extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∉
dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ fail_peers
[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∈

dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ susp_peers(srv) ∪
fail_peers[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable
act2: token_owner ≔ token_owner E ›new value for token owner

per service is given if needed
act3: susp_inst ≔ prs ⩤ susp_inst ›the peers in prs can not

suspect instances anymore
act4: rec_inst ≔ prs ⩤ rec_inst ›
act5: rct_inst ≔ prs ⩤ rct_inst ›

END

SUSPECT_INST: extended ordinary ›
REFINES

Page 2

M09

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s ∉ dom(susp_inst[{token_owner(s)}]) not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: s ↦ RUN_4 ∈ serviceState_4 not theorem ›the state of s

is OK
THEN

act1: susp_inst ≔ susp_inst ∪ ({token_owner(s)} × ({s}×susp))
›the members of susp become suspected instances for s by the token owner of s

END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›
grd3: susp_inst[{token_owner(s)}][{s}] ≠ ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦

FAIL_4} ›
act2: susp_peers(s) ≔ susp_inst[{token_owner(s)}][{s}] ›
act3: susp_inst ≔ susp_inst ⩥ ({s} ◁ ran(susp_inst)) ›

END

RECONTACT_INST_OK: not extended ordinary ›
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›the state of s

is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty
grd5: i ∈ susp_peers(s)∖unav_peers not theorem ›i is a

suspicious instance of s and is available (can be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i

Page 3

M09
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not

theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
act2: rct_inst ≔ rct_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›i is

recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›the state of s

is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty
grd5: i ∈ susp_peers(s)∩unav_peers not theorem ›i is a

suspicious instance of s and is unavailable (can not be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not

theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›
grd8: rec_inst[{token_owner(s)}][{s}] = susp_peers(s) not

theorem ›
WITH

sf: sf=rct_inst[{token_owner(s)}][{s}] ›
THEN

Page 4

M09

act1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦
FAIL_DETECT_4} ›

act2: susp_peers(s) ≔ susp_peers(s) ∖ rct_inst[{token_owner
(s)}][{s}] ›

act3: rec_inst ≔ rec_inst ⩥ ({s} ◁ ran(rec_inst)) ›
act4: rct_inst ≔ rct_inst ⩥ ({s} ◁ ran(rct_inst)) ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) = ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ RUN_4} ›
END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ FAIL_ACTIV_4} ›
act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›
act3: susp_peers(s) ≔ ∅ ›
act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

Page 5

M09

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪

{s ↦ FAIL_CONFIG_4} ›
END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪

{s ↦ FAIL_IGN_4} ›
END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪

{s ↦ RUN_4} ›
END

REDEPLOY_INST: extended ordinary ›
REFINES

 REDEPLOY_INST
ANY

s ›
dep ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: dep ⊆ PEERS not theorem ›
grd3: finite(dep) not theorem ›
grd4: dep ∩ run_peers(s) = ∅ not theorem ›
grd5: dep ∩ fail_peers[{s}] = ∅ not theorem ›
grd6: card(dep) = deplo_inst(s) not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›

Page 6

M09

THEN
act1: dep_inst ≔ dep_inst ∪ ({s}×dep) ›

END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›
THEN

act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4})
∪ {s ↦ DPL_4} ›

act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦

RUN_4} ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

Page 7

M09

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 8

M10

MACHINE
M10 ›

REFINES
 M09

SEES
 C08

VARIABLES
serviceState_4 ›
run_peers ›
susp_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
susp_inst ›
rec_inst ›instances that are tried to be recontacted
rct_inst ›instances effectively recontacted after a try
actv_inst ›instances activated by token ownes

INVARIANTS
inv1: actv_inst ∈ PEERS ↔ (SERVICES×PEERS) not theorem ›
inv2: ∀ s, i · s ∈ SERVICES ∧ i ∈ PEERS ⇒ finite(actv_inst[{i}][{s}])

not theorem ›
inv3: ∀ ld, s · ld ∈ PEERS ∧ s ∈ SERVICES ∧ s ∈ dom(actv_inst[{ld}])

⇒ ld = token_owner(s) not theorem ›
inv4: ∀ s, i · s ∈ SERVICES ∧ i ∈ PEERS ⇒ actv_inst[{i}][{s}] ∩

run_peers(s) = ∅ not theorem ›
inv5: ∀ s, i · s ∈ SERVICES ∧ i ∈ PEERS ⇒ actv_inst[{i}][{s}] ∩

dep_inst[{s}] = ∅ not theorem ›
inv6: ∀ s, i · s ∈ SERVICES ∧ i ∈ PEERS ⇒ actv_inst[{i}][{s}] ∩

fail_peers[{s}] = ∅ not theorem ›
inv7: ∀ ld, s, stt · ld ∈ PEERS ∧ s ∈ SERVICES ∧ stt ∈ STATES_4 ∧ s ↦

stt ∈ serviceState_4 ∧ ld = token_owner(s) ∧ stt ≠ FAIL_CONFIG_4 ⇒ actv_inst
[{ld}][{s}] = ∅ not theorem ›

inv8: finite(actv_inst) not theorem ›
EVENTSINITIALISATION: extended ordinary ›

THEN
act1: serviceState_4 ≔ InitState_4 ›
act2: run_peers ≔ InitSrvcPeers ›
act3: susp_peers ≔ ∅ ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: susp_inst ≔ ∅ ›
act10: rec_inst ≔ ∅ ›
act11: rct_inst ≔ ∅ ›
act12: actv_inst ≔ ∅ ›

Page 1

M10

END

MAKE_PEER_UNAVAIL: extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∉
dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ fail_peers
[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∈

dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ susp_peers(srv) ∪
fail_peers[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable
act2: token_owner ≔ token_owner E ›new value for token owner

per service is given if needed
act3: susp_inst ≔ prs ⩤ susp_inst ›the peers in prs can not

suspect instances anymore
act4: rec_inst ≔ prs ⩤ rec_inst ›
act5: rct_inst ≔ prs ⩤ rct_inst ›
act6: actv_inst ≔ prs ⩤ actv_inst ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST

Page 2

M10

ANY
s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s ∉ dom(susp_inst[{token_owner(s)}]) not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: s ↦ RUN_4 ∈ serviceState_4 not theorem ›the state of s

is OK
THEN

act1: susp_inst ≔ susp_inst ∪ ({token_owner(s)} × ({s}×susp))
›the members of susp become suspected instances for s by the token owner of s

END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ RUN_4 ∈ serviceState_4 not theorem ›
grd3: susp_inst[{token_owner(s)}][{s}] ≠ ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4∖{s ↦ RUN_4}) ∪ {s ↦

FAIL_4} ›
act2: susp_peers(s) ≔ susp_inst[{token_owner(s)}][{s}] ›
act3: susp_inst ≔ susp_inst ⩥ ({s} ◁ ran(susp_inst)) ›

END

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›the state of s

is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty
grd5: i ∈ susp_peers(s)∖unav_peers not theorem ›i is a

suspicious instance of s and is available (can be contacted)

Page 3

M10

grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not
theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
act2: rct_inst ≔ rct_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›i is

recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›the state of s

is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty
grd5: i ∈ susp_peers(s)∩unav_peers not theorem ›i is a

suspicious instance of s and is unavailable (can not be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not

theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›
grd8: rec_inst[{token_owner(s)}][{s}] = susp_peers(s) not

theorem ›

Page 4

M10

THEN
act1: serviceState_4 ≔ (serviceState_4∖{s ↦ FAIL_4}) ∪ {s ↦

FAIL_DETECT_4} ›
act2: susp_peers(s) ≔ susp_peers(s) ∖ rct_inst[{token_owner

(s)}][{s}] ›
act3: rec_inst ≔ rec_inst ⩥ ({s} ◁ ran(rec_inst)) ›
act4: rct_inst ≔ rct_inst ⩥ ({s} ◁ ran(rct_inst)) ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) = ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ RUN_4} ›
END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_DETECT_4 ∈ serviceState_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_DETECT_4})

∪ {s ↦ FAIL_ACTIV_4} ›
act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›
act3: susp_peers(s) ≔ ∅ ›
act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›

Page 5

M10

grd3: card(run_peers(s)) < min_inst(s) not theorem ›
THEN

act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪
{s ↦ FAIL_CONFIG_4} ›

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_ACTIV_4 ∈ serviceState_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_ACTIV_4}) ∪

{s ↦ FAIL_IGN_4} ›
END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_IGN_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_IGN_4}) ∪

{s ↦ RUN_4} ›
END

REDEPLOY_INSTC: not extended ordinary ›
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ fail_peers[{s}] ∪ unav_peers ∪

dep_inst[{s}] not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token_owner(s) ↦ (s ↦ i) ∉ actv_inst not theorem ›
grd5: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) < deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›

Page 6

M10
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_inst ≔ actv_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›
END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INST
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) = deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›

WITH
dep: dep=actv_inst[{token_owner(s)}][{s}] ›

THEN
act1: dep_inst ≔ dep_inst ∪ ({s}×actv_inst[{token_owner(s)}]

[{s}]) ›
act2: actv_inst ≔ actv_inst ⩥ ({s} ◁ ran(actv_inst)) ›

END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ FAIL_CONFIG_4 ∈ serviceState_4 not theorem ›
grd7: actv_inst[{token_owner(s)}][{s}]=∅ not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›
THEN

act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ FAIL_CONFIG_4})
∪ {s ↦ DPL_4} ›

act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

Page 7

M10

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: s ↦ DPL_4 ∈ serviceState_4 not theorem ›

THEN
act1: serviceState_4 ≔ (serviceState_4 ∖ {s ↦ DPL_4}) ∪ {s ↦

RUN_4} ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 8

M11

MACHINE
M11 ›

REFINES
 M10

SEES
 C08

VARIABLES
run_peers ›
susp_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
susp_inst ›
rec_inst ›instances that are tried to be recontacted
rct_inst ›instances effectively recontacted after a try
actv_inst ›instances activated by token ownes
i_state ›

INVARIANTS
inv1: i_state ∈ (PEERS × SERVICES) ⇸ STATES_4 not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(i_state) not

theorem ›
gluing_state1: ∀ s, stt · s ∈ SERVICES ∧ stt ∈ STATES_4 ∧ s ↦ stt ∈

serviceState_4 ⇒ (token_owner(s) ↦ s) ↦ stt ∈ i_state not theorem ›
gluing_state2: ∀ s, stt · s ∈ SERVICES ∧ stt ∈ STATES_4 ∧ (token_owner

