
HAL Id: hal-01019919
https://hal.inria.fr/hal-01019919

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralizing SDN’s Control Plane
Mateus Augusto Silva Santos, Bruno Nunes Astuto, Katia Obraczka, Thierry

Turletti, Bruno Trevizan de Oliveira, Cintia Borges Margi

To cite this version:
Mateus Augusto Silva Santos, Bruno Nunes Astuto, Katia Obraczka, Thierry Turletti, Bruno Trevizan
de Oliveira, et al.. Decentralizing SDN’s Control Plane. IEEE Local Computer Networks (LCN), Sep
2014, Edmonton, Canada. �hal-01019919�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49614863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01019919
https://hal.archives-ouvertes.fr


Decentralizing SDN’s Control Plane
Mateus A. S. Santos∗, Bruno A. A. Nunes†, Katia Obraczka‡, Thierry Turletti†,

Bruno T. de Oliveira∗ and Cintia B. Margi∗
∗University of Sao Paulo, Brazil †INRIA, France ‡UC Santa Cruz, USA

Abstract—Motivated by the internets of the future, which
will likely be considerably larger in size as well as highly
heterogeneous and decentralized, we propose Decentralize-SDN,
D-SDN, a framework that enables not only physical– but also
logical distribution of the Software-Defined Networking (SDN)
control plane. D-SDN accomplishes network control distribution
by defining a hierarchy of controllers that can “match” an
internet’s organizational– and administrative structure. By dele-
gating control between main controllers and secondary controllers,
D-SDN is able to accommodate administrative decentralization
and autonomy. It incorporates security as an integral part of
the framework. This paper describes D-SDN and presents two
use cases, namely network capacity sharing and public safety
network services.

I. INTRODUCTION

The growing need to facilitate network evolution motivated
the emergence of the Software-Defined Networking (SDN)
paradigm. SDN’s premise is to decouple the network control-
and data planes and thus make deploying new network services
and protocols viable especially in production networked envi-
ronments. However, SDN techniques to-date, including Open-
Flow, have mostly targeted “managed networks”. As such,
they promote logically centralized control which is ill-suited
not only to the scale but also to the level of administrative
decentralization and episodic connectivity that may be present
in future internets.

Fig. 1. SDN control distribution

Most approaches aiming at increasing the scalability and
robustness of the SDN control plane have also targeted
“managed” networks, e.g. data centers and intranets, where
it is reasonable to assume the existence of a single, log-
ically centralized administrative authority, as shown in the
left part of Figure 1. However, this assumption does not
hold in heterogeneous internets that may include a variety of
autonomously administered networks, such as infrastructure-
less self-organizing networks (as illustrated in Figure 1).

We propose Decentralize-SDN, or D-SDN, an SDN fra-
mework that allows SDN control distribution both physi-

Fig. 2. Control delegation from MC to SCs in a heterogeneous internet.

cally and logically by defining a control hierarchy of main
controllers (MCs) and secondary controllers(SCs). In “smart
spaces” type applications, for example, devices within the
home are controlled by the “home” controller independent of
the “smart neighborhood” controller and the ISP’s controller.
D-SDN enables logically decentralized control through control
delegation between different levels of the control hierarchy, as
shown in the right part of Figure 1. Another distinguishing
feature of D-SDN is that it incorporates security as integral
part of the framework and its underlying protocols.

As proof of concept, we apply the D-SDN framework in
two use cases, namely: (1) network capacity sharing, in which
control decentralization enables nodes in a infrastructure-less
network to connect to the Internet via other (connected) nodes,
and (2) public safety network (PSN) scenario that showcases
control decentralization in emergency response services.

II. D-SDN OVERVIEW

As mentioned previously, D-SDN defines two types of con-
trollers: Main Controllers (MCs) and Secondary Controllers
(SCs). The main difference between them is that SCs require
that MCs authorize and delegate control to them before SCs
are able to act as SDN controllers. In addition, we envision that
SCs will typically be responsible for managing SDN switches
in a sub-domain within the MC’s domain.

