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Abstract—Adapting a model to changes in the data distribution

is a relevant problem in machine learning and pattern recognition

since such changes degrade the performances of classifiers trained

on undistorted samples. This paper tackles the problem of

domain adaptation in the context of hyperspectral satellite image

analysis. We propose a new correlated correspondence algorithm

based on network analysis. The algorithm finds a matching

between two distributions, which preserves the geometrical and

topological information of the corresponding graphs. We evaluate

the performance of the algorithm on a shadow compensation

problem in hyperspectral image analysis: the land use classifica-

tion obtained with the compensated data is improved.

I. INTRODUCTION

Domain adaptation problems occur naturally in many ap-

plications of machine learning to real-world datasets [1]. In

remote sensing image analysis this problem arises frequently,

since the acquisition conditions of the images (cloud cover,

acquisition angle, seasonal variations) are most often different.

As a consequence, even if the images contain the same type

of objects, the observed data distribution undergoes a d-

dimensional and often nonlinear spectral distortion, i.e. a dis-

tortion that is local, class-specific and that impacts differently

each region of the electromagnetic spectrum [2], [3].

One way to solve this problem is to perform an adaptation

between the two d-dimensional image domains, in order to

achieve a relative compensation of the shift by matching

the data clouds to each other. Provided that the data are

expressed as graphs and embed a topological structure, this

problem can be seen as a graph matching problem [4]. In

hyperspectral remote sensing, the adaptation problem has been

tackled equivalently in [5], where the authors use the distance

between nodes to constrain the possible assignments and

enforce structure preservation of the graph.

Recent alternative methodologies consider the domains as

manifold to be aligned [6] and use labeled examples [7] or

local geometric matching [8] to perform the alignment. If the

first option has been successfully applied to remote sensing

data in a multimodal setting [9], local geometric matching

must be handled with care, as the datasets to be matched are

of large size and comparing all possible arrangements of local

patterns is computationally really expensive.

To find the best matching, one can resort to energy min-

imization on Markov Random Fields (MRF). In the last

years, this topic has received a lot of attention in computer

vision (e.g. for dense stereo matching, segmentation and image

stitching) [10] and efficient algorithms can be used to solve

the optimization, especially if it consists solely of unary and

pairwise constraints. In hyperspectral remote sensing, MRF are

widely used to enforce spatial constraints in the classifiers [11]

but, to our knowledge, the only attempt to use them for domain

adaptation is found in [12]. In that study, the two domains are

considered as observations of a single hidden MRF. Nodes

in the source and target graphs are matched by finding a

hidden node that is likely to have generated both. To compute

unary and pairwise potentials, a Gaussian distribution of the

distances between nodes and of the edges lengths is assumed.

In this paper, we propose a MRF formulation of the graph

matching problem. As a first contribution, we extend the

algorithm in [13], originally developed to register a pair of 3D

meshes, to the d-dimensional case by using descriptors issued

from network theory [14] and secondly propose an alternative

optimization to reduce the number of candidate matches and

allow working on larger graphs. Contrarily to [12], we rely on

node descriptors that are more robust to deformations between

source and target domains. We also avoid the requirement of

having the same number of nodes in both domains. Exper-

iments on relative shadowing compensation show important

benefits for land use pixel classification of a dataset comprising

a 144-channels hyperspectral image and a LiDAR digital

surface model.

II. THE CORRELATED CORRESPONDENCE ALGORITHM

(CC)

Consider two graphs, one for the source data, S, and one for

the target data, T . Each graph is composed of a set of nodes,

V , connected by a set of edges, E. The total number of nodes,

K, can differ from one graph to another. We will refer to the

source graph as GS = (V S , ES) and to the target graph as

GT = (V T , ET ), with KS and KT nodes, respectively.

The correlated correspondence algorithm (CC, [13]) solves

a three-dimensional graph matching problem that consists in



finding correspondences between the nodes of both graphs.

Each node in the source graph {V Sk }K
S

k=1 is associated with a

correspondence variable, ck, whose value represents the index

of the node in V T to which V Sk has been matched. The

CC solution to the graph matching problem is given by the

(KS × 1) vector c containing all the nodes assignments.

