
HAL Id: hal-01018938
https://hal.inria.fr/hal-01018938

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Managing Variability in the Safety Design of an
Automotive Hall Effect Sensor

Dimitri van Landuyt, Steven Op de Beeck, Aram Hovsepyan, Sam Michiels,
Wouter Joosen, Sven Meynckens, Gjalt de Jong, Olivier Barais, Mathieu Acher

To cite this version:
Dimitri van Landuyt, Steven Op de Beeck, Aram Hovsepyan, Sam Michiels, Wouter Joosen, et al..
Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor. 18th Inter-
national Software Product Line Conference, Sep 2014, Florence, Italy. �hal-01018938�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49615796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01018938
https://hal.archives-ouvertes.fr


Towards Managing Variability in the Safety Design of an
Automotive Hall Effect Sensor

Dimitri Van Landuyt,
Steven Op de beeck,

Aram Hovsepyan, Sam
Michiels, Wouter Joosen

iMinds-DistriNet
KU Leuven, Belgium

first.last@cs.kuleuven.be

Sven Meynckens
Gjalt de Jong

Melexis NV | ArchWorks
svm@melexis.be

gjalt@acm.org

Olivier Barais
Mathieu Acher

IRISA / Inria
University of Rennes 1, France

first.last@irisa.fr

ABSTRACT
This paper discusses the merits and challenges of adopting
software product line engineering (SPLE) as the main devel-
opment process for an automotive Hall Effect sensor. This
versatile component is integrated into a number of auto-
motive applications with varying safety requirements (e.g.,
windshield wipers and brake pedals).

This paper provides a detailed explanation as to why the
process of safety assessment and verification of the Hall Ef-
fect sensor is currently cumbersome and repetitive: it must
be repeated entirely for every automotive application in
which the sensor is to be used. In addition, no support is
given to the engineer to select and configure the appropriate
safety solutions and to explain the safety implications of his
decisions.

To address these problems, we present a tailored SPLE-
based approach that combines model-driven development
with advanced model composition techniques for applying
and reasoning about specific safety solutions. In addition,
we provide insights about how this approach can reduce the
overall complexity, improve reusability, and facilitate safety
assessment of the Hall Effect sensor.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies,
Representation; D.2.11 [Software Engineering]: Soft-
ware Architectures—Domain-specific architectures; D.2.13
[Software Engineering]: Reusable Software—Reusable li-
braries; Reuse models

Keywords
Software product line engineering, hardware/software co-
design, Safety patterns, automotive, ASIL validation

1. INTRODUCTION
Many software-based systems and products are designed

to be versatile, i.e. they solve different problems for different
customers. To accomplish this, the development addresses
the superset of the requirements of sufficiently large groups
of customers. Versatility is a common —yet often implicit—
architectural driver in the development of software-based
systems and products because it makes production economi-
cally feasible: servicing more customers with a single product

increases the return on investment of the development costs,
and benefits from economies of scale [13].

As a downside however, it shifts some of the responsibility
and complexity to the deployment and integration stages
of development. In many cases, it is left to the customer
to customize the product to his needs as part of a system
integration project and this requires a deeper understanding
of the product and its many possible configurations.

The above applies to the industry case that we have ana-
lyzed in the context of a collaborative research project called
MERgE [5]. This case involves the design of an integrated
Hall Effect sensor used in automotive systems. This product
by Melexis, a market leader in automotive sensors, is called
Triaxis® MLX90365 [11]. A Hall Effect sensor is a trans-
ducer that varies its output voltage in response to a magnetic
field, allowing sensors to calculate angles in two- or three-
dimensional spaces. This product is currently integrated in
a wide range of automotive applications with varying safety
requirements, ranging from windshield wipers, to brake or
gas pedals. On average, recent cars may have 10 such sen-
sors, and the MLX90365 Hall Effect sensor is currently being
used for around 30 different automotive applications. Econ-
omy of scale is realized by mass-producing a one-size-fits-all
product and the burden of configuration and integration is
placed on the integration engineer or the customer (typically
an automobile constructor).