(s) ↦ s) ↦ stt ∈ i_state ⇒ s ↦ stt ∈ serviceState_4 not theorem ›
inv3: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(i_state) ⇒ p

= token_owner(s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act2: run_peers ≔ InitSrvcPeers ›
act3: susp_peers ≔ ∅ ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: susp_inst ≔ ∅ ›
act10: rec_inst ≔ ∅ ›
act11: rct_inst ≔ ∅ ›
act12: actv_inst ≔ ∅ ›
act13: i_state ≔ InitStatus ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

Page 1

M11

prs ›
E ›new values for token owner per service if needed
i_s ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: i_s ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∉
dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ fail_peers
[{srv}]) not theorem ›if the owner of the token for a service becomes
unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd7: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧ srv ∈

dom(susp_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ fail_peers[{srv}]
∪ susp_peers(srv)) not theorem ›if the owner of the token for a service becomes
unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

grd8: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(i_s) ⇒
p = E(s) not theorem ›

grd9: ∀ srv · srv ∈ SERVICES ⇒ (E(srv) ↦ srv) ↦ i_state
(token_owner(srv) ↦ srv) ∈ i_s not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable
act2: token_owner ≔ token_owner E ›new value for token owner

per service is given if needed
act3: susp_inst ≔ prs ⩤ susp_inst ›the peers in prs can not

suspect instances anymore
act4: rec_inst ≔ prs ⩤ rec_inst ›the peers in prs can not try

to recontact instances anymore
act5: rct_inst ≔ prs ⩤ rct_inst ›the peers in prs can not

recontact instances anymore
act6: actv_inst ≔ prs ⩤ actv_inst ›
act7: i_state ≔ i_s ›

END

Page 2

M11

SUSPECT_INST: not extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s ∉ dom(susp_inst[{token_owner(s)}]) not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
THEN

act1: susp_inst ≔ susp_inst ∪ ({token_owner(s)} × ({s}×susp))
›the members of susp become suspected instances for s by the token owner of s

END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd3: susp_inst[{token_owner(s)}][{s}] ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_4 ›
act2: susp_peers(s) ≔ susp_inst[{token_owner(s)}][{s}] ›
act3: susp_inst ≔ susp_inst ⩥ ({s} ◁ ran(susp_inst)) ›

END

RECONTACT_INST_OK: not extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty

Page 3

M11

grd5: i ∈ susp_peers(s)∖unav_peers not theorem ›i is a
suspicious instance of s and is available (can be contacted)

grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not
theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
act2: rct_inst ≔ rct_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›i is

recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: susp_peers(s) ≠ ∅ not theorem ›the set of suspicious

peers for s is not empty
grd5: i ∈ susp_peers(s)∩unav_peers not theorem ›i is a

suspicious instance of s and is unavailable (can not be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ susp_peers(s) not

theorem ›the token owner of s has not yet tried to recontact all the suspecious
instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd5: susp_peers(s) ≠ ∅ not theorem ›

Page 4

M11

grd8: rec_inst[{token_owner(s)}][{s}] = susp_peers(s) not
theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_DETECT_4 ›
act2: susp_peers(s) ≔ susp_peers(s) ∖ rct_inst[{token_owner

(s)}][{s}] ›
act3: rec_inst ≔ rec_inst ⩥ ({s} ◁ ran(rec_inst)) ›
act4: rct_inst ≔ rct_inst ⩥ ({s} ◁ ran(rct_inst)) ›

END

IS_OK: not extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: susp_peers(s) = ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: susp_peers(s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_ACTIV_4 ›
act2: run_peers(s) ≔ run_peers(s) ∖ susp_peers(s) ›
act3: susp_peers(s) ≔ ∅ ›
act4: fail_peers ≔ fail_peers ∪ ({s}×susp_peers(s)) ›

END

FAIL_CONFIGURE: not extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›

Page 5

M11

grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_CONFIG_4 ›

END

FAIL_IGNORE: not extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_IGN_4 ›

END

IGNORE: not extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ fail_peers[{s}] ∪ unav_peers ∪

dep_inst[{s}] not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token_owner(s) ↦ (s ↦ i) ∉ actv_inst not theorem ›
grd5: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd6: card(actv_inst[{token_owner(s)}][{s}]) < deplo_inst(s)

not theorem ›

Page 6

M11

grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)
not theorem ›

THEN
act1: actv_inst ≔ actv_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›

END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) = deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
THEN

act1: dep_inst ≔ dep_inst ∪ ({s}×actv_inst[{token_owner(s)}]
[{s}]) ›

act2: actv_inst ≔ actv_inst ⩥ ({s} ◁ ran(actv_inst)) ›
END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd7: actv_inst[{token_owner(s)}][{s}]=∅ not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ DPL_4 ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: not extended ordinary ›
REFINES

 HEAL
ANY

Page 7

M11

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = DPL_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 8

M12

MACHINE
M12 ›

REFINES
 M11

SEES
 C08

VARIABLES
run_peers ›
suspc_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
susp_inst ›
rec_inst ›instances that are tried to be recontacted
rct_inst ›instances effectively recontacted after a try
actv_inst ›instances activated by token ownes
i_state ›

INVARIANTS
inv1: suspc_peers ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(suspc_peers)

⇒ p = token_owner(s) not theorem ›
inv3: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = token_owner(s) ⇒ (p ↦

s) ∈ dom(suspc_peers) not theorem ›
gluing_tok_own1: ∀ s · s ∈ SERVICES ∧ s ∈ dom(susp_peers) ⇒

susp_peers(s) = suspc_peers(token_owner(s) ↦ s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act2: run_peers ≔ InitSrvcPeers ›
act3: suspc_peers ≔ InitSuspPeers ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: susp_inst ≔ ∅ ›
act10: rec_inst ≔ ∅ ›
act11: rct_inst ≔ ∅ ›
act12: actv_inst ≔ ∅ ›
act13: i_state ≔ InitStatus ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed

Page 1

M12

i_s ›
p_s ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: i_s ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧
token_owner(srv) ↦ srv ∉ dom(suspc_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers
∪ prs ∪ fail_peers[{srv}]) not theorem ›if the owner of the token for a service
becomes unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd7: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧

token_owner(srv) ↦ srv ∈ dom(suspc_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers
∪ prs ∪ fail_peers[{srv}] ∪ suspc_peers(token_owner(srv) ↦ srv)) not theorem
›if the owner of the token for a service becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

grd8: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(i_s) ⇒
p = E(s) not theorem ›

grd9: ∀ srv · srv ∈ SERVICES ⇒ (E(srv) ↦ srv) ↦ i_state
(token_owner(srv) ↦ srv) ∈ i_s not theorem ›

grd10: p_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd11: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(p_s) ⇒

p = E(s) not theorem ›
grd12: ∀ srv · srv ∈ SERVICES ⇒ (E(srv) ↦ srv) ↦ suspc_peers

(token_owner(srv) ↦ srv) ∈ p_s not theorem ›
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new value for token owner
per service is given if needed

act3: susp_inst ≔ prs ⩤ susp_inst ›the peers in prs can not
suspect instances anymore

act4: rec_inst ≔ prs ⩤ rec_inst ›the peers in prs can not try
to recontact instances anymore

act5: rct_inst ≔ prs ⩤ rct_inst ›the peers in prs can not
recontact instances anymore

Page 2

M12

act6: actv_inst ≔ prs ⩤ actv_inst ›
act7: i_state ≔ i_s ›
act8: suspc_peers ≔ p_s ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: s ∉ dom(susp_inst[{token_owner(s)}]) not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
THEN

act1: susp_inst ≔ susp_inst ∪ ({token_owner(s)} × ({s}×susp))
›the members of susp become suspected instances for s by the token owner of s

END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd3: susp_inst[{token_owner(s)}][{s}] ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ susp_inst[{token_owner

(s)}][{s}] ›
act3: susp_inst ≔ susp_inst ⩥ ({s} ◁ ran(susp_inst)) ›

END

RECONTACT_INST_OK: not extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE

Page 3

M12

grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ suspc_peers

(token_owner(s) ↦ s) not theorem ›the token owner of s has not yet tried to
recontact all the suspecious instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
act2: rct_inst ≔ rct_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›i is

recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token_owner(s)}][{s}] ⊂ suspc_peers
(token_owner(s) ↦ s) not theorem ›the token owner of s has not yet tried to
recontact all the suspecious instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

Page 4

M12

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd8: rec_inst[{token_owner(s)}][{s}] = suspc_peers

(token_owner(s) ↦ s) not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_DETECT_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_peers

(token_owner(s) ↦ s) ∖ rct_inst[{token_owner(s)}][{s}] ›
act3: rec_inst ≔ rec_inst ⩥ ({s} ◁ ran(rec_inst)) ›
act4: rct_inst ≔ rct_inst ⩥ ({s} ◁ ran(rct_inst)) ›

END

IS_OK: not extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_ACTIV_4 ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspc_peers(token_owner(s)

↦ s) ›
act3: fail_peers ≔ fail_peers ∪ ({s}×suspc_peers(token_owner

(s) ↦ s)) ›
act4: suspc_peers(token_owner(s) ↦ s) ≔ ∅ ›

Page 5

M12

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_CONFIG_4 ›

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_IGN_4 ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

REDEPLOY_INSTC: extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›

Page 6

M12

grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ fail_peers[{s}] ∪ unav_peers ∪

dep_inst[{s}] not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token_owner(s) ↦ (s ↦ i) ∉ actv_inst not theorem ›
grd5: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd6: card(actv_inst[{token_owner(s)}][{s}]) < deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_inst ≔ actv_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›
END

REDEPLOY_INSTS: extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) = deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
THEN

act1: dep_inst ≔ dep_inst ∪ ({s}×actv_inst[{token_owner(s)}]
[{s}]) ›

act2: actv_inst ≔ actv_inst ⩥ ({s} ◁ ran(actv_inst)) ›
END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd7: actv_inst[{token_owner(s)}][{s}]=∅ not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›
THEN

Page 7

M12

act1: i_state(token_owner(s) ↦ s) ≔ DPL_4 ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = DPL_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 8

