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Laser-based Detection and Tracking Moving Objects
using Data-Driven Markov Chain Monte Carlo

Trung-Dung Vu and Olivier Aycard
INRIA Rhône Alpes, Grenoble, France
firstname.lastname@irialpes.fr

Abstract— We present a method of simultaneous detection
and tracking moving objects from a moving vehicle equipped
with a single layer laser scanner. A model-based approach
is introduced to interpret the laser measurement sequence
by hypotheses of moving object trajectories over a sliding
window of time. Knowledge of various aspects including object
model, measurement model, motion model are integrated in
one theoretically sound Bayesian framework. The data-driven
Markov chain Monte Carlo (DDMCMC) technique is used to
sample the solution space effectively to find the optimal solution.
Experiments and results on real-life data of urban traffic show
promising results.

I. INTRODUCTION

Recent years have seen many research works employing
laser scanners to detect and track moving objects [11], [9],
[5], [2]. Existing methods usually separate the detection and
tracking as two independent procedures. Since detection at
one time instant usually results in ambiguities that make
the data association become more difficult with missing
detections and false alarms. We propose a probabilistic
framework for simultaneous detection and tracking of objects
which combines the detection and tracking together. This
allows object detection to make use of temporal information
and facilitates robust tracking of the objects.

On the other hand, state-of-the-art laser-based approaches
to detect moving objects usually involves performing seg-
mentation of laser points and representing objects by
bounding-boxes of laser segments. These conventional ap-
proaches pose several problems. Firstly, since a laser scanner
only sees parts of the object currently facing the scanner,
as the object moves we get different contours (Fig. 1(a))
that leads to a significant degradation of tracking results
(Fig. 1(b)). Secondly, due to occlusions or laser-absorbed
surfaces (ex: glasses, black surfaces), an object can be
divided into several segments (Fig. 1(d),(e)). This makes
object detection and tracking much harder when dealing with
object merging and track grouping. Here we take a model-
based approach and will discuss how using object models of
several predefined classes to interpret the laser measurements
can overcome these problems (Fig. 1(f)).

We formulate the detection and tracking problem as find-
ing the most likely trajectories of moving objects given
measurements over a sliding window of time (Fig. 2). A
trajectory (track) is regarded as a sequence of object shapes
produced over time by an object satisfying the constraint of
an underlying measurement model and the smoothness in
motion from frame to frame. In this way, our approach can

Fig. 1. Known problems with laser-based detection and tracking. (a) an
example of a car approaching the laser scanner; (b) car tracking using centers
of laser impact bounding-boxes leads to incorrect result; (c) correct tracking
using car model; (d)(e) objects can be divided into several segments making
tracking harder that requires object merging, track grouping; (f) using car
model can overcome these problems.

be seen as a batch method searching for the global optimum
solution in the spatio-temporal space. Due to the high com-
putational complexity of such a scheme, we employ a data
driven Markov chain Monte Carlo (DDMCMC) technique
[14] that enables traversing efficiently in the solution space.
The key contribution of this paper is designing a general
framework to perform object detection and tracking at the
same time with an explicit integration of various aspects in-
cluding prior information, object model, measurement model,
motion model in a theoretically sound formulation. We test
the algorithm on real-life data of urban traffic and the results
demonstrate the effectiveness of our approach.

The paper is organized as follows. The related work is
reviewed in Section II. We formulate the general multiple ob-
ject detection and tracking problem in Section III. In Section
IV we present our algorithm to find the optimal trajectories
of moving objects using a spatio-temporal MCMC sampling
method. We discuss experiments and provide some initial
results on real-life traffic datasets in Section V, followed by
conclusions and future works.