CC solves this graph matching problem as an MRF energy

minimization problem. Each node on the source graph is

associated with a unary potential and a number of pairwise

potentials. Unary potentials ψ(ck) encode the dissimilarity

between a source node and each of the target nodes. Pairwise

potentials ψ(ck, cl) encode the cost of assigning two neighbor-

ing source nodes to two specific target nodes, penalizing the

assignments producing strong changes in the topology of GS .

There are two such potentials: ψn(ck, cl), which penalizes an

increase of the distance between neighboring nodes in GS

and ψf (ck, cl), which penalizes a decrease of the distance

between non-neighboring nodes in GS . CC minimizes the

energy function

E(c) =
∑

k∈KS

ψ(ck) +
∑

k,l∈NS

ψn(ck, cl) +
∑

k,l∈FS

ψf (ck, cl), (1)

where N
S is the set of neighboring nodes on the source

graph and FS is the set of nodes which are far from each other.

Although minimizing E(c) is in general NP-hard, efficient

approximate algorithms exist such as the Tree-Reweighted

Message Passing algorithm (TRWS [15]) used in this paper

and Loopy Belief Propagation [16].

III. THE NETWORK-BASED CORRELATED

CORRESPONDENCE ALGORITHM (NETCC)

In this section, we detail the proposed network-based cor-

related correspondence (netCC) algorithm.

A. Node descriptors

The first step necessary to compute all the potentials in

Eq. (1) is to obtain a set of descriptors used to match the

nodes. These descriptors must reflect proximity for nodes to

be matched and dissimilarity for nodes not to be matched.

If the graphs are relatively similar in shape and position in

the input space (as in [5]), the Euclidean distance between

the d-dimensional vectors can be used. However, when strong

distortions (scaling, local transformations) are observed, like in

Fig. 2, this distance is likely to produce too many mismatches,

as the nodes in the source graph would be matched to their

direct neighbors. Authors in [13] use local surface signatures

based on local 2D histograms. These local histograms are

obtained after projecting the neighboring points onto the

tangent plane associated with the point. Although this works

well for 3D meshes, it is not straightforward to extend this

method to the d-dimensional case (where we do not have

surface information) and we therefore propose an alternative

method.

In the proposed netCC, we compute a vector of descrip-

tors, which includes several node characteristics invariant to

rotation and translation of the graph (Fig. 1) :

• Closeness centrality [14], V ci : how far (in term of

shortest path) a node i is from all the other nodes.

• Eccentricity, V ei : the maximum shortest path distance

between node i and all other nodes.

• Median distance to the manifold, V m : the median

Euclidean distance between node i and all the points in

the domain.

• Density, V d : the average Euclidean distance between

node i and its neighbors in the domain.

• Distance to center, V dc : the Euclidean distance between

node i and the graph’s gravity center.

To obtain a descriptor vector for each node, these measures

are stacked as xi = [V ci V ei V mi V di V dci ]⊤.

B. Unary potentials

Each node in the source graph {V Sk }K
S

k=1 yields an unary

potential that encodes the cost of assigning it to each node in

the target graph {V Ti }K
T

i=1 :

ψ(ck = i) = d(xSk ,x
T
i ), (2)

where d is the Euclidean distance between the vectors of

descriptors of the two nodes.

C. Pairwise potentials

For the pairwise potentials, we follow [13] and define

potentials that favor assignments preserving distances between

nodes of the source graph GS . Such distances are computed

as the shortest path distances on the graph between the two

nodes, dsp(V1, V2). We also normalize all the distances on

both graphs by the maximum distance on each graph in order

to be able to compare the distances between pairs of nodes

computed on GS with those on GT . Such a normalization

only deals with global scaling problems (as those considered

in the experiments presented), but should be modified for non-

uniform local scalings.

Nearness preservation potentials: The nearness preserva-

tion potentials ψn favor assignments in which two neighboring

nodes V Sk and V Sl on GS will stay close after matching with

GT . Two nodes V Ti and V Tj on GT are considered close if

their shortest path distance is lower than a threshold α.

ψn(ck = i, cl = j) =

{

0 if dsp(V
T
i , V

T
j ) < α

1 otherwise
(3)

The threshold α is to be chosen by the analyst. Since its

value corresponds to the radius of a local neighborhood sphere,

it should remain quite small (e.g. α ∈ [0.15...0.35], in order

to avoid considering all the nodes as neighbors.