M13

MACHINE
M13 ›

REFINES
 M12

SEES
 C08

VARIABLES
run_peers ›
suspc_peers ›
fail_peers ›
dep_inst ›
token_owner ›
unav_peers ›
suspc_inst ›
rec_inst ›instances that are tried to be recontacted
rct_inst ›instances effectively recontacted after a try
actv_inst ›instances activated by token ownes
i_state ›

INVARIANTS
inv1: suspc_inst ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(suspc_inst) ⇒

p = token_owner(s) not theorem ›
inv3: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = token_owner(s) ⇒ (p ↦

s) ∈ dom(suspc_inst) not theorem ›
gluing_tok_own1: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom

(suspc_inst) ⇒ susp_inst[{p}][{s}] = suspc_inst(p ↦ s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act2: run_peers ≔ InitSrvcPeers ›
act3: suspc_peers ≔ InitSuspPeers ›
act4: fail_peers ≔ ∅ ›
act5: dep_inst ≔ ∅ ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: suspc_inst ≔ InitSuspPeers ›
act10: rec_inst ≔ ∅ ›
act11: rct_inst ≔ ∅ ›
act12: actv_inst ≔ ∅ ›
act13: i_state ≔ InitStatus ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed

Page 1

M13

i_s ›
p_s ›
s_i ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: i_s ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧
token_owner(srv) ↦ srv ∉ dom(suspc_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers
∪ prs ∪ fail_peers[{srv}]) not theorem ›if the owner of the token for a service
becomes unavailable and the service is not suspicious,

then a new token owner among available peers is chosen
grd7: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ∧

token_owner(srv) ↦ srv ∈ dom(suspc_peers) ⇒ E(srv) ∈ run_peers(srv)∖(unav_peers
∪ prs ∪ fail_peers[{srv}] ∪ suspc_peers(token_owner(srv) ↦ srv)) not theorem
›if the owner of the token for a service becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

grd8: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(i_s) ⇒
p = E(s) not theorem ›

grd9: ∀ srv · srv ∈ SERVICES ⇒ (E(srv) ↦ srv) ↦ i_state
(token_owner(srv) ↦ srv) ∈ i_s not theorem ›

grd10: p_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd11: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(p_s) ⇒

p = E(s) not theorem ›
grd12: ∀ srv · srv ∈ SERVICES ⇒ (E(srv) ↦ srv) ↦ suspc_peers

(token_owner(srv) ↦ srv) ∈ p_s not theorem ›
grd13: s_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd14: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p ↦ s ∈ dom(s_i) ⇒

p = E(s) not theorem ›
grd15: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ (E

(srv) ↦ srv) ↦ suspc_inst(E(srv) ↦ srv) ∈ s_i not theorem ›
grd16: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ⇒ (E

(srv) ↦ srv) ↦ ∅ ∈ s_i not theorem ›
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

Page 2

M13

act2: token_owner ≔ token_owner E ›new value for token owner
per service is given if needed

act3: rec_inst ≔ prs ⩤ rec_inst ›the peers in prs can not try
to recontact instances anymore

act4: rct_inst ≔ prs ⩤ rct_inst ›the peers in prs can not
recontact instances anymore

act5: actv_inst ≔ prs ⩤ actv_inst ›
act6: i_state ≔ i_s ›
act7: suspc_peers ≔ p_s ›
act8: suspc_inst ≔ s_i ›

END

SUSPECT_INST: not extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
grd6: susp ≠ ∅ not theorem ›

THEN
act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of

susp become suspected instances for s by the token owner of s
END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd3: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_inst(token_owner

(s) ↦ s) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

Page 3

M13

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the

token owner of s has not yet tried to recontact i
grd7: rec_inst[{token_owner(s)}][{s}] ⊂ suspc_peers

(token_owner(s) ↦ s) not theorem ›the token owner of s has not yet tried to
recontact all the suspecious instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
act2: rct_inst ≔ rct_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›i is

recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: token_owner(s) ↦ (s ↦ i) ∉ rec_inst not theorem ›the
token owner of s has not yet tried to recontact i

grd7: rec_inst[{token_owner(s)}][{s}] ⊂ suspc_peers
(token_owner(s) ↦ s) not theorem ›the token owner of s has not yet tried to
recontact all the suspecious instances of s

Page 4

M13grd7: rec_inst[{token_owner(s)}][{s}] ⊂ suspc_peers
(token_owner(s) ↦ s) not theorem ›the token owner of s has not yet tried to
recontact all the suspecious instances of s

THEN
act1: rec_inst ≔ rec_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›the

token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd8: rec_inst[{token_owner(s)}][{s}] = suspc_peers

(token_owner(s) ↦ s) not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_DETECT_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_peers

(token_owner(s) ↦ s) ∖ rct_inst[{token_owner(s)}][{s}] ›
act3: rec_inst ≔ rec_inst ⩥ ({s} ◁ ran(rec_inst)) ›
act4: rct_inst ≔ rct_inst ⩥ ({s} ◁ ran(rct_inst)) ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›

Page 5

M13

grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_ACTIV_4 ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspc_peers(token_owner(s)

↦ s) ›
act3: fail_peers ≔ fail_peers ∪ ({s}×suspc_peers(token_owner

(s) ↦ s)) ›
act4: suspc_peers(token_owner(s) ↦ s) ≔ ∅ ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_CONFIG_4 ›

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_IGN_4 ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

Page 6

M13

REDEPLOY_INSTC: extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ fail_peers[{s}] ∪ unav_peers ∪

dep_inst[{s}] not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token_owner(s) ↦ (s ↦ i) ∉ actv_inst not theorem ›
grd5: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd6: card(actv_inst[{token_owner(s)}][{s}]) < deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_inst ≔ actv_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›
END

REDEPLOY_INSTS: extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) = deplo_inst(s)

not theorem ›
grd7: card(dep_inst[{s}]) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
THEN

act1: dep_inst ≔ dep_inst ∪ ({s}×actv_inst[{token_owner(s)}]
[{s}]) ›

act2: actv_inst ≔ actv_inst ⩥ ({s} ◁ ran(actv_inst)) ›
END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

Page 7

M13

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd7: actv_inst[{token_owner(s)}][{s}]=∅ not theorem ›
grd6: dep_inst[{s}] ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_inst[{s}]) ≥ min_inst(s) not

theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ DPL_4 ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_inst[{s}] ›
act3: dep_inst ≔ {s} ⩤ dep_inst ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = DPL_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: s ↦ p ∈ fail_peers not theorem ›

THEN
act1: fail_peers ≔ fail_peers∖{s ↦ p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN

Page 8

M13

act1: unav_peers ≔ unav_peers ∖ {p} ›
END

END

Page 9

M14

MACHINE
M14 ›

REFINES
 M13

SEES
 C08

VARIABLES
run_peers ›
suspc_peers ›
failr_peers ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_inst ›instances activated by token ownes
i_state ›

INVARIANTS
inv1: rect_inst ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(rect_inst) ⇒

p = token_owner(s) not theorem ›
inv3: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = token_owner(s) ⇒ (p ↦

s) ∈ dom(rect_inst) not theorem ›
gluing_tok_own_rec1: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈

dom(rect_inst) ⇒ rec_inst[{p}][{s}] = rect_inst(p ↦ s) not theorem ›
inv4: rctt_inst ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv5: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(rctt_inst) ⇒

p = token_owner(s) not theorem ›
inv6: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = token_owner(s) ⇒ (p ↦

s) ∈ dom(rctt_inst) not theorem ›
gluing_tok_own_rct1: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈

dom(rctt_inst) ⇒ rct_inst[{p}][{s}] = rctt_inst(p ↦ s) not theorem ›
inv7: failr_peers ∈ SERVICES → ℙ(PEERS) not theorem ›
gluing_fail_1: ∀ s · s ∈ SERVICES ⇒ fail_peers[{s}] = failr_peers(s)

not theorem ›
inv8: dep_instc ∈ SERVICES → ℙ(PEERS) not theorem ›
gluing_act_1: ∀ s · s ∈ SERVICES ⇒ dep_inst[{s}] = dep_instc(s) not

theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act2: run_peers ≔ InitSrvcPeers ›
act3: suspc_peers ≔ InitSuspPeers ›
act4: failr_peers ≔ InitFail ›
act5: dep_instc ≔ InitFail ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›

Page 1

M14

act8: suspc_inst ≔ InitSuspPeers ›
act10: rect_inst ≔ InitSuspPeers ›
act11: rctt_inst ≔ InitSuspPeers ›
act12: actv_inst ≔ ∅ ›
act13: i_state ≔ InitStatus ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed
i_s ›
p_s ›
s_i ›
rc_s ›
rt_s ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: i_s ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
grd5: p_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd6: s_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd7: rt_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd8: rc_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd9: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E

(srv) = token_owner(srv) not theorem ›If the token owner of a service srv does
not belong to prs, the token owner is not changed

grd10: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ⇒ E
(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ failr_peers(srv) ∪ suspc_peers
(token_owner(srv) ↦ srv)) not theorem ›if the owner of the token for a service
becomes unavailable, and the service

possess suspicious instances, then a new token owner among available and not

suspicious peers is chosen

grd11: dom(i_s) = E∼ ∧ dom(p_s) = dom(i_s) ∧ dom(s_i) = dom
(i_s) ∧ dom(rc_s) = dom(i_s) ∧ dom(rt_s) = dom(i_s) not theorem ›

grd12: ∀ srv · srv ∈ SERVICES ⇒ ((E(srv) ↦ srv) ↦ i_state
(token_owner(srv) ↦ srv) ∈ i_s ∧ (E(srv) ↦ srv) ↦ suspc_peers(token_owner(srv) ↦
srv) ∈ p_s) not theorem ›

grd13: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ ((E
(srv) ↦ srv) ↦ suspc_inst(E(srv) ↦ srv) ∈ s_i) ∧ ((E(srv) ↦ srv) ↦ rctt_inst(E
(srv) ↦ srv) ∈ rt_s) ∧ ((E(srv) ↦ srv) ↦ rect_inst(E(srv) ↦ srv) ∈ rc_s) not