II. RELATED WORKS
Multiple object tracking (MOT) has been an active re-

search topic over decades. When object observations are
known, object tracking becomes a data association problem.
Among popular data association methods, multiple hypothe-
sis tracking (MHT) [1] is widely used. MHT is a multi-frame
tracking method that is capable of handling ambiguities in
data association by propagating hypotheses until they can be
solved when enough observations are collected. The main



disadvantage of MHT is its computational complexity since
the number of hypotheses grows exponentially over time.
The joint probabilistic data association (JPDA) filter [6] is
more efficient but prone to make erroneous decision since
only single frame is considered and the association made in
the past is not reversible. Other sequential approaches using
particle filters [7] share the same weakness that they cannot
reverse time back when ambiguities exist. Recently, batch
MOT methods [4], [12] attracted research attentions. Based
on a powerful MCMC technique [14], the entire solution
space can be explored in an efficient way to find the global
optimum. Oh et al. [4] used MCMC to organize the temporal
association between objects and punctual observations over
time. This method is extended in [12] to solve the data
association in a spatio-temporal space.

Taking object detection result as input for tracking, track-
ers are different by detection methods. In [6], Schulz in-
troduced a simple method only to detect people using the
local minimal caused by legs. Wang [11], followed by
Vu [9] proposed a more general approach which build an
online occupancy grid representing the local map and moving
parts of objects can be detected when they enter object-free
regions. However, ambiguities occur when objects appear in
unexplored regions, it is difficult to say it is moving or static.
Moreover, using laser impact contours to represent objects,
this approach encounters problems of tracking degradation
and object splitting as mentioned in the introduction section.

Our approach here emphasizes on the use of object models
like that of [5] to overcome known problems of laser-based
tracking. We propose to solve at the same time both the
detection and tracking using a MCMC technique to search
for the optimum solution in the spatio-temporal space. In this
way, temporal information will help to reduce ambiguities
and false alarms for detection at one time instant and
facilitate a more robust tracking. The moving object detection
result in our previous work [9] is employed to generate
object hypotheses that helps to drive the MCMC search more
efficiently. In addition, we introduce a new way to model
the temporal prior and the likelihood that takes the whole
considered measurement sequence into account.

III. MULTIPLE OBJECT TRACKING
FORMULATION

We consider tracking in a sliding window of time com-
prised of T ∈ N+ last frames. Let Z be the set of all mea-
surements within the time interval [1,T ] and Zt denote the
laser measurement at time t. The current time corresponds to
t = T . Assume that within [1,T ] there are K unknown number
of moving objects appear in the vehicle sensing range.

Not like [5] only considering vehicles, we distinguish
four classes of moving objects: bus, car, bike, pedestrian
(motorcycles and bicycles belong to the class bike). We use
the box model of fixed sizes to represent bus, car, bike and
the point model to represent pedestrian. For the box model,
object is parameterized by M = {c,x,y,θ ,wc, lc} which are
object class, object center position, orientation, width and
length respectively. Herein wc and lc are constants with

Fig. 2. Example of an interpretation of moving objects from laser data. (a)
four scans consecutive: in blue is current scan and in green are scans in the
past; (b) one possible solution including seven tracks of four cars and one
bus represented by red boxes and one pedestrian represented by red dots
which are imposed on the range data; (c) situation reference.

respect to each object class c. For the point model, object
is parameterized by M = {c,x,y} which are object class and
object center.

We cast the detection and tracking problem as interpreting
the given observation set Z by an unknown number of K
tracks ω = {τ1,τ2, ...,τK}. Each track τk in ω is defined
as a sequence of moving objects of the same class τk =
{τk(t1), ...,τk(t|τk|)} where ti ∈ [1,T ], τk(t) is a moving object
detected at time t and is either of form {c,x,y,θ ,w, l} or
{c,x,y}. Since missing detection may happen 1 ≤ (ti+1 −
ti) ≤ tmax. We introduce the notation ωt =

⋃K
k=1 τk(t) that is

the set of moving objects detected at time t.
Fig. 2 shows an example of four laser scans and one

possible interpretation of moving objects which is comprised
of seven tracks of five cars, one bus and one pedestrian.

