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ABSTRACT
3D printing is gaining more and more momentum to build
customized product in a wide variety of fields. We con-
duct an exploratory study of Thingiverse, the most popular
Website for sharing user-created 3D design files, in order to
establish a possible connection with software product line
(SPL) engineering. We report on the socio-technical aspects
and current practices for modeling variability, implementing
variability, configuring and deriving products, and reusing
artefacts. We provide hints that SPL-alike techniques are
practically used in 3D printing and thus relevant. Finally,
we discuss why the customization in the 3D printing field
represents a challenging playground for SPL engineering.

Categories and Subject Descriptors
D.2 [Software Engineering]; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism

Keywords
3D Printing, Software Product Lines, Customization

1. INTRODUCTION
3D printing (also called additive manufacturing) is com-

monly used to produce physical models for a wide variety of
applications (e.g., archaeology, industrial prototyping and
design, medicine, rapid manufacturing). While having been
available for more than a decade, the technology recently
developed additional momentum [1, 2]. With 3D printers
dropping in price and with 3D printing services becoming
available to a large public, many additional use cases arise.
The next evolution of 3D printing may well be customiza-
tion for the masses. By printing one product at a time, 3D
printers and customization’s ability can fit the buyers iden-
tity, shape or preferences, so that their input becomes part
of the creation process. For instance, there are commercial
services that fabricate figurines from multiple-choice designs
of puppets [3], robot toys [4], or foot orthotics [5].

Customization is also an inherent subject of Software Prod-
uct Line (SPL) engineering. In essence, SPL engineering
focuses on the means of efficiently producing and maintain-
ing multiple similar software products, exploiting what they
have in common and managing what varies among them.
A central interest of SPL engineering is the management of
variability, i.e., the ability of a software system or artifact
to be efficiently extended, changed, customized or configured
for use in a particular context [6].

Therefore the connection between SPL engineering and
3D printing is appealing; both share the goal of master-
ing customization. Moreover 3D printing heavily relies on
software technologies (e.g., computer-aided design tools) for
creating 3D objects. Yet, to the best of our knowledge, there
is no existing study that establishes a relationship between
SPL and 3D. On the one hand, the scope and understand-
ing of SPL and variability continuously broadens, for exam-
ple, in the operating system domain [7], in software ecosys-
tems [8], in configurators [9, 10] or comparators [11], and
in industrial contexts [12, 13]. But 3D printing has not yet
drawn the attention of the SPL community. On the other
hand, we are not aware of application of SPL techniques in
the 3D printing domain.

Our study of the Website Thingiverse [14], the most active
community in 3D printing, reveals that SPL-alike techniques
are practically used in 3D printing and thus relevant. We
report on the customization practices in the 3D printing
domain from the perspective of SPL engineering, opening
avenues for further research.

2. A FIELD STUDY OF THINGIVERSE
We conducted an exploratory study to establish a possible

connection between SPL engineering and 3D printing. The
field of 3D printing is rich and diverse. We chose Thingi-
verse [14] the most popular [15] Website for sharing user-
created 3D design files.

2.1 Thingiverse
Thingiverse [14] provides a Web interface and online tools

to discover, print, and share 3D models. A large 3D design
community emerged, constituted of 3D printers operators
(including the owner of Thingiverse MakerBot Industries, a
company producing 3D printers), creators, and individuals.
For instance, numerous projects use Thingiverse as a reposi-
tory for shared innovation and dissemination of source mate-
rials to the public. Typically, users can browse 3D printable
Things made by designers (or other individuals).

Things are the basic units of Thingiverse 3D community.
A Thing centralizes information about a 3D design (general
information, instructions, files, photos, etc.) as well as users’
comments. Figure 1 gives an excerpt of the Web interface
of a Thing (a case for holding batteries).