Melexis currently applies a hardware-software co-
design [20] development methodology. Although this is an
effective approach to deliver versatile products to the mar-
ket, this practice suffers from the following shortcomings:

1. Safety is a key concern that affects both the develop-
ment process and the end product. The main hardware- and
software-related design decisions are strongly motivated and
affected by safety solutions (e.g. architectural patterns and
tactics for safety). In the current practice, safety compli-
cates matters in two ways. Firstly, as safety solutions have
a profound impact on the end product, it is hard to reason
about them in isolation (for example to validate their sound-
ness) and to explore alternatives. Secondly, safety verifica-
tion and assessment in practice is cumbersome, repetitive
and therefore costly as (i) the notion of safety is strongly
based on that of a safety hazard, which is very specific to
the automotive application at hand and (ii) the versatile
nature of the application defines a large configuration space
which must in principle be explored in full (all possible com-
binations of configuration parameters) to assess the effects



of different parameter combinations on safety.

2. Reusability. A consequence of the hardware-software
co-design approach is that the resulting implementation ar-
tifacts are of a platform-specific nature, which makes them
hard to reuse across different hardware platforms. However,
since Melexis already adopts a hardware-based product-line
approach, there is large potential for (i) implementation-
level reuse, (ii) reuse of architectural safety patterns, and
(iii) consolidation and reuse of expert knowledge over prod-
uct variants.

3. Variability. The focus on designing a highly versa-
tile component is in essence the materialization of variability
as a key development concern. The core problem with the
current practice is caused by the fact that the complexity
associated to variability profoundly affects the end product,
and this complexity is addressed very late in the develop-
ment process (at integration/configuration time). This is
complicated further by the observation that three funda-
mentally different types of variability affect the Hall Effect
sensor: (i) variability in the functionality, (ii) variability
in the different safety solutions, (iii) variability across the
hardware-software boundary. The current state of practice
mainly addresses the first type [15, 4]. We face the challenge
of handling two additional forms of variability that also are
highly interrelated.

In this paper, we report on our detailed analysis of these
concerns and the interplay between them in the context
of this industry case. In a second step, we propose a tai-
lored approach that combines Software Product Line En-
gineering (SPLE) with Model-driven Development (MDD)
and advanced model-based concern composition techniques
for model-based instantiation of safety patterns. Finally,
we provide insights about how our proposal can reduce the
overall complexity, improve the reusability, and facilitate the
safety assessment of the Hall Effect sensor. In comparison to
related work [15, 4], these are complementary insights about
the impact of safety in a variability-intensive industrial con-
text.

This paper is structured as follows. Section 2 highlights
the results of our in-depth concern analysis exercise on the
existing product and current development practices. Sec-
tion 3 distills the overall motivation for investigating and
exploring alternative development methods and techniques.
Then, Section 4 presents the proposed development ap-
proach, and Section 5 provides our insights and arguments
why we expect it to be beneficial to Melexis. Section 6
presents related work and Section 7 concludes the paper.

2. CONCERN ANALYSIS
We have performed a detailed analysis of the different

concerns that affect the current design of the MLX90365
Hall Effect Sensor. This was conducted as follows: firstly,
we have studied the existing technical specifications and de-
sign documents. Secondly, we have conducted a number of
ATAM-style [2] workshops with Melexis engineers to obtain
a precise understanding of the current product and the dif-
ferent concerns playing a role, how they interact and which
essential trade-offs have been made between these concerns.
In the following sections, we discuss the main results of this
activity.

2.1 Safety

Given its integration in automotive applications that po-
tentially lead to hazards endangering human life, MLX90365
is a safety-critical building block. The Functional Safety for
Road Vehicles standard (ISO 26262 [16, 14]) is the applica-
ble safety standard in the Automotive domain, defining a
risk classification scheme called the Automotive Safety In-
tegrity Level (ASIL). As with other safety assessment stan-
dards (e.g. IEC-61508 [9]), the assessment of hazard factors
is based on the relative impact of hazardous effects related
to a system (Severity), and the relative likelihoods of the
hazard manifesting those effects (Exposure and Controlla-
bility). ASIL defines five Risk Levels, ranging from ASIL D,
the strictest level, to QM (Quality Management), represent-
ing applications in which the safety hazards are tolerable
and do not need to be governed by ISO 26262. The remain-
ing levels (ASIL C, B and A) represent intermediate degrees
of hazard.

In the design of the MLX90365 Hall Effect sensor, the
safety concern has had a clear impact on:

1. The development process: ISO 26262 prescribes a num-
ber of development-related practices, e.g. imposing clear
traceability between requirements and code, imposing doc-
umentation quality, but also introducing safety verification
and assessment activities (involving safety testing and ex-
pert review).