Let us take the scenario shown in Figure 2. Under cen-
tralized control, the MC controls the two ad-hoc networks
(MANETs). SDN-capable mobile devices in the MANETs
need to rely on the MCs forwarding decisions. Thus, every
new flow in the MANET generates a request to the MC, which
then needs to respond with the appropriate flow modifica-
tion message(s). Alternatively, using D-SDN’s decentralized
control plane, GW1 and GW2 can act as SCs upon MC’s
authorization and delegation. As a result, new flows arriving
at MANET nodes will not need to reach the MC and could
be handled directly by the corresponding SC.
Hierarchy of Controllers: In D-SDN, control distribution is
based on a hierarchy of MCs and SCs which can also be
used to improve control plane availability and fault tolerance.



Following the hierarchy, MCs can delegate control of certain
devices to a particular SC. For example, an SC would not
be allowed to write new flow entries to a device’s flow table
without a delegation from the corresponding MC. Note that
SCs must have been previously authenticated by the MC or
some other trusted third-party authority before being able to
participate in the network control plane.
Control Delegation: An MC can delegate the control to an
SC with respect to a set of SDN-enabled devices. Delegation
can be initiated by an MC or can occur upon a request from
the SC. A delegation request can be triggered by different
kinds of events. For example, when a new SC is deployed
geographically closer to a set of devices, it could request
delegation from the MC to control these devices. Another
example is a scenario in which mobile devices in a MANET
need connection to the Internet through a gateway node. The
gateway can then request authorization from the MC for
playing the role of an SC to new devices joining the network.
MC-SC Communication: As previously pointed out, a net-
work device is only able to act as an SC upon the authorization
of the corresponding MC through a Control Delegation
message. In addition, MC-SC communication usually happens
within the same administrative domain. Control delegation is
illustrated in Figure 3 and proceeds as follows:

• Check-in Request: an SC requests authorization for
managing a specific SDN-enabled device.

• Check-in Response: the MC, upon accessing its
database, authorizes or denies access by the requesting
SC.

Fig. 3. Delegation of control from main- to secondary controller.

SC-SC Communication and Fault Tolerance: SCs use D-
SDN’s SC-SC protocol to implement fault tolerance in case
of failure of the current SC. Inspired by OpenFlow (OF) 1.3
[7], we differentiate master controllers from slave controllers
in order to provide fault tolerance. Slave controllers do not
receive messages from a switch. However, they can become
masters by sending a role request message to the correspond-
ing switch.

The current master controller sends periodic Hello mes-
sages as keep-alive signaling. Slave controllers detect that the
master failed after not receiving Hello messages for a pre-
defined period of time. When that happens, slaves will start
an election process to select a master among them. If a new
master is elected, it will inform the corresponding devices that
will be under its control. These devices will then remove the
old master from the master role.

The master also sends Update messages to slave con-
trollers to make sure that their state is in sync. Update
messages contain the application modules currently running
on the master as well as the list of switches it controls.

III. IMPLEMENTATION

In our testbed, mobile nodes are SDN-enabled through
the use of software switches, e.g., Open-VSwitch (OVS).
SDN-enabled nodes can thus be responsible for forwarding
incoming traffic, maintaining flow tables, and communicating
with the controller when needed.

Our current implementation is comprised of a server-side
and a client-side. The server-side exposes an interface to a
hierarchy of controllers. The client-side provides accounting
data to the servers as well as management of cryptographic
material that is used for providing security services such as
data confidentiality and authentication.

Regarding security, we use Identity Based Cryptography
(IBC) [9]. which requires a Trusted Third Party (TTP) re-
sponsible for secret key generation. There is synergy between
controllers and TTPs. In particular, MCs can play the role of
a TTP. Using the notation presented in Table I, we describe
the main protocols D-SDN components use in order to com-
municate.

IDX , ctr identity of X and counter, respectively
SX , PX private and public key of X , respectively
KX,Y key established between nodes X and Y
authenc(·, k) authenticated encryption using key k
enc(·, k), dec(·, k) encryption/decryption using key k
mac, s authentication tag and master secret key

TABLE I
NOTATION.

Setup: As public keys are derived from identities, the TTP
(i.e., the controller) maps the node identity, IDX , to a point
in the elliptic curve, PX . This mapping is a public parameter,
since a node is allowed to generate any device’s public key.
The TTP generates a master secret key s and calculates each
node’s private key as SX = sPX . This value should be either
sent privately by the TTP or pre-deployed on the device (i.e.,
SC or end-host device).
Authenticated Key Agreement: Pairings[8] provide practical
implementation for authenticated key agreement (AKA) over
IBC, which is an elegant alternative to non-authenticated sche-
mes such as the Diffie-Hellman interactive key exchange.The
AKA procedure considered here has the main goal of avoiding
public key encryption. It means that, once a key is agreed
between two nodes using public key cryptography, they can
use the shared key for confidentiality and data authentication.
Handshaking: In the handshaking procedure, a new coming
device, or requesting node (RN), is required to respond to
a challenge, so that the authenticator is able to verify the
devices’ identity. This allows them to compute a shared key,
which is used for authenticated encryption of the challenge.
Figure 4 shows in detail this process.
Availability: The proposed framework is available for down-
load from http://inrg.cse.ucsc.edu/community.