The moving object detection and tracking problem is
formulated as maximizing a posterior (MAP) of an inter-
pretation of tracks ω , given the set of observations Z over T
frames:

ω
∗ = argmax

ω

P(ω|Z) (1)

Following the Bayes rule, the posterior probability is decom-
posed into a prior term and a likelihood term:

P(ω|Z) ∝ P(ω)P(Z|ω) (2)

In the following sections, we discuss the prior and the
likelihood model used in our framework.

A. Prior Distribution

Assuming that the occurrence of an object is independent
of the others, we define the prior of a solution ω is the
product of the probabilities of individual tracks:

P(ω) =
K

∏
k=1

P(τk) (3)



The probability P(τk) encodes the probability of the appear-
ance of objects independent over time PO(.) and the temporal
consistency of objects within track PT (.). The probability
PT (.) controls the inner-smoothness of each track indepen-
dently (Fig. 3). However, without an a priori knowledge of
the number of targets, the inner-smoothness constraint will
favor shorter paths, and therefore will split a trajectory into
a large number of sub-tracks. To overcome this overfitting
problem, we add the prior term PL(.) which encodes the
preference of long track. We can write:

P(τk) = PL(τk)PO(τk)PT (τk) (4)

1) We adopt an exponential model of the length of each
track:

PL(τk) ∝ exp(λL|τk|) (5)

2) The probability of appearance of objects in track
independent of time:

PO(τk) =
|τk|

∏
i=1

P(τk(ti)) = P(ck)
|τk|

∏
i=1

P(xi,yi)P(θi) (6)

where P(ck), P(xi,yi) and P(θi) are the prior probabil-
ities over the object class, object position and object
orientation respectively. In our current implementation,
we set these prior probabilities as uniform distribu-
tions. However, knowledge of road type and road bor-
der, if available can be added for better performance.

3) There remains how to model the temporal consistency
within each track PT (τk). This term is measured by
the smoothness of object motion according to its
underlying dynamics model. Since in urban scenarios
objects are high maneuvers, we opt for multiple model
approach [13] to model object dynamics. For classes
of bus, car, bike, four modes of dynamics are used:
constant velocity, constant acceleration, turning and
stationary mode. For pedestrians, we force the accel-
eration to zero and only one constant velocity model
is used. Box-model dynamic states are (x,y,θ , θ̇ ,v,a)
with the velocity v and acceleration a are always in
the direction θ of the longer edge l. Dynamic states
for point-model objects are (x,y,vx,vy).
We apply a IMM filter similar to [13] to esti-
mate states of objects in the track sequentially:
τ̂k(t1), ..., τ̂k(t|τk|) and their corresponding covari-
ances: cov(τ̂k(t1)), ...,cov(τ̂k(t|τk|)). Set cov(τk) =
cov(τ̂k(t|τk|)). A smaller value of cov(τk) implies that
the track is more consistent to the dynamics model.
The temporal consistency of a track is then calculated
by:

PT (τk) ∝ exp(−λT cov(τk)) (7)

B. Likelihood Probability

The likelihood P(Z|ω) reflects the probability we observe
the measurement Z given ω which contains the states of all
moving objects over the time interval [1,T ].

To model this likelihood, first we identify dynamic mea-
surements which are caused by moving objects in ω . Fig.

Fig. 3. Temporal consistency of a track. Obviously the arrangement of
cars on the right is more relevant to a correct motion than that on the left.

4 shows a box-model object (solid rectangle) and its dilated
bounding box (dotted rectangles). The laser ray Az is con-
sidered as being caused by the object if it has the impact
lying on BD that corresponds to the measurement on visible
sides. We notice that if the impact lies on the segment AB,
the object is occluded. If the impact lies on the ray Dz and
it is not a maximum range reading, the visibility constraint
is violated (rays seeing through glasses or black surfaces are
not the case)For the point-model object, it is dilated by a
circle of a fixed diameter and all measurements fall inside
the circle are considered as dynamic measurements.

Fig. 4. Object measurement likelihood computation.