Page 2

M14grd13: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ ((E
(srv) ↦ srv) ↦ suspc_inst(E(srv) ↦ srv) ∈ s_i) ∧ ((E(srv) ↦ srv) ↦ rctt_inst(E
(srv) ↦ srv) ∈ rt_s) ∧ ((E(srv) ↦ srv) ↦ rect_inst(E(srv) ↦ srv) ∈ rc_s) not
theorem ›

grd14: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs ⇒ ((E
(srv) ↦ srv) ↦ ∅ ∈ s_i) ∧ ((E(srv) ↦ srv) ↦ ∅ ∈ rt_s) ∧ ((E(srv) ↦ srv) ↦ ∅ ∈
rc_s) not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable
act2: token_owner ≔ token_owner E ›new value for token owner

per service is given if needed
act3: rect_inst ≔ rc_s ›the peers in prs can not try to

recontact instances anymore
act4: rctt_inst ≔ rt_s ›the peers in prs can not recontact

instances anymore
act5: actv_inst ≔ prs ⩤ actv_inst ›
act6: i_state ≔ i_s ›
act7: suspc_peers ≔ p_s ›
act8: suspc_inst ≔ s_i ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
grd6: susp ≠ ∅ not theorem ›

THEN
act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of

susp become suspected instances for s by the token owner of s
END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›

Page 3

M14

grd2: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd3: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_inst(token_owner

(s) ↦ s) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

RECONTACT_INST_OK: not extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty

Page 4

M14
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd8: rect_inst(token_owner(s) ↦ s) = suspc_peers(token_owner

(s) ↦ s) not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_DETECT_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_peers

(token_owner(s) ↦ s) ∖ rctt_inst(token_owner(s) ↦ s) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

FAIL_ACTIV: not extended ordinary ›

Page 5

M14

REFINES
 FAIL_ACTIV

ANY
s ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_ACTIV_4 ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspc_peers(token_owner(s)

↦ s) ›
act3: failr_peers(s) ≔ failr_peers(s) ∪ suspc_peers

(token_owner(s) ↦ s) ›
act4: suspc_peers(token_owner(s) ↦ s) ≔ ∅ ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_CONFIG_4 ›

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_IGN_4 ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

Page 6

M14

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ failr_peers(s) ∪ unav_peers ∪

dep_instc(s) not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: token_owner(s) ↦ (s ↦ i) ∉ actv_inst not theorem ›
grd5: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd6: card(actv_inst[{token_owner(s)}][{s}]) < deplo_inst(s)

not theorem ›
grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_inst ≔ actv_inst ∪ {token_owner(s) ↦ (s ↦ i)} ›
END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_inst[{token_owner(s)}][{s}]) = deplo_inst(s)

not theorem ›
grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_inst[{token_owner
(s)}][{s}] ›

act2: actv_inst ≔ actv_inst ⩥ ({s} ◁ ran(actv_inst)) ›

Page 7

M14

END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd7: actv_inst[{token_owner(s)}][{s}]=∅ not theorem ›
grd6: dep_instc(s) ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_instc(s)) ≥ min_inst(s) not

theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ DPL_4 ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_instc(s) ›
act3: dep_instc(s) ≔ ∅ ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = DPL_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

UNFAIL_PEER: not extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: p ∈ failr_peers(s) not theorem ›

THEN
act1: failr_peers(s) ≔ failr_peers(s)∖{p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›

Page 8

M14

REFINES
 MAKE_PEER_AVAIL

ANY
p ›

WHERE
grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 9

M15

MACHINE
M15 ›

REFINES
 M14

SEES
 C08

VARIABLES
run_peers ›
suspc_peers ›
failr_peers ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
i_state ›

INVARIANTS
inv1: actv_instc ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈ dom(actv_instc) ⇒

p = token_owner(s) not theorem ›
inv3: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ p = token_owner(s) ⇒ (p ↦

s) ∈ dom(actv_instc) not theorem ›
gluing_tok_own_rec1: ∀ p, s · p ∈ PEERS ∧ s ∈ SERVICES ∧ (p ↦ s) ∈

dom(actv_instc) ⇒ actv_inst[{p}][{s}] = actv_instc(p ↦ s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act2: run_peers ≔ InitSrvcPeers ›
act3: suspc_peers ≔ InitSuspPeers ›
act4: failr_peers ≔ InitFail ›
act5: dep_instc ≔ InitFail ›
act6: token_owner ≔ init_tok ›
act7: unav_peers ≔ ∅ ›
act8: suspc_inst ≔ InitSuspPeers ›
act10: rect_inst ≔ InitSuspPeers ›
act11: rctt_inst ≔ InitSuspPeers ›
act12: actv_instc ≔ InitSuspPeers ›
act13: i_state ≔ InitStatus ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed

Page 1

M15

i_s ›
p_s ›
s_i ›
rc_s ›
rt_s ›
ac_i ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd4: i_s ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
grd5: p_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd6: s_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd7: rt_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd8: rc_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd9: ac_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd10: dom(i_s) = E∼ ∧ dom(p_s) = dom(i_s) ∧ dom(s_i) = dom

(i_s) ∧ dom(rc_s) = dom(i_s) ∧ dom(rt_s) = dom(i_s) ∧ dom(ac_i) = dom(i_s) not
theorem ›

grd11: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs
 ⇒
 E(srv) = token_owner(srv) ∧
 s_i(E(srv) ↦ srv) = suspc_inst(E(srv) ↦ srv) ∧
 rt_s(E(srv) ↦ srv) = rctt_inst(E(srv) ↦ srv) ∧
 rc_s(E(srv) ↦ srv) = rect_inst(E(srv) ↦ srv) ∧
 ac_i(E(srv) ↦ srv) = actv_instc(E(srv) ↦ srv) not

theorem ›If the token owner of a service srv does not belong to prs, the token
owner is not changed

grd12: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ failr_peers

(srv) ∪ suspc_peers(token_owner(srv) ↦ srv)) ∧
 s_i(E(srv) ↦ srv) = ∅ ∧
 rt_s(E(srv) ↦ srv) = ∅ ∧
 rc_s(E(srv) ↦ srv) = ∅ ∧
 ac_i(E(srv) ↦ srv) = ∅ not theorem ›if the owner of the

token for a service becomes unavailable, and the service
 possess suspicious

instances, then a new token owner among available and not
 suspicious peers is

chosen
grd13: ∀ srv · srv ∈ SERVICES ⇒ i_s(E(srv) ↦ srv) = i_state

(token_owner(srv) ↦ srv) ∧ p_s(E(srv) ↦ srv) = suspc_peers(token_owner(srv) ↦
srv) not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become

unavailable

Page 2

M15

act2: token_owner ≔ token_owner E ›new value for token owner
per service is given if needed

act3: rect_inst ≔ rc_s ›the peers in prs can not try to
recontact instances anymore

act4: rctt_inst ≔ rt_s ›the peers in prs can not recontact
instances anymore

act5: actv_instc ≔ ac_i ›
act6: i_state ≔ i_s ›
act7: suspc_peers ≔ p_s ›
act8: suspc_inst ≔ s_i ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
grd6: susp ≠ ∅ not theorem ›

THEN
act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of

susp become suspected instances for s by the token owner of s
END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd3: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_inst(token_owner

(s) ↦ s) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

Page 3

M15

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

Page 4

M15grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd8: rect_inst(token_owner(s) ↦ s) = suspc_peers(token_owner

(s) ↦ s) not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_DETECT_4 ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_peers

(token_owner(s) ↦ s) ∖ rctt_inst(token_owner(s) ↦ s) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›
grd5: suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not theorem

›

Page 5

M15

grd5: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ FAIL_ACTIV_4 ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspc_peers(token_owner(s)

↦ s) ›
act3: failr_peers(s) ≔ failr_peers(s) ∪ suspc_peers

(token_owner(s) ↦ s) ›
act4: suspc_peers(token_owner(s) ↦ s) ≔ ∅ ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) < min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_CONFIG_4 ›

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not theorem ›
grd3: card(run_peers(s)) ≥ min_inst(s) not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ FAIL_IGN_4 ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

Page 6

M15

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ failr_peers(s) ∪ unav_peers ∪

dep_instc(s) not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›
grd5: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not

theorem ›
grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner
(s) ↦ s) ∪ {i} ›

END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd6: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd8: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_instc(token_owner(s)
↦ s) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›

Page 7

M15

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not theorem

›
grd7: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd6: dep_instc(s) ≠ ∅ not theorem ›
grd4: card(run_peers(s))+card(dep_instc(s)) ≥ min_inst(s) not

theorem ›
THEN

act1: i_state(token_owner(s) ↦ s) ≔ DPL_4 ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_instc(s) ›
act3: dep_instc(s) ≔ ∅ ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: i_state(token_owner(s) ↦ s) = DPL_4 not theorem ›

THEN
act1: i_state(token_owner(s) ↦ s) ≔ RUN_4 ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: p ∈ failr_peers(s) not theorem ›

THEN
act1: failr_peers(s) ≔ failr_peers(s)∖{p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

Page 8

M15

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 9

M12

MACHINE
M12 ›

REFINES
 M15

SEES
 C09

VARIABLES
run_peers ›
suspc_peers ›
failr_peers ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: inst_state ∈ (PEERS×SERVICES) ⇸ STATES_4 not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(inst_state) not

theorem ›
gluing_state_1: ∀ s · s ∈ SERVICES ⇒ i_state(token_owner(s) ↦ s) =

inst_state(token_owner(s) ↦ s) not theorem ›
inv3: ∀ s · s ∈ SERVICES ⇒ rctt_inst(token_owner(s) ↦ s) ⊆ run_peers

(s) not theorem ›
inv4: ∀ s · s ∈ SERVICES ⇒ suspc_peers(token_owner(s) ↦ s) ⊆

run_peers(s) not theorem ›
inv5: ∀ s · s ∈ SERVICES ⇒ suspc_inst(token_owner(s) ↦ s) ⊆ run_peers

(s) not theorem ›
inv6: ∀ s · s ∈ SERVICES ⇒ rect_inst(token_owner(s) ↦ s) ⊆ run_peers

(s) not theorem ›
inv7: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ∉ suspc_inst(token_owner(s)

↦ s) not theorem ›
inv8: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ∉ suspc_peers(token_owner

(s) ↦ s) not theorem ›
inv9: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ∉ rctt_inst(token_owner(s)

↦ s) not theorem ›
inv10: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ∉ rect_inst(token_owner(s)

↦ s) not theorem ›
inv11: ∀ s · s ∈ SERVICES ⇒ suspc_inst(token_owner(s) ↦ s) ∩

suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›
inv12: ∀ s · s ∈ SERVICES ∧ inst_state(token_owner(s) ↦ s) ∉