We consider Thingiverse [14] as representative of the 3D
printing domain and our research interest (customization).
A press release of MakerBot reported (January 24, 2014)
that ”Thingiverse is the largest place to discover and print
3D models and contains the world’s largest 3D printing com-
munity with more than 160,000 members and 200,000+ and
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Figure 1: Excerpt of the Web Thingiverse interface exposing a Thing [16]

growing downloadable digital designs of free 3D models”[15].
Moreover Thingiverse provides a dedicated area (called Cus-
tomization) as well as online tools and languages to cus-
tomize 3D models. Besides, the availability of data supports
our exploration. Resources (e.g., 3D models) are typically li-
censed under the GNU GPL or Creative Commons licenses.
Exchanges and discussion inside the community can be pub-
licly consulted (e.g., through comments in a Thing).

2.2 Research Method
We apply an ethnographic method [17]. We observed how

a community of people – the Thingiverse community – in-
teracts and collaborates for achieving a technical work –
customizing and producing 3D models.

Research questions. In ethnography, the researcher
should ”explicitly consider his/her own pre-conceptions and
how they influence understanding of the studied commu-
nity” [17]. As stated in the introduction, we observed Thin-
giverse from the perspective of SPL engineering and cus-
tomization: What are the customization practices of the
Thingiverse community? How do the current 3D printing
practices compare to state-of-the-art SPL practices? Specif-
ically, two main perspectives guided our investigation:(1)
Can SPL engineering learn from 3D printing? Are there
SPL-alike tool or language targeted towards the customiza-
tion of 3D models? What are their characteristics? (2) Can
3D printing benefit from SPL engineering? Can SPL tech-
niques help to model and realize variability in 3D models?

Data. Our approach to data collection and analysis fo-
cused on the ”Customizable Things” category of Thingiverse.
A preliminary analysis convinced us that (1) there is a sub-
stantial material (Things) in this category to perform em-
pirical observations; (2) other Things are not necessarily
subject to customization. Moreover, the Thingiverse com-
munity promotes the use of customization tools/languages
and encourages users to upload their custom 3D models in
this dedicated category.

Still, performing qualitative observations (i.e., Thing by
Thing) over thousands of customizable Things is not possi-
ble. We thus considered the popularity of Things to further
filter the data. The rationale is that more insights can be in-
ferred from ”popular” projects. As there is no direct way to
sort Things by popularity, we first analyzed ”featured” cus-
tomizable things. We considered customizable Things with
more than four comments greater than four and took care
of covering every subcategories and domains (art, fashion,
toys and games, etc.). Overall, around 50 Things have been

carefully reviewed.
Observations. The four authors of the paper performed

the observations. All participants have a strong background
in SPL and software engineering. All the observations have
been made during April 2014. For each Thing , we analyzed
the following artefacts (see Figure 1):

• Thing Info: provides a broad description in natural
language of the Thing . In the example of Figure 1,
there is an indication on the kinds of options available.
There is also an indication on the provenance of the
original Thing ;

• Instructions: describing how to use the different files
or giving advices on how to customize a Thing ;

• Thing Files: .stl and .scad files are uploaded and listed.
Roughly, digital 3D models are saved in STL format
and can then be sent to a 3D printer. A .scad script
can be compiled and rendered as a 3D model (with e.g.
OpenSCAD). We only considered .scad files, which are
subject to customization;

• Comments: users acknowledge the creator, complain,
give advices, exchange information about a Thing ;

• Remixes: a Thing can be ”remixed”into another Thing

We also considered two additional resources (documenta-
tion) of Thingiverse that help developers to customize 3D
files [18,19]. For each Thing , participants filled out a spread-
sheet to report their observations. We got a meeting to re-
port on key insights (including surprising observations) and
to establish relationships with existing SPL techniques (see
Section 3). We also discussed the challenges for SPL en-
gineering with regards to our exploratory analysis of the
Thingiverse 3D printing community (see Section 4).

3. ANALYSIS AND RESULTS
We report the results of our analysis in four sections, each

corresponding to an SPL topic.