Let Z(d) denote all dynamic measurements of Z. We have
Z(s) = Z−Z(d) the remained measurements that are supposed
to be caused by static objects. The notations Z(d)

t and Z(s)
t

are dynamic and static measurements at time t respectively.
In this way, besides information about dynamic objects, ω

partitions Z into dynamic and static measurements. From
frame to frame, these measurements should be coherent with
each others. We can therefore decompose the likelihood into
the product of two terms:

p(Z|ω) =
T

∏
i, j=1

P(Zi|ω j)
T

∏
i, j=1

P(Zi|Z(s)
j ) (8)

where the first term encodes the likelihood of measurements
at each time step given observations of dynamic objects and
the second term encodes the consistency of the measurements
with the static parts of the environment. The first term is then
further decomposed:

T

∏
i, j=1

P(Zi|ω j) = ∏
i

P(Zi|ωi)∏
i 6= j

P(Zi|ω j)

= ∏
i

PM1(Z
(d)
i |ωi)PM2(Z

(s)
i |ωi)∏

i 6= j
PM3(Z

(s)
i |ω j) (9)



The second term in (8) is rewritten as:
T

∏
i, j=1

P(Zi|Z(s)
j ) = ∏

i 6= j
PM4(Zi|Z(s)

j ) (10)

The meaning of each probability component is as follows.
PM1 scores the fitness of dynamic measurements to the
moving objects. PM2 ,PM3 and PM4 penalizes the violation
of laser visibility constraint. In particularly, PM2 penalizes
situations that laser can see through dynamic objects. PM3
penalizes the situations where moving objects are detected
at position that has seen static objects. PM4 penalizes the
situations where laser can see through static objects. Fig.
5, in order from left to right, illustrates the meanings of
probabilities PM1 ,PM2 ,PM3 and PM4 respectively. Note that
here we do not consider maximum range laser readings so
that rays caused by glasses or black surfaces will not be
penalized.

Fig. 5. Four types of constraint used to compute the likelihood. The red
dots are measurements that violate the laser visibility constraint.

In the following, we discuss how to model these proba-
bilities:

1) Assuming that Z(d)
i is comprised of N dynamic mea-

surements Z(d)
i = {z1

i , ...,z
N
i }. We consider measure-

ments obtained along each laser ray independent of
each other. The measurement likelihood PM1 factors
as:

PM1(Z
(d)
i |ωi) =

N

∏
n=1

P(zn
i |ωi) (11)

Each measurement zn
i corresponds to a laser beam that

hits an object in ωi where the laser impact lies on the
segment BD (Fig. 4). We model each ray’s likelihood
as a zero-mean Gaussian with respect to the distance
dn from the impact to the ideal measurement point C:

P(zn
i |ωi) ∝ exp(−λ1dn) (12)

2) For each object in ωi, we count the number of non-
maximal measurements Z(s)

i that fall behind the object
model, call c2 is the total number.

PM2(Z
(s)
i |ωi) ∝ exp(−λ2c2) (13)

PM2 supports the remark following: If there exists such
a violation of visibility constraint, there is unlikely a
moving object appeared at that position.

3) Similarly, we count c3 the number of measurements
Z(s)

i that fall inside occupied areas of the objects in
ω j.

PM3(Z
(s)
i |ω j) ∝ exp(−λ3c3) (14)

PM3 is in favor of the fact that if there is a moving
object appeared at one time step then all measurements
backward or afterward falling inside the object area
should be dynamic measurements.

4) In the same way, let c4 be the total number of violated
measurements:

PM4(Zi|Z(s)
j ) ∝ exp(−λ4c4) (15)

PM4 holds the observation that if there are measure-
ments in one frame observed passing through other
measurements in another frame then the later measure-
ments are likely dynamic measurements.