IV. EVALUATION

A. Secure Capacity Sharing

For the secure capacity sharing use case, we assume the
network model illustrated in Figure 2, where a node in a client



Fig. 4. Detailed handshaking procedure.

Fig. 5. High level description for node authorization through main controller.

network, called here the “Requesting Node” (RN), wishes to
connect to the Internet and accesses, for example, the World
Wide Web. However, it is unable to connect to the existing
network infrastructure (e.g., because the RN is out of range
of the closest AP). Another node, called gateway node 1
- “GW1”, advertises its gateway services providing RN the
option to connect to the Internet through it. Note that RN can
connect to GW1 directly or through a wireless, multi-hop ad-
hoc network (MANET) using some existing MANET routing
protocol to route packets towards GW1.

The main steps to achieve secure network capacity sharing
using D-SDN (illustrated in Figure 5), are as follows:

• Gateway discovery: GW nodes send periodic mes-
sages, announcing their gateway capabilities. The poten-
tial users, on the recipient of such messages will choose a
GW, by sending a Request message to the most suitable
candidate;

• Handshaking: a GW node responds to a user request and
initiates a handshaking procedure for node authentication;

• User check-in: the GW requests authorization to the main
controller, which queries its database in order to approve
allocation of resources to the designated customer.

If a user is authorized, the main controller adds the new
flow-table entries to the forwarding devices on user data path
towards the Internet. The procedure of user check-in includes
the delegation of control from the MC to the gateway with
respect to user device administration.

Secure Handover: Here, we adopt the scenario in which
a user notices that a more suitable GW becomes available.

Fig. 6. Throughput before and after handover.

Fig. 7. Throughput before and after the event of activating a redundant
gateway with no QoS enforcement policy.

The user itself can send a request to the new candidate
and perform a handshaking procedure. Then, the MC can
orchestrate flow creation and removal in the new and old
gateways, respectively.

In order to demonstrate the handover, we generated a
sequence of HTTP requests to an external web server (located
outside the local network) and measured the throughput. We
collected 10 samples for each element of the sequence and re-
port a 95% confidence level in our results. Figure 6 shows the
results, in which effective handover points to the first HTTP
request after the new gateway took over. It can be seen from
the figure that the throughput fluctuates so that the handover
cannot be observed among different HTTP requests. In this
particular case, both gateways presented similar performance.
We emphasize that our goal is not to increase performance
among gateways, but to provide seamless handover.

QoS and Gateway Redundancy: Quality of service can be
enforced by MCs or SCs by using ingress policy rates. In
the same scenario of Figure 2, a gateway would prevent RNs
from allocating more than a determined fraction of the total
bandwidth provided by the ISP.

We carried out experiments using one single gateway with
the ingress policy set to 3 kBps. Then, another gateway with
no restrictions becomes available as a redundant channel to the
infrastructured network. We measured the throughput during
sequences of HTTP requests to a server. Figure 7 shows that
network performance is limited to the configured throughput
as long as the redundant GW is not activated.



Fig. 8. Broadband scenario for inter-agency communication. Source: [1]

GOAL: Evaluation of fault tolerance in a MANET, in which SCi is the
active controller. SCj takes over after SCi failure.

1) SCs exchange periodic Hello messages with their identities and roles
for each SDN-enabled device, if any exists, under their scope;

2) SCi fails;
3) An election protocol is triggered among SCs due to a timeout for

receiving Hello messages from the master controller;
4) The elected controller, say SCj , requests the administration of the

corresponding SDN-enabled devices and effectively replaces the failed
controller;

5) Role Reply messages from devices confirm that SCj took over.

Fig. 9. Scenario for fault tolerance among the SCs inside a MANET.