{FAIL_4,FAIL_DETECT_4} ⇒ suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›
inv13: ∀ s · s ∈ SERVICES ∧ inst_state(token_owner(s) ↦ s) ≠ FAIL_4 ⇒

rctt_inst(token_owner(s) ↦ s) = ∅ not theorem ›
inv14: ∀ s · s ∈ SERVICES ∧ inst_state(token_owner(s) ↦ s) ≠ FAIL_4 ⇒

rect_inst(token_owner(s) ↦ s) = ∅ not theorem ›

Page 1

M13

EVENTSINITIALISATION: not extended ordinary ›
THEN

act1: run_peers ≔ InitSrvcPeers ›
act2: suspc_peers ≔ InitSuspPeers ›
act3: failr_peers ≔ InitFail ›
act4: dep_instc ≔ InitFail ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›
E ›new values for token owner per service if needed
p_s ›
s_i ›
rc_s ›
rt_s ›
ac_i ›

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›
grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})

∖prs ≠ ∅ not theorem ›
grd4: E ∈ SERVICES → PEERS not theorem ›new value for token

owner per service if needed
grd5: p_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd6: s_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd7: rt_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd8: rc_s ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd9: ac_i ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
grd10: dom(p_s) = E∼ ∧ dom(s_i) = E∼ ∧ dom(rc_s) = E∼ ∧ dom

(rt_s) = E∼ ∧ dom(ac_i) = E∼ not theorem ›
grd11: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs
 ⇒
 E(srv) = token_owner(srv) ∧
 s_i(E(srv) ↦ srv) = suspc_inst(E(srv) ↦ srv) ∧
 rt_s(E(srv) ↦ srv) = rctt_inst(E(srv) ↦ srv) ∧
 rc_s(E(srv) ↦ srv) = rect_inst(E(srv) ↦ srv) ∧
 ac_i(E(srv) ↦ srv) = actv_instc(E(srv) ↦ srv) not

theorem ›If the token owner of a service srv does not belong to prs, the token

Page 2

M14
 ac_i(E(srv) ↦ srv) = actv_instc(E(srv) ↦ srv) not

theorem ›If the token owner of a service srv does not belong to prs, the token
owner is not changed

grd12: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ failr_peers

(srv) ∪ suspc_peers(token_owner(srv) ↦ srv)) ∧
 E(srv) ↦ srv ∈ dom(inst_state) ∧
 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦

srv) ∧
 s_i(E(srv) ↦ srv) = ∅ ∧
 rt_s(E(srv) ↦ srv) = ∅ ∧
 rc_s(E(srv) ↦ srv) = ∅ ∧
 ac_i(E(srv) ↦ srv) = ∅ not theorem ›if the owner of the

token for a service becomes unavailable, and the service
 possess suspicious

instances, then a new token owner among available and not
 suspicious peers is

chosen
grd13: ∀ srv · srv ∈ SERVICES ⇒ p_s(E(srv) ↦ srv) =

suspc_peers(token_owner(srv) ↦ srv) not theorem ›
WITH

i_s: i_s = E∼ ◁ inst_state ›
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new value for token owner
per service is given if needed

act3: rect_inst ≔ rc_s ›the peers in prs can not try to
recontact instances anymore

act4: rctt_inst ≔ rt_s ›the peers in prs can not recontact
instances anymore

act5: actv_instc ≔ ac_i ›
act6: suspc_peers ≔ p_s ›
act7: suspc_inst ≔ s_i ›
act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›

END

SUSPECT_INST: not extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable

Page 3

M15

grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the
member of susp have not yet been suspected for s by the token owner of s

grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the
state of s is OK

grd6: susp ≠ ∅ not theorem ›
THEN

act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of
susp become suspected instances for s by the token owner of s

END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_peers(s)∖(suspc_inst(token_owner(s) ↦ s) ∪

unav_peers) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_inst(token_owner

(s) ↦ s) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

RECONTACT_INST_OK: not extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all

Page 4

M16
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the set

of suspicious peers for s is not empty
grd5: i ∈ suspc_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspc_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspc_peers(token_owner

(s) ↦ s) not theorem ›

Page 5

M17

grd6: prop = ((run_peers(s) ∖ suspc_peers(token_owner(s) ↦ s))
∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})

›
act2: suspc_peers(token_owner(s) ↦ s) ≔ suspc_peers

(token_owner(s) ↦ s) ∖ rctt_inst(token_owner(s) ↦ s) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: not extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspc_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›

END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspc_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_peers(s) ∖ (unav_peers ∪ suspc_peers

(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspc_peers(token_owner(s)

↦ s) ›
act3: failr_peers(s) ≔ failr_peers(s) ∪ suspc_peers

(token_owner(s) ↦ s) ›

Page 6

M18

act4: suspc_peers(token_owner(s) ↦ s) ≔ ∅ ›
END

FAIL_CONFIGURE: not extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_peers(s)) < min_inst(s) not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›

END

FAIL_IGNORE: not extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_peers(s)) ≥ min_inst(s) not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›

END

IGNORE: not extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›

Page 7

M19

grd4: prop = run_peers(s)∖unav_peers not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ failr_peers(s) ∪ unav_peers ∪

dep_instc(s) not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not

theorem ›
grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
THEN

act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner
(s) ↦ s) ∪ {i} ›

END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd3: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd4: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_instc(token_owner(s)
↦ s) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

Page 8

M1:

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instc(s) ≠ ∅ not theorem ›
grd6: card(run_peers(s))+card(dep_instc(s)) ≥ min_inst(s) not

theorem ›
grd7: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_instc(s) ›
act3: dep_instc(s) ≔ ∅ ›

END

HEAL: not extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: p ∈ failr_peers(s) not theorem ›

THEN

Page 9

M1;

act1: failr_peers(s) ≔ failr_peers(s)∖{p} ›
END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 10

M17

MACHINE
M17 ›

REFINES
 M16

SEES
 C09

VARIABLES
run_peers ›
suspct_peers ›
failr_peers ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: suspct_peers ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(suspct_peers) not

theorem ›
gluing_susp_1: ∀ s · s ∈ SERVICES ⇒ suspc_peers(token_owner(s) ↦ s) =

suspct_peers(token_owner(s) ↦ s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act1: run_peers ≔ InitSrvcPeers ›
act2: suspct_peers ≔ InitSuspPrs ›
act3: failr_peers ≔ InitFail ›
act4: dep_instc ≔ InitFail ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›Peers that will become unavailable
E ›Values for token owner per service

WHERE
grd1: prs ⊆ PEERS not theorem ›

Page 1

M17

grd2: prs ⊈ unav_peers not theorem ›the peers in prs are not
yet unavalaible

grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})
∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

grd4: E ∈ SERVICES → PEERS not theorem ›Value for token owner
per service

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs
 ⇒
 E(srv) = token_owner(srv) not theorem ›If the token

owner of a service srv does not belong to prs, the token owner is not changed
grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_peers(srv)∖(unav_peers ∪ prs ∪ failr_peers

(srv) ∪ suspct_peers(token_owner(srv) ↦ srv)) ∧
 E(srv) ↦ srv ∈ dom(inst_state) ∧ E(srv) ↦ srv ∈ dom

(suspct_peers) ∧
 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦

srv) ∧
 suspct_peers(E(srv) ↦ srv) = suspct_peers(token_owner

(srv) ↦ srv) not theorem ›if the owner of the token for a service becomes
unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
WITH

p_s: p_s = E∼ ◁ suspct_peers ›
rc_s: rc_s = ((prs×SERVICES) ⩤ rect_inst) (((E∖token_owner)

∼)×{∅}) ›
s_i: s_i = ((prs×SERVICES) ⩤ suspc_inst) (((E∖token_owner)

∼)×{∅}) ›
rt_s: rt_s = ((prs×SERVICES) ⩤ rctt_inst) (((E∖token_owner)

∼)×{∅}) ›
ac_i: ac_i = ((prs×SERVICES) ⩤ actv_instc) (((E∖token_owner)

∼)×{∅}) ›
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new values for token
owner per service

act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

Page 2

M17act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

act4: rctt_inst ≔ ((prs×SERVICES) ⩤ rctt_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (2)

act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore

act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)

act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›the peers in
prs can not monitor the state of the services provided anymore

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_peers(s) ∩ unav_peers not theorem ›instances

in susp are suspicious if the peers running them becomes unavailable
grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the

member of susp have not yet been suspected for s by the token owner of s
grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the

state of s is OK
grd6: susp ≠ ∅ not theorem ›

THEN
act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of

susp become suspected instances for s by the token owner of s
END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_peers(s)∖(suspc_inst(token_owner(s) ↦ s) ∪

unav_peers) not theorem ›

Page 3

M17

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspct_peers ≔ suspct_peers ((prop×{s})×{suspc_inst

(token_owner(s) ↦ s)}) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

RECONTACT_INST_OK: not extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: not extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be

Page 4

M17
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›
susp ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd7: susp ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspct_peers(token_owner

(s) ↦ s) not theorem ›
grd6: prop = ((run_peers(s) ∖ suspct_peers(token_owner(s) ↦

s)) ∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›
grd8: susp = suspct_peers(token_owner(s) ↦ s)∖rctt_inst

(token_owner(s)↦ s) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})
›

act2: suspct_peers ≔ suspct_peers ((prop×{s})×{susp}) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: not extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›

Page 5

M17

grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not
theorem ›

grd4: suspct_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›

END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_peers(s) ∖ (unav_peers ∪ suspct_peers

(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_peers(s) ≔ run_peers(s) ∖ suspct_peers(token_owner

(s) ↦ s) ›
act3: failr_peers(s) ≔ failr_peers(s) ∪ suspct_peers

(token_owner(s) ↦ s) ›
act4: suspct_peers ≔ suspct_peers ((prop×{s})×{∅}) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_peers(s)) < min_inst(s) not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›

END

Page 6

M17

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_peers(s)) ≥ min_inst(s) not theorem ›
grd5: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›

END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›
grd4: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›

END

REDEPLOY_INSTC: extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_peers(s) ∪ failr_peers(s) ∪ unav_peers ∪

dep_instc(s) not theorem ›i does not run s, is not failed for s, is not
unavailable and is not already activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›