C. Posterior Probability

By combining the above likelihood and the prior proba-
bility, we get the posterior probability function as:

P(ω|Z) ∝ exp{ λLSlen −λT Smot −λ1Sms1 −λ2Sms2 −
λ3Sms3 −λ4Sms4} (16)

where λL,λT ,λ1,λ2,λ3,λ4 are positive real constants and:

Slen =
K

∑
k=1

|τk| Smot =
K

∑
k=1

cov(τk)

Sms1 =
T

∑
i=1

N

∑
n=1

di
n Sms2 =

T

∑
i=1

ci
2 (17)

Sms3 = ∑
i6= j

ci j
3 Sms4 = ∑

i 6= j
ci j

4

IV. EFFICIENT POSTERIOR PROBABILITY
COMPUTATION

Although the problem is restricted within a sliding win-
dow, searching in the solution space for Eq. (1) is still
challenging. We employ a MCMC method to solve this
problem. The basic idea of MCMC is as follows. A Markov
chain can be designed to sample a probability distribution
π(ω) (in our case π(ω) = P(ω|Z)). At each iteration, we
sample a new state ω ′ from the current state ω following
the proposal distribution q(ω ′|ω). The new candidate state
ω ′ is accepted with the following probability A(ω,ω ′) where

A(ω,ω ′) = min(1,
π(ω ′)q(ω|ω ′)
π(ω)q(ω ′|ω)

) (18)

otherwise the sampler stay at ω . The overview of MCMC
algorithm is shown in Algorithm 1.

Algorithm 1 MCMC Sampler
1: Input: Z,nmc,ω

∗ = ω0 Output: ω∗

2: for n = 1 to nmc do
3: Propose ω ′ according to q(ω ′|ωn−1)
4: Sample U from Uni f orm[0,1]
5: if U < A(ω,ω ′) then
6: ωn = ω ′

7: if P(ωn|Z) > P(ω∗|Z) then ω∗ = ωn
8: else
9: ωn = ωn−1

10: end for



This is the well-known Metropolis-Hasting algorithm. It
is proved that the Markov chain constructed this way has its
stationary distribution equal to π(), independent of the choice
of the proposal probability q() and the initial state ω0 [8].
However, the choice of the proposal probability q() can affect
the efficiency of the MCMC significantly. A random proposal
probability will lead to very slow convergence rate while a
proposal probability designed with domain knowledge [14]
will make the Markov chain traverse the solution space more
efficiently. If the proposal probability is informative enough
so that each sample can be thought of as a hypothesis, then
the MCMC approach can be though of as a stochastic version
of the hypothesize and test approach that is also named the
data-driven MCMC method (DDMCMC).

A. Moving object hypothesis proposals

To make the proposals more informative, we take ad-
vantage of the detection module in our previous work [9]
which can help to identify moving parts of dynamic objects.
Combined with suitable object models, all possible object
hypotheses are generated at location of these detected motion
evidences. The principle is that we want to keep the detection
rate high and accept false alarms to cover as many potential
moving objects as possible. These rough hypotheses provide
initial proposals for the MCMC sampler (Algorithm 1) that
performs a finer search over the spatio-temporal space to
find the most likely trajectories of moving objects with a
maximum of posterior probability. We detail the moving
object hypotheses generation process in the following.

Firstly, as presented in [9], we incrementally constructs
an online occupancy grid representing a local map of the
vehicle environment based on good vehicle localization
obtained by a fast scan matching technique. Moving parts
of dynamic objects are then detected when objects enter
object-free regions. In this paper, the detection condition is
loosened to include the situations when objects are observed
in unexplored regions that could be static or new moving
objects. Taking all these as dynamic evidences increases the
detection rate and false alarms as well. Result of this step is a
set of dynamic segments corresponding to potential moving
objects. Note that objects can be divided into several parts
so that several segments might be related to the same object.