2. The end product: From a software engineering point
of view, “architectural concerns with safety are almost iden-
tical to those for availability, which is also about recovering
from failures. Tactics for safety, then, overlap with those for
availability for a large degree.” [2]. Two examples of archi-
tectural safety patterns that have been instantiated in the
design of MLX90365 are:

• Watchdog (similar to the heartbeat-tactic [2]): a
watchdog is a hardware-based countdown timer that
continually decreases a variable. If the variable reaches
zero, the watchdog resets the system (hard reset).
When the software is operating normally, it continually
sends out watchdog “ticks”, which causes the variable
to be reset to its maximum value. As long as the soft-
ware runs normally, the watchdog will not intervene.

• Fail-safe mode (graceful degradation tactic [2]): when
unrecoverable errors are detected (e.g. impossible in-
put values), the system will go into fail-safe mode.
Fail-safe mode is reported to the output: the system
is reporting the error instead of outputting unreliable
measurements, which might cause unpredictable be-
havior. Debouncing is a tactic commonly used in
combination with this pattern: to avoid going into fail-
safe mode on the basis of outliers and occasional errors
and exceptions, a tactic called debouncing is applied,
meaning that certain errors are ignored until they oc-
cur systematically.

2.2 Reuse
The MLX90365 Hall Effect sensor is not a stand-alone

product, but is in itself part of a family of related prod-
ucts (cf. [12]). Being of MLX heritage, some elements of
MLX90365 are the result of practical reuse, in terms of
design but mostly implementation. Reuse is accomplished
at the code level, i.e. code fragment and/or modular func-
tions have been copy-pasted from different code bases. This



has been documented in the technical specification: e.g., “It
comes directly from 90360 f/w – reuse, coded in C.” (an-
notated in the documentation of a number of supporting
functions).

2.3 Variability
We have identified three different types of variability that

affected the design of the MLX90365 Hall Effect sensor. We
adopt the distinction between internal and external variabil-
ity [13]:

Variability due to versatility.
As discussed, the MLX90365 Hall Effect sensor is designed

to be highly versatile, i.e. it must serve the purposes for
a wide range of different automotive applications. To re-
alize this degree of versatility, a configuration interface is
provided in the form of a set of writable EEPROM param-
eters that have to be set at integration time, either by a
Melexis engineer or by the automobile constructor himself.
The functionality of the Hall Effect sensor depends highly on
these specific parameters. To address this form of external
variability, in total 54 EEPROM parameters are provided
to the customer. For example1, they provide the means to
configure:

• The axes according to which the sensor must be calcu-
late angles (either (X,Y ), (X,Z), or (Y,Z)), and the
rotation of the coordinate base.

• Different applications require different types of digi-
tal transformations being applied to the acquired an-
gles. For example, for a brake pedal, the range between
[10− 15] will only apply light braking, while the range
between [15 − 25] will apply heavy braking, and the
range [25− 30] will apply emergency braking.

Realization-driven variability for safety.
Apart from these functionality-related configurations, the

EEPROM parameters provide the means to set safety-
related configuration parameters. Examples include: de-
bouncing parameters, ROM checksums, optionality param-
eters, sanity intervals, etc.

These variables realize a form of internal variability as
they directly influence the safety mechanisms at play and
thus indirectly affect the ASIL safety level that can be at-
tained. For example, in automotive applications that are less
safety-critical (e.g. windshield wiper), some safety features
can be disabled or configured to be very liberal (e.g. setting
the debouncing threshold to an unrealistic value) to practi-
cally disable them. This is a form of internal variability that
relates to how a specific safety level can be realized. There
are in practice different strategies to realize compliance to
a certain ASIL level (different combinations of safety pat-
terns), and making the appropriate decision is left to the
Melexis integration engineer with expert knowledge on the
matter.

Variability across HW/SW boundary.
Another form of internal variability is related to the em-

bedded nature of the Hall Effect sensor. As the hardware
platform is designed and refined, so too will these decisions

1These are strongly simplified and abstracted examples.

affect the implementation of the software. One example is
the inclusion of the necessary hardware components to im-
plement for example a Watchdog in products that require
safety levels to which the Watchdog pattern contributes.
Another example is related to the necessity of implementing
a safety pattern involving continuously testing the RAM,
which depends highly on the likelihood of RAM corruptions
(bit flips), and is a specific characteristic of the selected hard-
ware.