Farness preservation potentials: The farness preservation

potential ψf encodes the constraint that two nodes, which are

far on GS , should be assigned to nodes that are far on GT .

Two nodes are considered far if their shortest path distance is

greater than a threshold β.

ψf (ck = i, cl = j) =

{

0 if dsp(V
T
i , V

T
j ) > β

1 otherwise
(4)



Closeness Density Median distance Eccentricity Distance to center

Fig. 1: Node descriptors for the GS (top) and GT (bottom) graphs.

In principle, we admit that both farness and nearness

potentials are considered for disjoint set of pairs, i.e. β > α.

D. Computational complexity

We apply a number of optimizations to reduce the computa-

tional cost of the minimization of Eq.(1). One shortcoming of

this formulation is that each node V Sk of the source graph

can be matched to any target node V Ti . This means that

unary potentials will be stored as vectors of length KT and

pairwise potentials as matrices of size (KT ×KT ). Since we

have KS such potentials, this leads to a O(KSKT 2
) memory

requirement for each pairwise potential.

To reduce the number of farness potentials, we follow the

strategy in [13]. We first solve the energy minimization prob-

lem of Eq. (1) without the farness potentials and we then check

which potentials are violated by the solution. These potentials

are added to the objective function and the optimization is

iterated until no additional potentials are required.

We also reduce the number of candidate matches among

the target nodes. We do so by considering only the m closest

target nodes in descriptor space. In this work, we empirically

choose m = 30, which seems to be a good tradeoff between

the number of missed matches and the computational gain. By

using only m candidate target nodes, the memory requirement

for pairwise potentials reduces to O(KSm2). In our tests,

increasing this value did not yield any performance improve-

ment, but this might depend on the dataset.

E. Full algorithm

Algorithm 1 contains the detailed steps to perform domain

adaptation using netCC. Creating a graph where each point in

the domain is a node would result in a very large graph that

would be impractical to work with. Instead, we use vector

quantization and build a graph on the centroids found by the

clustering algorithm for each domain. We use two levels of

clustering :

• A fine level with C clusters. We use these graphs to

approximate geodesic distance between two data points

on the manifold [17].

• A coarse level where we subsample the fine level to

KS < C, respectively KT < C clusters. The resulting

graphs are used in the netCC algorithm, but all distances

are computed on the fine graph.

The algorithm defines a local transformation that can be

used to transfer points between the two domains. There-

fore, given a d-dimensional source dataset, netCC creates an

adapted d-dimensional dataset composed of each source point

transferred to the target domain. A classifier can then be

trained on the target dataset and applied directly to the adapted

source points.

IV. DATA AND SETUP OF EXPERIMENTS

A. Dataset

We use the dataset of the 2013 IEEE GRSS Data Fusion

Contest [18] which consists of an hyperspectral image and a

Digital Surface Model (DSM) derived from airborne LiDAR

at a 2.5m spatial resolution with an image size of 1903×329.

The hyperspectral image has 144 spectral bands. The goal is

to classify each pixel into a land use class using its spectral

Algorithm 1 Domain adaptation with network-based corre-

lated correspondence

Inputs

- Source dataset XS ∈ R
d

- Target dataset XT ∈ R
d

1: Eigendecompose XT

2: Project both datasets on the npc top eigenvectors

3: Cluster each dataset using k-means with C clusters

4: Build a kNN graph per dataset using the cluster centers

as nodes

5: Compute geodesic distances dsp within each graph

6: Subsample graph GS to keep KS nodes

7: Subsample graph GT to keep KT nodes

8: Apply the netCC algorithm to find the optimal correspon-

dence vector c.

9: for each node k ∈ KS : do

10: Compute the displacement Dk = V Tck − V Sk
11: Apply the displacement to all the points in XS assigned

to node V Sk
12: end for

13: Reconstruction : invert the projection to retrieve the d-

dimensional data.