Fig. 6 illustrates our detection process. In the figure, the
bottom image describes a situation when the host vehicle
moving along the street seeing two cars moving ahead,
another car coming out of the left turn and two pedestrians
walking on the left pavement. The image on top left shows
the local grid map constructed around the host vehicle (blue
box). In red color is the current laser scan. Laser impacts that
fall into free or unexplored regions are detected as dynamic
measurements and are displayed in the top right image.
Dynamic measurements are then grouped into segments
represented in green boxes corresponding to moving objects.
Note that the car coming from the left turn is divided into
two segments.Two false alarms are also displayed.

Secondly, starting from identified dynamic segments, we
generate hypotheses by fitting predefined object models to

Fig. 6. Object detection based on occupancy grid.

each segment. The objective is to generate all possible
hypotheses corresponding to potential moving objects. The
model fitting is carried out as follows. For each segment, a
minimum bounding box is computed and corresponding sides
of the segment are extracted. We remark that at one time
instant, maximum two sides of a segment can be seen by the
laser scanner. Providing that the size of a segment bounding
box is larger than a threshold, the segment is classified as a
L-shape if it has two visible sides, as an I-shape if only
one side is visible. Otherwise it is classified as a ”mass
point”-shape. Depending on the shape and size of segments,
object hypotheses are generated using suitable models. L-
shape segments will generate bus, car hypotheses, I-shape
segments create bus, car, bike hypotheses and ”mass-point”
segments will generate pedestrian hypotheses.

Fig. 7 shows possible hypotheses of an object as a box
model given L-shape and I-shape segments of different sizes.
Note that by fitting object models to segments in this way,
models can cover segments nearby so that naturally over-
come object splitting problem caused by laser measurement
discontinuities.

Fig. 7. Illustration of fitting object box model (green) to L-shape and I-
shape segments (red). The last two shapes show that using box model helps
connecting discontinued segments.

In subsequent sections we discuss how using the MCMC
sampler to search for the solution from the space of moving
object hypotheses. To make the sampling easier, we introduce
a neighborhood graph structure as described next.

B. Neighborhood graph of hypotheses

We use a graph representation 〈V,E〉 of all moving object
hypotheses within the time interval [1,T ]. Let hi

t denote the
i-th hypothesis generated at time t. Each hypothesis hi

t is
represented by a node in V . We define the neighborhood



between two nodes in the graph by edges of two types:
sibling edge and parent-child edge. Sibling edges are defined
by: Esb = {(hi

t ,h
j
t )} with the condition that hi

t and h j
t have

spatial overlap. Parent-child edges are defined by: Epc =
{(hi

t1 ,h
j
t2)} with the condition that hi

t1 and h j
t2 are of the

same object class and ‖hi
t1(x,y)− h j

t2(x,y)‖ < |t1 − t2|vmax,
where ‖.‖ is the Euclidean distance, 1 ≤ |t1 − t2| ≤ tmax and
vmax is the maximum speed of the object class. Sibling edges
represent exclusion relationship between hypotheses that are
generated from the same moving evidence so that if one
is selected then the other are excluded. Parent-child edges
reflect possible temporal association between hypotheses.

We use N(.) to denote the neighbor set of a hypothesis
in the graph structure, i.e. N(hi

t1) = {h j
t2 |(h

i
t1 ,h

j
t2) ∈ E}.

Hypothesis h j
t2 ∈ N(hi

t1) belongs to the parent set N p(hi
t1),

child set Nc(hi
t1), sibling set Ns(hi

t1), when t2 < t1, t2 > t1
and t2 = t1 respectively. Using the neighborhood graph helps
the MCMC sampler to traverse the solution space effectively.

C. Markov chain dynamics

The Markov chain dynamics correspond to sampling the
proposal distribution q(ω ′|ωn−1) described in Algorithm 1
(line 3). We assume that in the (n−1)-th iteration we have a
sample ωn−1 = {τ1, ...,τK} and now propose a candidate ω ′

for the n-th iteration. Let V ∗ denote the set of all unselected
hypotheses and do not share any sibling edge with nodes in
ωn−1. In order for the Markov chain to traverse the solution
space, we design the following reversible dynamics.