3.1 Variability Modeling and Configuration
Thingiverse developed an extension [18] of the OpenSCAD

language to allow users to design parametric objects (see
Figure 2 for an example). Parameters are units of variabil-
ity and are placed at the top of a .scad script before the
first module declaration. Special comments can be added to
define the possible values of parameters:

• multiple, exclusive choices of numbers or strings: one
value should be selected among the possible choices.
Each possible value can be labelled;
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Figure 2: .scad script: excerpt of global parameters
À and a module Á (Thing [20])

• a number interval (min/max): the value must lay be-
tween the min and max.

Values are assigned to parameters. In case a special com-
ment is associated to a parameter, it is a default value.
Otherwise, the possible values of the parameter are unde-
fined. The modeling of parameters is directly integrated in
the script and not separated in an external description (e.g.,
in a variability model).

Configurator. The parameters are exploited in the dif-
ferent modules of the .scad script, but may also have a visual
counterpart. In fact, an online tool (called Customizer) pro-
cesses the comments to present the parameters as (1) drop-
down list (users can choose one and only one value from a
list); (2) sliders (users can set a value by moving an indi-
cator); (3) text boxes (in case the parameter value is fixed
and no possible values have been defined). The three kinds
of widgets realize the semantics of the special comments.
Similar widgets are employed by Web configurators [10] to
visually represent variability (configuration options).

Visibility. Some parameters can be marked as hidden
and are not visually presented in the Customizer tool. Some
other parameters are qualified as global and can be exploited
by users for configuring a 3D model. A similar distinction is
made in SPL engineering between external variability (visi-
ble to customers) and internal variability (related to imple-
mentation details) [21,22].

Variability concepts. We observed that multiple choices
can be employed to model either optionality (when only two
values are possible, typically ”true” or ”false”) or an alterna-
tive group of values, basic concepts used in feature or deci-

sion modeling [23]. Number intervals (also called sliders) are
widely used and could be represented with feature attributes
or specific types. The notion of mandatory parameters is
not apparent. Our observation is that the setting of val-
ues to parameters does not mean the value is not subject to
change. On the contrary, numerous informal comments sug-
gest some alternative values (”you can set this lower if your
printer can handle tiny towers”). Moreover there is no lan-
guage construct (e.g., constant) to indicate that a value will
not change. Hence even values of hidden parameters can
change. Parameters can also be grouped into tabs (using
special comments). A tab has a name and separates related
parameters in different sections or themes (e.g., to focus on
a certain concern of a 3D model). Tabs help to structure the
parameters and can be related to the notion of feature hi-
erarchy or views in feature modeling [22] or decision groups
in decision modeling [23]. Tabs are also exploited by the
Customizer to visually organize parameters in the interface.

Constraints. Perhaps the most surprising observation is
the absence of mechanisms for:

• specifying constraints between parameters: We observed
comments (in the instructions, in the source code of a
.scad files, or in users’ discussions of a Thing) that
suggest logical relationships between parameters:

// we don’t suggest setting this smaller than
your nozzle diameter X 2
...
// height of the battery recess (height of top
and bottom piece should be equal to or slightly
larger than the battery height)

• restricting further possible values of a parameter : The
analysis of comments showed that some values are not
possible because of, e.g., some physical properties of
the product or the usage context, inabilities of the 3D
printer to handle the value.

// don’t make too big or your gear will dis-
appear
...
// It should be a multiple of your slicer’s
layer height for best results.

Some constraints are quite hard to understand (for a non
expert of the product/domain) and formalize, especially those
referring to physical properties. In any case, there is cur-
rently no way to express such constraints and no tool can
automatically verify domain properties.

Configuration Issues. Numerous discussions are re-
lated to the problem of choosing correct values (configuring).
Users complain about some combinations of parameters (re-
inforcing the need to support constraints):

I tried to create a lid with a negative part gap -.1
(3mm lip), but anything less than zero generates
a lid with no recessed step to accept the lip. Did
I do something wrong?

report on their experience and suggest some modifications.

5width = 57.57;
should be:
5width = 58.57;

Interestingly, creators of Things request feedbacks and
recognize the difficulties of modeling parameters.
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”Let us know what kinds of settings you use to
print them!”
...
”Thank you for your comments. We are still
playing around with settings and will keep updat-
ing it.”