Page 7

M17

grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not
theorem ›

grd7: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)
not theorem ›

THEN
act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner

(s) ↦ s) ∪ {i} ›
END

REDEPLOY_INSTS: extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd3: card(dep_instc(s)) + card(run_peers(s)) < min_inst(s)

not theorem ›
grd4: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_instc(token_owner(s)
↦ s) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instc(s) ≠ ∅ not theorem ›
grd6: card(run_peers(s))+card(dep_instc(s)) ≥ min_inst(s) not

theorem ›
grd7: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_peers(s) ≔ run_peers(s) ∪ dep_instc(s) ›
act3: dep_instc(s) ≔ ∅ ›

Page 8

M17

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_peers(s)∖unav_peers not theorem ›

THEN
act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›

END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: p ∈ failr_peers(s) not theorem ›

THEN
act1: failr_peers(s) ≔ failr_peers(s)∖{p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 9

M18

MACHINE
M18 ›

REFINES
 M17

SEES
 C09

VARIABLES
run_inst ›
suspct_peers ›
failr_peers ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: run_inst ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(run_inst) not

theorem ›
gluing_run_1: ∀ s · s ∈ SERVICES ⇒ run_inst(token_owner(s) ↦ s) =

run_peers(s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act1: run_inst ≔ InitRunPeers ›
act2: suspct_peers ≔ InitSuspPrs ›
act3: failr_peers ≔ InitFail ›
act4: dep_instc ≔ InitFail ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›Peers that will become unavailable
E ›Values for token owner per service

WHERE
grd1: prs ⊆ PEERS not theorem ›

Page 1

M18

grd2: prs ⊈ unav_peers not theorem ›the peers in prs are not
yet unavalaible

grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})
∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

grd4: E ∈ SERVICES → PEERS not theorem ›Value for token owner
per service

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E
(srv) = token_owner(srv) not theorem ›If the token owner of a service srv
does not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_inst(token_owner(srv) ↦ srv)∖(unav_peers ∪

prs ∪ failr_peers(srv) ∪ suspct_peers(token_owner(srv) ↦ srv)) ∧
 E(srv) ↦ srv ∈ dom(inst_state) ∩ dom(suspct_peers) ∩ dom

(run_inst) ∧
 run_inst(E(srv) ↦ srv) = run_inst(token_owner(srv) ↦

srv) ∧
 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦

srv) ∧
 suspct_peers(E(srv) ↦ srv) = suspct_peers(token_owner

(srv) ↦ srv) not theorem ›if the owner of the token for a service becomes
unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new values for token
owner per service

act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

act4: rctt_inst ≔ ((prs×SERVICES) ⩤ rctt_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (2)

act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore

act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)

Page 2

M18
act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)

(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)
act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›the peers in

prs can not monitor the state of the services provided anymore
act9: run_inst ≔ (prs×SERVICES) ⩤ run_inst ›

END

SUSPECT_INST: not extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_inst(token_owner(s) ↦ s) ∩ unav_peers not

theorem ›instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the
member of susp have not yet been suspected for s by the token owner of s

grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the
state of s is OK

grd6: susp ≠ ∅ not theorem ›
THEN

act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of
susp become suspected instances for s by the token owner of s

END

FAIL: not extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖(suspc_inst

(token_owner(s) ↦ s) ∪ unav_peers) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspct_peers ≔ suspct_peers ((prop×{s})×{suspc_inst

(token_owner(s) ↦ s)}) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

Page 3

M18

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

Page 4

M18

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: not extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›
susp ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd7: susp ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspct_peers(token_owner

(s) ↦ s) not theorem ›
grd6: prop = ((run_inst(token_owner(s) ↦ s) ∖ suspct_peers

(token_owner(s) ↦ s)) ∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›
grd8: susp = suspct_peers(token_owner(s) ↦ s)∖rctt_inst

(token_owner(s)↦ s) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})
›

act2: suspct_peers ≔ suspct_peers ((prop×{s})×{susp}) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: not extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›

Page 5

M18

END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s) ∖ (unav_peers ∪

suspct_peers(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})×{run_inst(token_owner

(s) ↦ s)∖suspct_peers(token_owner(s) ↦ s)}) ›
act3: failr_peers(s) ≔ failr_peers(s) ∪ suspct_peers

(token_owner(s) ↦ s) ›
act4: suspct_peers ≔ suspct_peers ((prop×{s})×{∅}) ›

END

FAIL_CONFIGURE: not extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) < min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›
END

FAIL_IGNORE: not extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

Page 6

M18

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) ≥ min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›
END

IGNORE: not extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_inst(token_owner(s) ↦ s) ∪ failr_peers(s) ∪

unav_peers ∪ dep_instc(s) not theorem ›i does not run s, is not failed for s, is
not unavailable and is not already activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not

theorem ›

Page 7

M18
grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not

theorem ›
grd7: card(dep_instc(s)) + card(run_inst(token_owner(s) ↦ s))

< min_inst(s) not theorem ›
THEN

act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner
(s) ↦ s) ∪ {i} ›

END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd3: card(dep_instc(s)) + card(run_inst(token_owner(s) ↦ s))

< min_inst(s) not theorem ›
grd4: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_instc(token_owner(s)
↦ s) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instc(s) ≠ ∅ not theorem ›
grd6: card(run_inst(token_owner(s) ↦ s))+card(dep_instc(s)) ≥

min_inst(s) not theorem ›
grd7: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})× {run_inst(token_owner

(s) ↦ s) ∪ dep_instc(s)}) ›

Page 8

M18

act3: dep_instc(s) ≔ ∅ ›
END

HEAL: not extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: p ∈ PEERS not theorem ›
grd3: p ∈ failr_peers(s) not theorem ›

THEN
act1: failr_peers(s) ≔ failr_peers(s)∖{p} ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 9

M19

MACHINE
M19 ›

REFINES
 M18

SEES
 C09

VARIABLES
run_inst ›
suspct_peers ›
failr_inst ›
dep_instc ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: failr_inst ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(failr_inst) not

theorem ›
gluing_fail_1: ∀ s · s ∈ SERVICES ⇒ failr_inst(token_owner(s) ↦ s) =

failr_peers(s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act1: run_inst ≔ InitRunPeers ›
act2: suspct_peers ≔ InitSuspPrs ›
act3: failr_inst ≔ InitSuspPeers ›
act4: dep_instc ≔ InitFail ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›Peers that will become unavailable
E ›Values for token owner per service

WHERE
grd1: prs ⊆ PEERS not theorem ›

Page 1

M19

grd2: prs ⊈ unav_peers not theorem ›the peers in prs are not
yet unavalaible

grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})
∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

grd4: E ∈ SERVICES → PEERS not theorem ›Value for token owner
per service

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E
(srv) = token_owner(srv) not theorem ›If the token owner of a service srv
does not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_inst(token_owner(srv) ↦ srv)∖(unav_peers ∪

prs ∪ failr_inst(token_owner(srv) ↦ srv) ∪ suspct_peers(token_owner(srv) ↦ srv))
∧

 E(srv) ↦ srv ∈ dom(inst_state) ∩ dom(suspct_peers) ∩ dom
(run_inst) ∩ dom(failr_inst) ∧

 run_inst(E(srv) ↦ srv) = run_inst(token_owner(srv) ↦
srv) ∧

 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦
srv) ∧

 suspct_peers(E(srv) ↦ srv) = suspct_peers(token_owner
(srv) ↦ srv) ∧

 failr_inst(E(srv) ↦ srv) = failr_inst(token_owner(srv) ↦
srv) not theorem ›if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new values for token
owner per service

act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

act4: rctt_inst ≔ ((prs×SERVICES) ⩤ rctt_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (2)

act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore

act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers
in prs can not suspect instances anymore (1)

Page 2

M19
act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers

in prs can not suspect instances anymore (1)
act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)

(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)
act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›the peers in

prs can not monitor the state of the services provided anymore
act9: run_inst ≔ (prs×SERVICES) ⩤ run_inst ›
act10: failr_inst ≔ (prs×SERVICES) ⩤ failr_inst ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_inst(token_owner(s) ↦ s) ∩ unav_peers not

theorem ›instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the
member of susp have not yet been suspected for s by the token owner of s

grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the
state of s is OK

grd6: susp ≠ ∅ not theorem ›
THEN

act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of
susp become suspected instances for s by the token owner of s

END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖(suspc_inst

(token_owner(s) ↦ s) ∪ unav_peers) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspct_peers ≔ suspct_peers ((prop×{s})×{suspc_inst

(token_owner(s) ↦ s)}) ›

Page 3

M19

act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›
END

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

Page 4

M19

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›
susp ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd7: susp ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspct_peers(token_owner

(s) ↦ s) not theorem ›
grd6: prop = ((run_inst(token_owner(s) ↦ s) ∖ suspct_peers

(token_owner(s) ↦ s)) ∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›
grd8: susp = suspct_peers(token_owner(s) ↦ s)∖rctt_inst

(token_owner(s)↦ s) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})
›

act2: suspct_peers ≔ suspct_peers ((prop×{s})×{susp}) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›

Page 5

M19
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

FAIL_ACTIV: not extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s) ∖ (unav_peers ∪

suspct_peers(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})×{run_inst(token_owner

(s) ↦ s)∖suspct_peers(token_owner(s) ↦ s)}) ›
act3: failr_inst ≔ failr_inst ((prop×{s})× {failr_inst

(token_owner(s) ↦ s) ∪ suspct_peers(token_owner(s) ↦ s)}) ›
act4: suspct_peers ≔ suspct_peers ((prop×{s})×{∅}) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) < min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›
END

FAIL_IGNORE: extended ordinary ›

Page 6

M19

REFINES
 FAIL_IGNORE

ANY
s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) ≥ min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›
END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_inst(token_owner(s) ↦ s) ∪ failr_inst

(token_owner(s) ↦ s) ∪ unav_peers ∪ dep_instc(s) not theorem ›i does not run s,
is not failed for s, is not unavailable and is not already activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›

Page 7

M19

grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not
theorem ›

grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not
theorem ›

grd7: card(dep_instc(s)) + card(run_inst(token_owner(s) ↦ s))
< min_inst(s) not theorem ›

THEN
act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner

(s) ↦ s) ∪ {i} ›
END

REDEPLOY_INSTS: extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
WHERE

grd1: s ∈ SERVICES not theorem ›
grd2: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd3: card(dep_instc(s)) + card(run_inst(token_owner(s) ↦ s))