3. MOTIVATION
We have identified a number of essential problems with

the current state of practice that was characterized in the
previous section. These problems are elaborated below.

Safety engineering.
In the current practice, safety assessment and verification

(i.e. ASIL) are cumbersome, repetitive and therefore costly
development activities. This has a number of causes:

• Safety verification is based heavily on the notion of a
safety hazard that in turn depends on the nature of
the automotive application for which the Hall Effect
sensor is used. For example, a windshield wiper is less
safety-critical than a brake pedal because less safety
hazards are associated to a faulty windshield wiper.
As a consequence, safety assessment and verification
has to be re-executed whenever the Hall Effect sensor
is used in a different application, and in many cases,
this entails repeating earlier efforts.

• In addition, safety verification activities always start
from scratch. However, as many products in the same
product family share a large number of architectural
decisions and design elements, there is large potential
for reuse of verification effort. Because the current de-
velopment methodology does not involve reuse of ex-
isting safety solutions (e.g. safety patterns), nor reuse
of architectural decisions (architectural knowledge re-
lated to when to pick which safety pattern), these ac-
tivities involve repeating earlier-spent and costly veri-
fication efforts.

• The versatile nature of the Hall Effect sensor im-
plies that the entire configuration space (all poten-
tial combinations of configuration parameters) has to
be explored to attain a certain degree of confidence,
even though some solutions will in practice be inactive
(e.g. safety mechanisms such as debouncing). Due to
the versatile nature of the Hall Effect sensor, the safety
solutions provided in the end product must comply
for the strictest validation requirements. In addition,
safety verification must include showing that there is
freedom of interference between the inactive and the
active safety mechanisms.

Product-line reuse.
The existing product line setting described in Section 2.2

has a lot of potential for reuse. However, reuse of specific
elements of a single product is difficult in the current state
of practice:

• Implementation-level reuse is difficult due to the
hardware-specific nature of development on the one



hand, and due to typical maintainability problems
associated to the current state of practice of copy-
pasting code fragments and/or individual functions on
the other hand.

• Safety patterns. As mentioned above, the current
methods and techniques do not allow reusing architec-
tural patterns related to safety. More so, current safety
solutions are not described as separate, reusable pat-
terns, but are implemented directly in the Hall Effect
sensor. The safety engineer is responsible for instanti-
ating these patterns correctly, but he is provided lim-
ited tool support for the task at hand.

• Consolidation and reuse of expert knowl-
edge. Most of the architectural knowledge about key
decisions related to safety and other concerns remains
implicit. As a result, the knowledge about (i) when to
use which pattern, (ii) the costs associated to specific
safety patterns, (iii) the implications of selecting a pat-
tern on ASIL assessment, and (iv) which patterns in-
teraction (either positively or negatively) remains un-
recorded. Nonetheless, this is critical information to
create and maintain a successful product line-based
offering.

Variability management.
In Section 2.3, we introduced three types of variability

that affect the design of the Hall Effect sensor.

• Variability due to versatility is currently covered very
late in the development process (i.e. at configura-
tion/integration time), at the cost of dragging along
features (that are potentially unnecessary for the tar-
geted automotive application and require unnecessary
verification and assessment effort) throughout the de-
velopment life-cycle.

• Realization-driven variability for safety is not sup-
ported in current practice. Safety decisions are made
early on in the development process and motivated by
implicit expert knowledge, while alternative solutions
are disregarded.

• Finally, variability across the HW/SW boundary is not
supported in current practice. More specifically, the
design of the hardware platform is decided in an initial
phase of the development process, and thereafter, these
hardware decisions serve as fixed technical constraints
for the software design activities.

4. APPROACH
Figure 1 depicts the proposed development approach,

which is tailored for the design of the MLX90365 Hall Ef-
fect sensor. Our approach is aligned with the generic SPLE
method by Pohl et al. [13]. The practical realization of this
approach is currently ongoing work in the context of the
MERgE research project [5].