Class Color Train Test shadow Test lit

Healthy grass 178 178 875

Stressed grass 172 158 866

Synthetic grass 192 0 505

Trees 188 70 981

Soil 186 0 966

Water 182 0 143

Residential 196 78 986

Commercial 187 431 601

Road 187 1 1031

Highway 191 326 707

Railway 172 142 848

Parking Lot 1 192 0 1041

Parking Lot 2 184 20 254

Tennis Court 181 0 247

Running Track 187 0 473

Sum 2775 1404 10524

TABLE I: Labeled pixels in the dataset

(a) RGB (three channels among the 144 available).

6 9 12 15 18 21 24 27 30

(b) Lidar (1 channel)

(c) Cloud mask

Fig. 3: The 2013 GRSS DFC dataset.

signature and its altitude on the DSM. Labels are provided

for around 15000 pixels as shown in table I. The shadow of a

cloud affects the right part of the image, leading to important

shifts in the spectral signatures of the hyperspectral image.

Figure 2 shows the lit and shadowed domains on the same

scale. Thus, adaptation is required to allow a single classifier

to deal correctly with both shadowed and lit areas. We obtained

a cloud mask (fig. 3c) by thresholding the magnitude of the

bands corresponding to RGB and Near-Infrared and using

manual intervention to remove some of the spurious points.

We can therefore divide our image in two domains : the source

domain contains all the pixels affected by the cloud shadow

while the target domain is the remainder of the image.

B. Experimental setup

The labels provided for this dataset are divided into two

groups : one for training and one for testing. The training set

only contains pixels that are not affected by the shadow while

the testing set contains both lit and shadowed pixels.

To evaluate the performance of our adaptation procedure, we

use a one-vs-one SVM with a Gaussian kernel. After model

selection by cross-validation in the ranges γ = [10−3, ..., 102]

and CSVM = [100, ..., 103], we obtained the optimal SVM

parameters. For each pixel, the following features are used

by the SVM :

• 144 spectral bands

• 1 LiDAR band

• 6 bands obtained by applying opening by reconstruction

and closing by reconstruction on the LiDAR band with

three different square structuring elements of sizes :

{7, 19, 31}. Morphological filters are often used in remote

sensing pixel classification to enforce the smoothness of

the decision function in the spatial domain [19].

The spectral bands are normalized by their overall maximal

value and the lidar band is normalized by its maximal value.

We set the nearness threshold α = 0.2 and the farness

threshold β = 0.3. We use C = 200 for the fine graphs and ex-

periment with two different values for KS = KT = [50, 100].
The value of C depends on the dataset and should be set

large enough to yield a good representation of data. Since the

fine graphs are used only for the computation of the geodesic

distances, which are computed only once at the beginning

of the process, C can be increased without impacting the

performances.

We compare the proposed netCC algorithm with histogram

matching applied on all the spectral bands. Since we are in-

terested in the classification improvement after adaptation, we

consider two separate testing scenarios : testing pixels under

the shadow only and all testing pixels. In the experiments,

we study the variability with regard to 2 parameters : the

dimensionality of the space where the matching is performed

(npc) and the number of nodes in the coarse graphs (KS ,

KT ). For each choice of parameters, we run the whole graph

matching procedure (clustering, matching) 10 times and report

the average performances.

V. RESULTS AND DISCUSSIONS

With the setting described above, the proposed netCC

algorithm converges in a limited number of iteration, typically

around 100. This corresponds to an average running time of

a few minutes on a laptop (Intel i5).

Table II shows the results when using only pixels under

the shadow as test samples (around 1400 points). Without

adaptation, we get a κ score of 0.131, which is very low. We

can see that by using histogram matching or netCC, we respec-

tively reach a performance of 0.36-0.47, which is acceptable

considering that this is a problem involving 15 classes, and

some of them are very similar (e.g. there are three types of

grass, two types of parking lots, two types of buildings). We

obtain an improvement of 0.01 to 0.11 κ points by using netCC

over histogram matching. This corresponds to an increase in

accuracy of about 11%. The choice of the number of centroids,

KS and KT , has an important influence on the results. This

is of course dependent on the problem, but on our testing

dataset, it seems KS = KT = 50 is enough to get a good

representation of the data manifold and increasing to 100
mostly increases the number of clusters near the center of the