A major configuration difficulty arises when special com-
ments are not specified for parameters and thus the possible
values are unclear and hard to choose for users.

Complexity. The number intervals (sliders) and the
absence of constraints among parameters makes possible a
huge number of possible variants. As an extreme case, we
observed a Thing with 38 parameters, 8 tabs, for an esti-
mation of ≥ 1028 possible variants. A large proportion of
customizable Things we observed has more than 10 param-
eters.

Multi Parts. A manufactured product can be consti-
tuted of multiple parts to print separately and to manually
combine. Each part is subject to customization. The chal-
lenge is then to find the right combination of parameters
for each part. It further complicates the task of modeling
parameters and configuring.

3.2 Variability Implementation
Creators of customizable Things rely on the OpenSCAD

language for implementing their 3D design models. It is
a scripting language with variables, modules (here: proce-
dures), basic control structures (conditional, iterator), data
types (Boolean, numbers, strings, vectors, matrices, etc.)
and geometry primitives. .scad scripts naturally exploit pa-
rameters (see previous sections) to customize the generation
of 3D models (see Figure 2). Specifically the implementation
of variability relies on the following mechanisms:

• parameterized procedures: developers specify mod-
ules (reusable procedure) with a list of parameters.
The modules are then called: the arguments are typ-
ically the variables corresponding to global or hidden
parameters declared at the top of the script. Inside
a procedure, the parameter can serve to iterate a cer-
tain amount of times, to execute some statements de-
pending on the values, or there can be calls to other
parametrized modules (see Figure 2). Interestingly,
named parameters (or keyword arguments) are sup-
ported, which can be useful when the list of parameters
is long. It is also possible to set default parameter val-
ues, which can be seen as an additional way to model
variability (see previous section). We observed numer-
ous modules with more than 10 parameters. As an
extreme case, we noticed 26 parameters for a module
and around 600 lines of code;

• external call of parameters: some modules do not
declare parameters. Instead, global or hidden param-
eters (outside the module) are used. It also happens
that a parametrized module calls a global or hidden
parameter (hybrid solution).

• conditional statements (if/else/else if) are widely
used typically to call a specific module (see Figure 2).
According to our observations, the cyclomatic com-
plexity can reach very high values. The complexity
of ”cases” also: we noticed 33 imbrications of if for a
Thing . A substantial amount of if does not come with

an else, leaving undocumented what happens when the
initial condition does not hold;

• pre-compiled procedures or data structures: some
modules are the result of a compilation (e.g., import
from another tool). Typically a series of if/else/else
if can be employed to map a parameter to a specific
module. Similarly, some vectors (e.g., representing a
specific shape) are compiled and imported in the .scad
file. Interestingly, the pre-compiled artefacts are also
parameterized in some cases.

3.3 Derivation
If a Thing is categorized as a ”Customizable Thing”, then

the Thing page automatically displays an ”Open In Cus-
tomizer” button. Users can play with the Customizer by
fixing some values in the text boxes or with the sliders and
choosing a value in a drop down list. After each interaction,
users can visualize the resulting 3D model and thus control
that the models fits the requirements.

The derivation process is simply a compilation of the .scad
file with the specific parameters’ values given by the Cus-
tomizer tool (configurator). It is typical of what is promoted
by SPL approaches.

3.4 Reuse
Clone and Own? A Thing can be ”remixed” in two

different ways: (1) full customization, leading to the deriva-
tion of a 3D model (see previous section); (2) adaptation,
new version based on the original files. We did not consider
the first category, since they have a limited interest: it is
simply an assignment of values using the customizer tool.
(There is no comment, no additional file, just a log of val-
ues automatically generated in the instruction.) The second
category is potentially more interesting: the Thing leads to
a new Thing with new files, new comments, made, etc. In
practice, Thingiverse highlights the second category with a
panel ”Remixed From”.