The Domain Engineering activities (presented at the top
of the figure) are:

• Domain Analysis involves studying the requirements
for multiple instances of the Hall Effect sensor. Some
of the results of this activity have been highlighted in

Section 2. This activity leads to the definition of the
feature model for external variability, which in our on-
going implementation efforts is created using FAMIL-
IAR [1], a domain-specific language for performing fea-
ture model elaboration, reasoning, and manipulation
(e.g., composition).

• Domain Design concerns defining reusable architec-
tural models that can be composed to generate specific
solutions. We create these models using SysML [17],
an OMG standard for systems engineering. In addi-
tion, the internal variability model is created which
defines the alternative safety solutions and their effect
on the ASIL level.

• Domain Realization involves creating implementa-
tion artifacts on a per-feature basis.

• Domain Verification involves the creation of
reusable tests and ASIL verification inputs on a per-
feature basis.

The Application Engineering activities (presented at the
bottom of the figure) are:

• Product Configuration involves tailoring the prod-
uct to the specific requirements of the automotive ap-
plication (e.g. setting the axes) on the basis of the ex-
ternal feature model. This is supported by FAMIL-
IAR [1].

• Solution Generation involves generating alternative
solutions that comply to the product configuration by
combining the alternatives for realization defined in
the internal feature model. These architectural vari-
ants are generated by instantiating the safety patterns
into the base model. This is done with the Pattern
Instantiation tool, which is part of the Thales Melody
Advance software [6].

• Analysis and Selection involves comparing the dif-
ferent architectural candidates and selecting the most
suitable variant.

• Code Generation deals with creating an implemen-
tation by composing the feature implementations that
correspond to the selected architectural variant.

• Safety Assessment and Verification involves ap-
plying the composed tests, and extended test activi-
ties, which for example lead to ASIL validation of the
entire end product.

To realize the entire approach, we are applying kCVL, an
implementation of CVL [18]. kCVL is able to manage the
different artifacts (feature models, SysML models, safety
patterns) and supports variant derivation. For more details,
please refer to http://barais.github.io/splc2014merge/

5. DISCUSSION
In this section, we provide insights on how the key princi-

ples behind this process are expected to improve the current
state-of-practice.

Safety is supported explicitly. The internal variability
model documents safety solutions and provides explicit sup-
port on how to attain specific safety levels. As such the

http://barais.github.io/splc2014merge/


D
om

ai
n 

En
gi

ne
er

in
g

A
pp

. E
ng

in
ee

ri
ng

KEY
Domain Analysis

«cvl»
external 

variability

Domain Design Domain Realization Domain Verification

Product 
Configuration

Solution Generation

Analysis and 
Selection

Code Generation Safety Assessment/ 
Verification

«cvl»
internal 

variability
«pattern»
failsafe

«sysml»
safety 
pattern

+ «src»
feature 
implem.

«pattern»
failsafe

«src»
feature 
implem.

«src»
feature 
tests

«pattern»
failsafe

«src»
feature

test

«sysml»
base model

Activity

«kind»
artifact

flow

provides

Figure 1: Our SPLE-based approach for applying and reasoning about specific safety solutions.

expert knowledge related to safety solutions is consolidated
in this feature model. By creating tests on a per-feature
basis, safety and verification efforts can partially be reused.
The focus shifts from verifying an entire, composed model
to verifying individual models (base models and safety pat-
terns) and proving the correctness of the composed result.

Reuse is accomplished at multiple levels. At the level of
architectural models, which describe either the main func-
tionality for angle measurement (the base model), or specific
architectural safety patterns. As part of the Model-Driven
nature of the approach, these are then composed using ad-
vanced model transformation techniques and composition
mechanisms as part of the Solution Generation activity. As
corresponding implementation and tests are structured on
a per-feature fashion, different variants of the firmware re-
spectively the test suites for that firmware can be generated.
As a direct result of this tailored approach, traceability links
can easily be maintained and documented.

Variability is managed up front by adopting a top-down
SPLE-based approach. External variability is kept apart
from internal variability by introducing two distinct variabil-
ity models. Maintaining this distinction is essential as the
former represents configuration options offered to the cus-
tomer, while the latter represents architectural alternatives
in the safety solution space. Unnecessary features (those
that are not selected during product configuration) will not
be present in the generated firmware and will not be taken
into account during safety assessment and verification. In
addition, the generated firmware is a priori compliant to the
constraints set by the feature models, and so, unrealistic or
impossible variants are excluded very early on in the devel-
opment process. Finally, by having a streamlined approach,
the generation of traceability documentation will require less
manual effort and thus be easier (a consequence of feature
decomposition applied already at the early stages of develop-
ment and maintained thereafter) and this in turn facilitates
ASIL assessment.