−2 −1 0 1 2 3 4

1
st principal component

−1.5

−1.0

−0.5

0.0

0.5

1.0

2
n
d

p
ri

n
c
ip

a
l
c
o
m

p
o
n
e
n
t

Shadowed

−2 −1 0 1 2 3 4

1
st principal component

−1.5

−1.0

−0.5

0.0

0.5

1.0

2
n
d

p
ri

n
c
ip

a
l
c
o
m

p
o
n
e
n
t

Lit

Fig. 2: Projection of the two domains on the two first principal components. Colors indicate class membership (black is

unlabeled).

graph. This makes it harder to find a set of correspondences

that satisfy all nearness potentials. On the other hand, we see

that increasing the number of principal components (npc) has

a positive effect on the performances. This is because with

less principal components the reconstruction will be of lower

quality.

Table III reports the results obtained when using of all the

testing labels (about 12000 points). We get a small increase

in performance when using netCC over histogram matching.

The effect of DA is less visible due to the large number of

test points in the lit area that do not benefit from adaptation.

Figure 4 shows classification maps for the right part of the

image with the tested methods. Visually, the benefits of domain

adaptation are obvious. We can see that without domain

adaptation, the classifier fails to produce a meaningful result

and classifies everything as water. The problem disappears

when adapting the spectra prior to classification.

Figure 5 provides a magnified view of two areas where his-

togram matching and netCC result in different classifications.

In the second row, we can see that histogram matching causes

a grass area (visible on the labels and the flat lidar) to be clas-

sified as trees while netCC correctly classify it as grass. In the

third row, a zoom on an urban area is shown. From the RGB

and lidar images, it is clear this area contains buildings, some

of which are misclassified as grass after histogram matching.

With netCC, they are correctly classified as buildings, albeit

not of the correct class. The same observation can be made

for some roads which are misclassified as soil after histogram

matching.

VI. CONCLUSION

In this paper, we propose an extension of the correlated

correspondence algorithm for graph matching to handle d

dimensional datasets. We propose the use of descriptors used

in network analysis to guide the matching process. To reduce

the computational costs, we use a two-levels graph and only

allow matches between neighbors in the descriptor space.

TABLE II: Results with the shadowed test points

Overall Accuracy (%) Kappa (κ)

npc KS ,KT µ σ µ σ

10
100 53.3 4.1 0.471 0.044

50 53.9 4.4 0.476 0.047

5
100 44.4 4.3 0.375 0.046

50 49.1 3.2 0.424 0.035

2
100 43.6 3.3 0.368 0.036

50 48.0 7.4 0.412 0.078

Histogram matching 42.2 0.0 0.360 0.000

No adaptation 18.6 0.0 0.131 0.000

TABLE III: Results with all the test points

Overall Accuracy (%) Kappa (κ)

npc KS ,KT µ σ µ σ

10
100 89.3 0.5 0.884 0.005

50 89.4 0.5 0.885 0.006

5
100 88.3 0.5 0.873 0.005

50 88.8 0.4 0.879 0.004

2
100 88.2 0.4 0.872 0.004

50 88.7 0.9 0.877 0.009

Histogram matching 88.0 0.0 0.870 0.000

No adaptation 85.2 0.0 0.841 0.000

Experiments on a challenging real-world dataset show good

performances and a significant improvement over histogram

matching. Future research directions could focus on the choice

of descriptors and on the use of different potentials. Deeper

exploration and sensitivity analysis of the various parameters

would also be interesting, as well as the application to other

datasets.

Another area for improvement is to study better ways to



(a) No domain adaptation (NoDA)

(b) Histogram matching

(c) netCC

Fig. 4: Comparison of classification maps for the three meth-

ods on the part of the image affected by the shadow of the

cloud.

RGB LiDAR labels NoDA HM netCC

RGB LiDAR labels NoDA HM netCC

Fig. 5: Zoom on specific areas to compare the classification

maps. The top row shows the RGB image with the zoomed

areas highlighted : middle row corresponds to the red zoom

and bottom row to the green zoom.

transport the points for a given transformation of the nodes.

In our current implementation, the local transformation is a

simple translation, but more generic classes of transformation

(e.g. affine) could be considered and possibly improve the

performance of the classifier trained in the adapted domain.
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