< min_inst(s) not theorem ›
grd4: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
THEN

act1: dep_instc(s) ≔ dep_instc(s) ∪ actv_instc(token_owner(s)
↦ s) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instc(s) ≠ ∅ not theorem ›
grd6: card(run_inst(token_owner(s) ↦ s))+card(dep_instc(s)) ≥

min_inst(s) not theorem ›
grd7: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

Page 8

M19

act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})× {run_inst(token_owner

(s) ↦ s) ∪ dep_instc(s)}) ›
act3: dep_instc(s) ≔ ∅ ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›
END

UNFAIL_PEER: not extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: p ∈ PEERS not theorem ›
grd4: p ∈ failr_inst(token_owner(s) ↦ s) not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: failr_inst ≔ failr_inst ((prop×{s})×{failr_inst
(token_owner(s) ↦ s) ∖ {p}}) ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›

Page 9

M19

grd2: p ∈ unav_peers not theorem ›
THEN

act1: unav_peers ≔ unav_peers ∖ {p} ›
END

END

Page 10

M20

MACHINE
M20 ›

REFINES
 M19

SEES
 C09

VARIABLES
run_inst ›
suspct_peers ›
failr_inst ›
dep_instcs ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: dep_instcs ∈ (PEERS×SERVICES) ⇸ ℙ(PEERS) not theorem ›
inv2: ∀ s · s ∈ SERVICES ⇒ token_owner(s) ↦ s ∈ dom(dep_instcs) not

theorem ›
gluing_act_1: ∀ s · s ∈ SERVICES ⇒ dep_instcs(token_owner(s) ↦ s) =

dep_instc(s) not theorem ›
EVENTSINITIALISATION: not extended ordinary ›

THEN
act1: run_inst ≔ InitRunPeers ›
act2: suspct_peers ≔ InitSuspPrs ›
act3: failr_inst ≔ InitSuspPeers ›
act4: dep_instcs ≔ InitSuspPeers ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›Peers that will become unavailable
E ›Values for token owner per service

WHERE
grd1: prs ⊆ PEERS not theorem ›

Page 1

M20

grd2: prs ⊈ unav_peers not theorem ›the peers in prs are not
yet unavalaible

grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})
∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

grd4: E ∈ SERVICES → PEERS not theorem ›Value for token owner
per service

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E
(srv) = token_owner(srv) not theorem ›If the token owner of a service srv
does not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_inst(token_owner(srv) ↦ srv)∖(unav_peers ∪

prs ∪ failr_inst(token_owner(srv) ↦ srv) ∪ suspct_peers(token_owner(srv) ↦ srv))
∧

 E(srv) ↦ srv ∈ dom(inst_state) ∩ dom(suspct_peers) ∩ dom
(run_inst) ∩ dom(failr_inst) ∩ dom(dep_instcs) ∧

 run_inst(E(srv) ↦ srv) = run_inst(token_owner(srv) ↦
srv) ∧

 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦
srv) ∧

 suspct_peers(E(srv) ↦ srv) = suspct_peers(token_owner
(srv) ↦ srv) ∧

 failr_inst(E(srv) ↦ srv) = failr_inst(token_owner(srv) ↦
srv) ∧

 dep_instcs(E(srv) ↦ srv) = dep_instcs(token_owner(srv) ↦
srv) not theorem ›if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new values for token
owner per service

act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

act4: rctt_inst ≔ ((prs×SERVICES) ⩤ rctt_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (2)

act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore

Page 2

M20
act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)

(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore
act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers

in prs can not suspect instances anymore (1)
act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)

(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)
act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›the peers in

prs can not monitor the state of the services provided anymore
act9: run_inst ≔ (prs×SERVICES) ⩤ run_inst ›
act10: failr_inst ≔ (prs×SERVICES) ⩤ failr_inst ›
act11: dep_instcs ≔ (prs×SERVICES) ⩤ dep_instcs ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_inst(token_owner(s) ↦ s) ∩ unav_peers not

theorem ›instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the
member of susp have not yet been suspected for s by the token owner of s

grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the
state of s is OK

grd6: susp ≠ ∅ not theorem ›
THEN

act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of
susp become suspected instances for s by the token owner of s

END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖(suspc_inst

(token_owner(s) ↦ s) ∪ unav_peers) not theorem ›
THEN

Page 3

M20

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspct_peers ≔ suspct_peers ((prop×{s})×{suspc_inst

(token_owner(s) ↦ s)}) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

Page 4

M20grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not
theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›
susp ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd7: susp ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspct_peers(token_owner

(s) ↦ s) not theorem ›
grd6: prop = ((run_inst(token_owner(s) ↦ s) ∖ suspct_peers

(token_owner(s) ↦ s)) ∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›
grd8: susp = suspct_peers(token_owner(s) ↦ s)∖rctt_inst

(token_owner(s)↦ s) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})
›

act2: suspct_peers ≔ suspct_peers ((prop×{s})×{susp}) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›

Page 5

M20
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s) ∖ (unav_peers ∪

suspct_peers(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})×{run_inst(token_owner

(s) ↦ s)∖suspct_peers(token_owner(s) ↦ s)}) ›
act3: failr_inst ≔ failr_inst ((prop×{s})× {failr_inst

(token_owner(s) ↦ s) ∪ suspct_peers(token_owner(s) ↦ s)}) ›
act4: suspct_peers ≔ suspct_peers ((prop×{s})×{∅}) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) < min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›

Page 6

M20

END

FAIL_IGNORE: extended ordinary ›
REFINES

 FAIL_IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) ≥ min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›
END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

REDEPLOY_INSTC: not extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_inst(token_owner(s) ↦ s) ∪ failr_inst

(token_owner(s) ↦ s) ∪ unav_peers ∪ dep_instcs(token_owner(s) ↦ s) not theorem

Page 7

M20
grd3: i ∉ run_inst(token_owner(s) ↦ s) ∪ failr_inst

(token_owner(s) ↦ s) ∪ unav_peers ∪ dep_instcs(token_owner(s) ↦ s) not theorem
›i does not run s, is not failed for s, is not unavailable and is not already
activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not

theorem ›
grd7: card(dep_instcs(token_owner(s) ↦ s)) + card(run_inst

(token_owner(s) ↦ s)) < min_inst(s) not theorem ›
THEN

act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner
(s) ↦ s) ∪ {i} ›

END

REDEPLOY_INSTS: not extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd4: card(dep_instcs(token_owner(s) ↦ s)) + card(run_inst

(token_owner(s) ↦ s)) < min_inst(s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd6: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: dep_instcs ≔ dep_instcs ((prop×{s})× {dep_instcs
(token_owner(s)↦s) ∪ actv_instc(token_owner(s)↦s)}) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: not extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›

Page 8

M20
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instcs(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd6: card(run_inst(token_owner(s) ↦ s))+card(dep_instcs

(token_owner(s) ↦ s)) ≥ min_inst(s) not theorem ›
grd7: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})× {run_inst(token_owner

(s) ↦ s) ∪ dep_instcs(token_owner(s) ↦ s)}) ›
act3: dep_instcs ≔ dep_instcs ((prop×{s})×{∅}) ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: p ∈ PEERS not theorem ›
grd4: p ∈ failr_inst(token_owner(s) ↦ s) not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: failr_inst ≔ failr_inst ((prop×{s})×{failr_inst
(token_owner(s) ↦ s) ∖ {p}}) ›

END

Page 9

M20

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL
ANY

p ›
WHERE

grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 10

M21

MACHINE
M21 ›

REFINES
 M20

SEES
 C09

VARIABLES
run_inst ›
suspct_peers ›
failr_inst ›
dep_instcs ›
token_owner ›
unav_peers ›
suspc_inst ›
rect_inst ›instances that are tried to be recontacted
rctt_inst ›instances effectively recontacted after a try
actv_instc ›instances activated by token ownes
inst_state ›

INVARIANTS
inv1: dom(run_inst) ⊆ dom(inst_state) not theorem ›

EVENTSINITIALISATION: extended ordinary ›
THEN

act1: run_inst ≔ InitRunPeers ›
act2: suspct_peers ≔ InitSuspPrs ›
act3: failr_inst ≔ InitSuspPeers ›
act4: dep_instcs ≔ InitSuspPeers ›
act5: token_owner ≔ init_tok ›
act6: unav_peers ≔ ∅ ›
act7: suspc_inst ≔ InitSuspPeers ›
act8: rect_inst ≔ InitSuspPeers ›
act9: rctt_inst ≔ InitSuspPeers ›
act10: actv_instc ≔ InitSuspPeers ›
act11: inst_state ≔ InitStateSrv ›

END

MAKE_PEER_UNAVAIL: not extended ordinary ›
REFINES

 MAKE_PEER_UNAVAIL
ANY

prs ›Peers that will become unavailable
E ›Values for token owner per service

WHERE
grd1: prs ⊆ PEERS not theorem ›
grd2: prs ⊈ unav_peers not theorem ›the peers in prs are not

yet unavalaible
grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})

∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

Page 1

M21grd3: ∀ srv · srv ∈ SERVICES ⇒ dom(dom(inst_state) ▷ {srv})
∖prs ≠ ∅ not theorem ›for each service srv, there must always be at least 1
peer available

grd4: E ∈ SERVICES → PEERS not theorem ›Value for token owner
per service

grd5: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∉ prs ⇒ E
(srv) = token_owner(srv) not theorem ›If the token owner of a service srv
does not belong to prs, the token owner is not changed

grd6: ∀ srv · srv ∈ SERVICES ∧ token_owner(srv) ∈ prs
 ⇒
 E(srv) ∈ run_inst(token_owner(srv) ↦ srv)∖(unav_peers ∪

prs ∪ failr_inst(token_owner(srv) ↦ srv) ∪ suspct_peers(token_owner(srv) ↦ srv))
∧

 E(srv) ↦ srv ∈ dom(run_inst) ∩ dom(suspct_peers) ∩ dom
(failr_inst) ∩ dom(dep_instcs) ∧

 run_inst(E(srv) ↦ srv) = run_inst(token_owner(srv) ↦
srv) ∧

 inst_state(E(srv) ↦ srv) = inst_state(token_owner(srv) ↦
srv) ∧

 suspct_peers(E(srv) ↦ srv) = suspct_peers(token_owner
(srv) ↦ srv) ∧

 failr_inst(E(srv) ↦ srv) = failr_inst(token_owner(srv) ↦
srv) ∧

 dep_instcs(E(srv) ↦ srv) = dep_instcs(token_owner(srv) ↦
srv) not theorem ›if the owner of the token for a service becomes unavailable,