6. RELATED WORK
Safety and SPLE. The issues raised by safety assess-

ment are apparent in many software-intensive systems. In an
SPLE context, the process of assessing and checking safety

properties has to be applied to each (potential) product.
The variability (or versatility) of a product (or the manage-
ment of related similar products) substantially increases the
complexity. In practice, the amount of possible products is
exponential to the number of variation points (parameters,
features, options, etc).

At the theoretical level, numerous techniques have been
developed to efficiently check a SPL [19, 10]. These tech-
niques are based on testing, type checking, model checking,
or theorem proving; they can verify the whole set of prod-
uct or only a subset, etc. With many sources of variability,
our context precludes a full checking of every possible prod-
uct. Moreover the safety properties are difficult to properly
formalize, an assumption of many research works.

From an industrial perspective, few papers report on their
experience in managing safety in an SPLE context [15, 4].
Schulze et al. [15] demonstrated that safety-related artifacts
can be treated like other artifacts and presented a compre-
hensive model-based tool. We are following the same direc-
tion by linking feature models with safety modeling artifacts.
Yet two additional, technical solutions have to be developed
and integrated for (1) applying safety patterns (as part of
the derivation process) and (2) managing multiple feature
models (see below). As emphasized in the paper, the former
activity is central to the success of a product line approach
and requires further work (e.g., to compare applications of
different safety patterns and then determine the most suit-
able).

Multi-variability. We observe multiple sources of variabil-
ity in the industrial context. Pohl et al. proposed to dis-
tinguish internal variability from external variability [13].
Hubaux et al. reviewed the different concerns addressed in
feature modeling [8]. Two kinds of variability caught our
attention: hardware variability and realization-driven vari-
ability. Another noticeable observation is that the different
sources of variability are intimately related. We are inves-
tigating compositional SPL techniques to manage this com-
plexity [7, 3].

7. CONCLUSION
This paper has presented an industrial case —the design

of a Hall Effect sensor— in which we combine techniques



of Software Product Line Engineering (SPLE), Model-
driven Development (MDD) and advanced model compo-
sition mechanisms to model and instantiate architectural
safety patterns. Specifically, we presented a detailed concern
analysis with a focus on safety, reusability and variability.
In addition, we presented a tailored development method-
ology for the Hall Effect sensor, of which we expect that it
will simplify the end product, and make safety verification
easier and less costly.

One of the main merits of this case is that it is a rather
atypical example of an industrial system suited for SPLE,
yet that it provides clear indications of the added value
of adopting these techniques. In addition, the presented
approach is effectively being applied on next-generation
products and actively influences the business and product
roadmap of Melexis.

Future work will focus on empirically validating the pro-
posed approach, by assessing how this alternative develop-
ment methodology improves the current practice, in terms
of key performance indicators (KPIs) currently employed by
Melexis, such as the required developer effort and effective
reuse of expert knowledge and solutions over time. In ad-
dition, we will investigate broadening the scope from soft-
ware design to system design (SW/HW), in order to address
the most challenging type of variability manifesting itself in
this industry case: variability across the hardware/software
boundary.

Acknowledgements. The presented research is partially
funded by the Research Fund KU Leuven and the Flem-
ish agency for Innovation by Science and Technology (IWT
120085). The research activities were conducted in the con-
text of ITEA2-MERgE (Multi-Concerns Interactions Sys-
tem Engineering, ITEA2 11011), a European collaborative
project with a focus on safety and security [5].

8. REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and

Robert B. France. Familiar: A domain-specific
language for large scale management of feature
models. Science of Computer Programming (SCP),
78(6):657–681, 2013.

[2] Len Bass, Paul Clements, and Rick Kazman. Software
Architecture in Practice. Addison-Wesley Professional,
3rd edition, 2012.

[3] Jan Bosch. Toward compositional software product
lines. IEEE Software, 27(3):29–34, 2010.

[4] Rosana T. V. Braga, Onofre Trindade, Jr., Kalinka R.
L. J. Castelo Branco, and Jaejoon Lee. Incorporating
certification in feature modelling of an unmanned
aerial vehicle product line. In Proceedings of the 16th
International Software Product Line Conference -
Volume 1, SPLC ’12, pages 249–258, New York, NY,
USA, 2012. ACM.