B. Public Safety Networks

PSNs are built to detect and/or handle disaster events
[3]. Such networks are set to provide communication and
coordination for emergency responders and operations. Many
of the challenges in the PSN field come from the variety of
systems and agencies involved in the crisis response and from
their mobility at the disaster site [3]. By decentralizing the
control plane, our proposed framework allows rapid deploy-
ment, reliability and interoperability.

We envisage a scenario in which public safety authorities
can organize themselves for exchanging valuable information
regarding an emergency situation. We showcase our proposal
over such a scenario, illustrated in Figure 8. In this figure
vehicles are capable of serving as GWs to a network of
different agency actors (e.g., firefighters and police officers).

Our testbed instantiates SCs at the agencies’ vehicles. A
single agency can have many decentralized SCs that exchange
messages with other agencies’ SCs. They should rely on our
framework in order to continue operating correctly in the event
of link failures. Figure 9 describes the proposed scenario for
implementing tolerance to failures.
Methodology and Results: The experiments were carried out
using four controllers and one switch. A single node was set
as master for the switch. All the nodes, including the switch,
were configured in a wireless ad hoc network. We integrated
the Paxos election protocol proposed with our framework.

Before presenting the results, we elaborate on the main
parameters of the system. Let th be the time between periodic
Hello messages sent by the master controller. Let tout be the
timeout, or in other words, the time a non-master controller
waits for receiving the next Hello message. Given that
0 < th ≤ tout, the worst case scenario for controllers to detect
a failure is when the master actually fails just after sending
a Hello message. In our experiments, we used tout = 5

Minimum Maximum Average (95% confidence interval)
2.3 6.7 4.2 (3.7, 4.7)

TABLE II
TIME IN SECONDS TO RECOVER FROM A FAILURE (tout = 5 AND th = 3).

seconds and th = 3 seconds.
We collected 20 samples and computed a 95% confidence

interval. We used a random failure time at each sample. Table
II shows the recovery time, which is not only the time to detect
a failure, but also the time it takes for the new master to take
control of the switch. The minimum time (i.e., 2.3 seconds)
is close to the best case scenario mentioned earlier.

V. RELATED WORK

Previous work such as [5] propose a logically centralized but
physically distributed control plane by means of a distributed
file system. The trade-offs on distributing the control plane
under a logically centralized scheme are investigated by Levin
et al. [6]. An example of hierarchical control is Kandoo
[2], which allows the deployment of local controllers with
no network-wide state. Nevertheless, Kandoo still needs a
logically centralized root controller. Phemius et al. proposed
DISCO [4]. Even though DISCO is decentralized, it neither
considers controller hierarchy nor deals with fault tolerance.

VI. CONCLUSION

We proposed Decentralize-SDN, a general framework en-
ables a wide range of current- as well as future network
services and applications through the decentralization of the
SDN control plane. D-SDN supports control distribution by
defining a hierarchy of controllers in which main controllers
can delegate functions to secondary controllers. As future
work, we envision new D-SDN based network services and
applications, such as inter-domain routing and load balancing.

ACKNOWLEDGMENTS
This work is partly funded by the Community Associated Team between INRIA and UCSC, the French ANR under

the “ANR-13-INFR-013” project, the Sao Paulo Research Foundation (FAPESP) under grant 2013/15417-4, the National
Council for Scientific and Technological Development (CNPq) under grant 245588/2012-4, and by NSF grant CNS 1150704.

REFERENCES

[1] EADS Defence and Security Systems, “CHORIST final report SP0.R7,”
2009, available online at http://www.chorist.eu/.

[2] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, ser. HotSDN
’12. New York, NY, USA: ACM, 2012, pp. 19–24.

[3] Iapichino, Giuliana, D. Camara, C. Bonnet, and F. Filali, Public Safety
Networks. IGI Global, 2011.

[4] J. L. Kevin Phemius, Mathieu Bouet, “DISCO: Distributed multi-domain
sdn controllers,” CoRR, vol. abs/1308.6138, 2013.

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[6] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in Proceedings of the workshop on Hot topics in software
defined networks. New York, USA: ACM, 2012, pp. 1–6.

[7] Open Networking Foundation, “Openflow switch specification 1.3,” 2012.
[8] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on

pairing,” in SCIS00, 2000, pp. 26–28.
[9] A. Shamir, “Identity-based cryptosystems and signature schemes,” in

CRYPTO, ser. LNCS, G. Blakley and D. Chaum, Eds. Springer Berlin
Heidelberg, 1985, vol. 196, pp. 47–53.