A new token owner is chosen: the new token owner must have same characteristics

as the previous one (state, list of suspicious neighbours, etc.), and it must

not be an unavailable, suspicious, failed peer or a member of prs
THEN

act1: unav_peers ≔ unav_peers ∪ prs ›the peers in prs become
unavailable

act2: token_owner ≔ token_owner E ›new values for token
owner per service

act3: rect_inst ≔ ((prs×SERVICES) ⩤ rect_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (1)

act4: rctt_inst ≔ ((prs×SERVICES) ⩤ rctt_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not try to recontact instances
anymore (2)

act5: actv_instc ≔ ((prs×SERVICES) ⩤ actv_instc)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not activate instances anymore

act6: suspct_peers ≔ (prs×SERVICES) ⩤ suspct_peers ›the peers
in prs can not suspect instances anymore (1)

act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)
(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)

Page 2

M21
act7: suspc_inst ≔ ((prs×SERVICES) ⩤ suspc_inst)

(((E∖token_owner)∼)×{∅}) ›the peers in prs can not suspect instances anymore (2)
act8: inst_state ≔ (prs×SERVICES) ⩤ inst_state ›the peers in

prs can not monitor the state of the services provided anymore
act9: run_inst ≔ (prs×SERVICES) ⩤ run_inst ›
act10: failr_inst ≔ (prs×SERVICES) ⩤ failr_inst ›
act11: dep_instcs ≔ (prs×SERVICES) ⩤ dep_instcs ›

END

SUSPECT_INST: extended ordinary ›
REFINES

 SUSPECT_INST
ANY

s ›a service s
susp ›suspicious instances

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: susp ⊆ PEERS not theorem ›
grd3: susp = run_inst(token_owner(s) ↦ s) ∩ unav_peers not

theorem ›instances in susp are suspicious if the peers running them becomes
unavailable

grd4: suspc_inst(token_owner(s) ↦ s) = ∅ not theorem ›the
member of susp have not yet been suspected for s by the token owner of s

grd5: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›the
state of s is OK

grd6: susp ≠ ∅ not theorem ›
THEN

act1: suspc_inst(token_owner(s) ↦ s) ≔ susp ›the members of
susp become suspected instances for s by the token owner of s

END

FAIL: extended ordinary ›
REFINES

 FAIL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = RUN_4 not theorem ›
grd4: suspc_inst(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖(suspc_inst

(token_owner(s) ↦ s) ∪ unav_peers) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_4}) ›
act2: suspct_peers ≔ suspct_peers ((prop×{s})×{suspc_inst

(token_owner(s) ↦ s)}) ›
act3: suspc_inst(token_owner(s) ↦ s) ≔ ∅ ›

Page 3

M21

END

RECONTACT_INST_OK: extended ordinary ›
REFINES

 RECONTACT_INST_OK
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∖unav_peers not

theorem ›i is a suspicious instance of s and is available (can be contacted)
grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token

owner of s has not yet tried to recontact i
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
act2: rctt_inst(token_owner(s) ↦ s) ≔ rctt_inst(token_owner(s)

↦ s) ∪ {i} ›i is recontacted by the token owner of s successfully
END

RECONTACT_INST_KO: extended ordinary ›
REFINES

 RECONTACT_INST_KO
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›the

state of s is SUSPICIOUS
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›the

set of suspicious peers for s is not empty
grd5: i ∈ suspct_peers(token_owner(s) ↦ s)∩unav_peers not

theorem ›i is a suspicious instance of s and is unavailable (can not be
contacted)

grd6: i ∉ rect_inst(token_owner(s) ↦ s) not theorem ›the token
owner of s has not yet tried to recontact i

grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner
(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all

Page 4

M21
grd7: rect_inst(token_owner(s) ↦ s) ⊂ suspct_peers(token_owner

(s) ↦ s) not theorem ›the token owner of s has not yet tried to recontact all
the suspecious instances of s

THEN
act1: rect_inst(token_owner(s) ↦ s) ≔ rect_inst(token_owner(s)

↦ s) ∪ {i} ›the token owner of s has tried to recontact i
END

FAIL_DETECT: extended ordinary ›
REFINES

 FAIL_DETECT
ANY

s ›
prop ›
susp ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd7: susp ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_4 not theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: rect_inst(token_owner(s) ↦ s) = suspct_peers(token_owner

(s) ↦ s) not theorem ›
grd6: prop = ((run_inst(token_owner(s) ↦ s) ∖ suspct_peers

(token_owner(s) ↦ s)) ∪ rctt_inst(token_owner(s)↦ s))∖unav_peers not theorem ›
grd8: susp = suspct_peers(token_owner(s) ↦ s)∖rctt_inst

(token_owner(s)↦ s) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_DETECT_4})
›

act2: suspct_peers ≔ suspct_peers ((prop×{s})×{susp}) ›
act3: rect_inst(token_owner(s) ↦ s) ≔ ∅ ›
act4: rctt_inst(token_owner(s) ↦ s) ≔ ∅ ›

END

IS_OK: extended ordinary ›
REFINES

 IS_OK
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) = ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›

Page 5

M21

THEN
act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›

END

FAIL_ACTIV: extended ordinary ›
REFINES

 FAIL_ACTIV
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_DETECT_4 not

theorem ›
grd4: suspct_peers(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s) ∖ (unav_peers ∪

suspct_peers(token_owner(s) ↦ s)) not theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_ACTIV_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})×{run_inst(token_owner

(s) ↦ s)∖suspct_peers(token_owner(s) ↦ s)}) ›
act3: failr_inst ≔ failr_inst ((prop×{s})× {failr_inst

(token_owner(s) ↦ s) ∪ suspct_peers(token_owner(s) ↦ s)}) ›
act4: suspct_peers ≔ suspct_peers ((prop×{s})×{∅}) ›

END

FAIL_CONFIGURE: extended ordinary ›
REFINES

 FAIL_CONFIGURE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) < min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_CONFIG_4}) ›
END

FAIL_IGNORE: extended ordinary ›
REFINES

Page 6

M21

 FAIL_IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_ACTIV_4 not

theorem ›
grd4: card(run_inst(token_owner(s) ↦ s)) ≥ min_inst(s) not

theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{FAIL_IGN_4}) ›
END

IGNORE: extended ordinary ›
REFINES

 IGNORE
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_IGN_4 not theorem

›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state ≔ inst_state ((prop×{s})×{RUN_4}) ›
END

REDEPLOY_INSTC: extended ordinary ›
REFINES

 REDEPLOY_INSTC
ANY

s ›a service s
i ›an instance i

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: i ∈ PEERS not theorem ›
grd3: i ∉ run_inst(token_owner(s) ↦ s) ∪ failr_inst

(token_owner(s) ↦ s) ∪ unav_peers ∪ dep_instcs(token_owner(s) ↦ s) not theorem
›i does not run s, is not failed for s, is not unavailable and is not already
activated for s

grd4: i ∉ actv_instc(token_owner(s) ↦ s) not theorem ›

Page 7

M21

grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not
theorem ›

grd6: card(actv_instc(token_owner(s) ↦ s)) < deplo_inst(s) not
theorem ›

grd7: card(dep_instcs(token_owner(s) ↦ s)) + card(run_inst
(token_owner(s) ↦ s)) < min_inst(s) not theorem ›

THEN
act1: actv_instc(token_owner(s) ↦ s) ≔ actv_instc(token_owner

(s) ↦ s) ∪ {i} ›
END

REDEPLOY_INSTS: extended ordinary ›
REFINES

 REDEPLOY_INSTS
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: card(actv_instc(token_owner(s) ↦ s)) = deplo_inst(s) not

theorem ›
grd4: card(dep_instcs(token_owner(s) ↦ s)) + card(run_inst

(token_owner(s) ↦ s)) < min_inst(s) not theorem ›
grd5: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd6: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: dep_instcs ≔ dep_instcs ((prop×{s})× {dep_instcs
(token_owner(s)↦s) ∪ actv_instc(token_owner(s)↦s)}) ›

act2: actv_instc(token_owner(s) ↦ s) ≔ ∅ ›
END

REDEPLOY: extended ordinary ›
REFINES

 REDEPLOY
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = FAIL_CONFIG_4 not

theorem ›
grd4: actv_instc(token_owner(s) ↦ s)=∅ not theorem ›
grd5: dep_instcs(token_owner(s) ↦ s) ≠ ∅ not theorem ›
grd6: card(run_inst(token_owner(s) ↦ s))+card(dep_instcs

(token_owner(s) ↦ s)) ≥ min_inst(s) not theorem ›

Page 8

M21
grd6: card(run_inst(token_owner(s) ↦ s))+card(dep_instcs

(token_owner(s) ↦ s)) ≥ min_inst(s) not theorem ›
grd7: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{DPL_4}) ›
act2: run_inst ≔ run_inst ((prop×{s})× {run_inst(token_owner

(s) ↦ s) ∪ dep_instcs(token_owner(s) ↦ s)}) ›
act3: dep_instcs ≔ dep_instcs ((prop×{s})×{∅}) ›

END

HEAL: extended ordinary ›
REFINES

 HEAL
ANY

s ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: inst_state(token_owner(s) ↦ s) = DPL_4 not theorem ›
grd4: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: inst_state≔ inst_state ((prop×{s})×{RUN_4}) ›
END

UNFAIL_PEER: extended ordinary ›
REFINES

 UNFAIL_PEER
ANY

s ›
p ›
prop ›

WHERE
grd1: s ∈ SERVICES not theorem ›
grd2: prop ⊆ PEERS not theorem ›
grd3: p ∈ PEERS not theorem ›
grd4: p ∈ failr_inst(token_owner(s) ↦ s) not theorem ›
grd5: prop = run_inst(token_owner(s) ↦ s)∖unav_peers not

theorem ›
THEN

act1: failr_inst ≔ failr_inst ((prop×{s})×{failr_inst
(token_owner(s) ↦ s) ∖ {p}}) ›

END

MAKE_PEER_AVAIL: extended ordinary ›
REFINES

 MAKE_PEER_AVAIL

Page 9

M21

ANY
p ›

WHERE
grd1: p ∈ PEERS not theorem ›
grd2: p ∈ unav_peers not theorem ›

THEN
act1: unav_peers ≔ unav_peers ∖ {p} ›

END

END

Page 10