There is an effort of the community to keep traces of the
derivatives and original projects. At first glance, the practice
resembles to ”clone and own” – a form of reuse considered
as ad-hoc in SPL engineering [12]. However the majority of
remixed Things are completely new designs and thus glob-
al/hidden parameters and modules. We identified only one
Thing that proposes .scad files close to the original. At the
moment, remixes mostly aim to connect ”similar” Things
rather than reusing artefacts.

Modularity Mechanisms. There are limited mecha-
nisms and attempts to reuse or extend a script. A few li-
braries are emerging but they are rather technical (e.g., for
handling 3D vectors, for converting colors). The modules
exhibit a substantial amount of parameters and are highly
dependent in the code base. Such complexity represents
a major limitation for reuse. Moreover there are no type
names in OpenSCAD and no user defined types (i.e., there
is a fixed set of data types). Finally an original form of
reuse is the import of compiled binaries, modules, vectors,
etc. from other tools (see Section 3.2) followed by its pa-
rameterization.

4. THE FUTURE OF 3D PRINTING AND SPL
Our field study of Thingiverse showed that the 3D print-

ing community is using SPL-alike techniques for customiz-
ing 3D models. The visualization of custom 3D model, with
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respect to the setting of some values through a configura-
tor (called a Customizer), is a derivation process as found
in traditional SPL approaches. Specifically Thingiverse has
developed languages and tools for:

• modeling variability: the solution is integrated into
a standard (OpenSCAD), is quite simple to learn and
use (with a configurator), and has some similarities
with variability languages (e.g., feature or decision model).
Surprisingly, constraints between parameters cannot
be expressed;

• implementing variability: basic techniques are em-
ployed (essentially parameterized modules and exten-
sive use of conditions).

The resulting complexity of the customizable Things can
be extremely high with dozens of parameters, each with
many possible values, used in numerous inter-related mod-
ules. Moreover, the Thingiverse community exchanges around
configuration issues, tries to fix implementation details, and
develops novel customizable Things each day.

Our study is exploratory and currently limited to quali-
tative judgement. Future work includes quantitative anal-
yses, on the different topics we have identified in this pa-
per. In any case, we believe that SPL engineering has a
role to play, given the numerous research effort made to effi-
ciently manage variability and customize software-intensive
systems. For instance, state-of-the-art techniques and lan-
guages for modeling variability [21, 23], verifying SPLs [24],
automated reasoning [25] and implementing variability [6]
might play a key role in the coming boom of 3D printing.
Yet, our initial analysis of variability practices in 3D print-
ing make us wonder whether current SPL engineering can
overcome the following challenges imposed in this context.

Challenge #1: capture ”thing-specific”constraints.
We identified many constraints that should be checked when
customizing a Thing . Some constraints are about 3D objects
in general (can the Thing be physically printed?) and some
constraints are specific to the Thing to be printed (VGA
monitor and AC Power plugs should not be part of the same
wall plate). Will SPL engineering formalisms manage to
capture all these forms of constraints?

Yet, assuming that we can come up with languages, al-
gorithms and tools to model and reason about constrained
variability in Things, the SPL community will then have to
address socio-technical challenges.

Challenge #2: introduce systematic engineering
practices while keeping a low cognitive effort. This
is perhaps the most difficult challenge for SPL engineering:
keep the cognitive effort low to reach an increasing amount of
people – not necessarily software developers. SPL techniques
are certainly more sophisticated, but the accidental and even
conceptual complexity induced by the tools and languages
can annihilate the intended benefits.

Challenge #3: establish a cost-benefit tradeoff.
When introducing novel techniques into an existing domain,
it is necessary to find a tradeoff between the cost of applying
a sophisticated technology and the resulting benefit out of
this upfront investment. Will a solution pay off if the cus-
tomizable 3D model is of interest for hundreds of customers?
thousands? billions?

With 3D printers becoming more and more accessible to
a wider public, the problem of mastering customization can
become arbitrarily complex. Will SPL engineering take on
the challenge of occupying the 3D printing playground?
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