[5] The MERgE consortium. Merge: Multi-concerns
interactions system engineering.
http://www.merge-project.eu/.

[6] Thales Group. Melody advance system modeler:
Pattern instantiation tool, soon to be opensourced.
https://www.thalesgroup.com/en, 2014.

[7] Arnaud Hubaux, Mathieu Acher, Thein Than Tun,
Patrick Heymans, Philippe Collet, and Philippe
Lahire. Separating concerns in feature models:

Retrospective and support for multi-views. In Domain
Engineering, Product Lines, Languages, and
Conceptual Models, pages 3–28. 2013.

[8] Arnaud Hubaux, Thein Than Tun, and Patrick
Heymans. Separation of concerns in feature diagram
languages: A systematic survey. ACM Comput. Surv.,
45(4):51, 2013.

[9] International Electrotechnical Commission (IEC)
Subcommittee 65A: Industrial-process measurement,
control and automation – Systems aspects. Functional
safety. http://www.iec.ch/functionalsafety/.

[10] Tomoji Kishi and Natsuko Noda. Formal verification
and software product lines. Commun. ACM,
49(12):73–77, 2006.

[11] Melexis NV. MLX90365 Hall Effect Sensor IC.
Product Datasheet. http://melexis.com/Assets/
MLX90365-Datasheet-6163.aspx, Sept 2013.

[12] Melexis NV. Triaxis product overview.
http://melexis.com/Hall-Effect-Sensor-ICs/

Triaxis%C2%AE-Hall-ICs/Triaxis-760.aspx, Sept
2013.

[13] Klaus Pohl, Günter Böckle, and Frank J. van der
Linden. Software Product Line Engineering:
Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[14] SAE International. J2980 - Considerations for ISO
26262 ASIL Hazard Classification. http:
//www.sae.org/works/documentHome.do?docID=

J2980&inputPage=wIpSdOcDeTaIlS&comtID=TEVEFS,
2011.

[15] Michael Schulze, Jan Mauersberger, and Danilo
Beuche. Functional safety and variability: Can it be
brought together? In 17th International Software
Product Line Conference, pages 236–243, 2013.

[16] The International Organization for Standardization
(ISO). Road vehicles – functional safety (iso 26262).
http://www.iso.org/iso/home/store/catalogue_

tc/catalogue_detail.htm?csnumber=43464,
November 2011. Part 1–10.

[17] The Object Management Group (OMG. SysML:
Systems Modeling Language.
http://www.omgsysml.org/.

[18] The Object Management Group (OMG). The
Common Variability Language (CVL).
http://www.omgwiki.org/variability/doku.php, 4
2014.

[19] Thomas Thüm, Sven Apel, Christian Kästner, Ina
Schaefer, and Gunter Saake. A classification and
survey of analysis strategies for software product lines.
ACM Computing Surveys, 2014. to appear.

[20] Wayne Wolf and Jorgen Staunstrup.
Hardware/Software Co-Design: Principles and
Practice. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

http://www.merge-project.eu/
https://www.thalesgroup.com/en
http://www.iec.ch/functionalsafety/
http://melexis.com/Assets/MLX90365-Datasheet-6163.aspx
http://melexis.com/Assets/MLX90365-Datasheet-6163.aspx
http://melexis.com/Hall-Effect-Sensor-ICs/Triaxis%C2%AE-Hall-ICs/Triaxis-760.aspx
http://melexis.com/Hall-Effect-Sensor-ICs/Triaxis%C2%AE-Hall-ICs/Triaxis-760.aspx
http://www.sae.org/works/documentHome.do?docID=J2980&inputPage=wIpSdOcDeTaIlS&comtID=TEVEFS
http://www.sae.org/works/documentHome.do?docID=J2980&inputPage=wIpSdOcDeTaIlS&comtID=TEVEFS
http://www.sae.org/works/documentHome.do?docID=J2980&inputPage=wIpSdOcDeTaIlS&comtID=TEVEFS
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.omgsysml.org/
http://www.omgwiki.org/variability/doku.php

	Introduction
	Concern analysis
	Safety
	Reuse
	Variability

	Motivation
	Approach
	Discussion
	Related Work
	Conclusion
	References