Track Extension/Reduction: The purpose of the exten-
sion/reduction move is to extend or shorten the estimated
trajectories. For a forward extension, we select uniformly at
random (u.a.r) a track τk. Let τk(end) denote the last node in
the track τk. Then select u.a.r node h ∈ {Nc(τk(end))∩V ∗}
and append the new hypothesis h to τk. Similarly, for a
backward extension, we take a node h ∈ {N p(τk(start))∩
V ∗}. We keep on extending the track τk with a probability
γ ∈ [0,1].

The reduction move consists of randomly shortening a
track τk by selecting a cutting index r u.a.r from {2, ..., |τk|−
1}. In the case of a forward reduction the track τk is short-
ened to {τk(t1), ...,τk(tr)}, while in a backward reduction we
take the sub-track {τk(tr), ...,τk(t|τk|)}.

Track Birth/Death: This move controls the creation of
new track or termination of an existing trajectory. In a birth
move, we select u.a.r a node h ∈ V ∗, associate it to a new
track and increase the number of tracks K′ = K +1. The birth
move is always followed by an extension move. From the
node h we select the extension direction forward or backward
u.a.r to extend the track τK′ . If |τK′ |< 2 the move is rejected.

For a death move, we simply choose u.a.r a track τk and
delete it.

Track Split/Merge: For a split move, we u.a.r select a
track τk with |τk| ≥ 4 and a split point s ∈ {2, ..., |τk|− 2}.
And we split τk into two new tracks τs1 = {τk(t1), ...,τk(ts)}
and τs2 = {τk(ts+1), ...,τk(t|τk|)} and increase the number of
tracks K′ = K +1.

Often, due to missing detection or erroneous detection,
trajectories of objects are fragmented. The merge move
provides the ability to link these fragmented sub-tracks. If a
tracks’s (τk1) end node is in the parent set of another track’s
(τk2) start node, this pair of two tracks is candidate for a
merge move. We select u.a.r a pair of tracks from candidates
and merge the two tracks into a new track τk = {τk1}∪{τk2}
and reduce the number of tracks K′ = K−1.

Track Switch: If there exist two break points p, q in two
tracks τk1 , τk2 such that τk1(tp)∈N p(τk2(tq+1)) and τk2(tq)∈
N p(τk1(tp+1)) as well, this pair of nodes is one candidate for
a switch move. We u.a.r select a candidate and define two
new tracks as:

τ ′k1
= {τk1(t1), ...,τk1(tp),τk2(tq+1), ...,τk2(t|tk2 |

)} and
τ ′k2

= {τk2(t1), ...,τk2(tq),τk1(tp+1), ...,τk1(t|tk1 |
)}.

Track Diffusion: Randomly select a track τk and an index
d from {1, ..., |τk|} and update the position and orientation
of the object τk(td) under some random noise.

Four first types of moves are temporal dynamics and the
last one is a spatial dynamics. The temporal moves help to
form tracks (data association) and the spatial move helps to
improve the detection results. In each iteration, one of the
above dynamics is chosen randomly. It is guaranteed that
the Markov chain designed this way is ergodic (i.e., any
state is reachable from any other state within finite number
of iterations) and aperiodic (i.e., the Markov chain does not
oscillate in a fixed pattern) since all of moves are stochastic.

D. Incremental computation

For each MCMC move, we need to compute the ratio
π(ω ′)
π(ω) = P(ω ′|Z)

P(ω|Z) in (18). In one iteration, our algorithm only
changes maximum two tracks. Thus the new posterior prob-
ability can be computed more efficiently by incrementally
computing it only within the related terms in (17). This
is in contrast to the particle filters where the evaluation of
each particle (joint state) needs the computation of the full
joint likelihood. One more interesting property of the MCMC
approach is that, it only needs to keep one hypothesis in the
memory at one time instant compared with all hypotheses
have to be maintained in case of tracking with MHT. More-
over, the execution time can be controlled by the number of
sampling iterations nmc.

V. EXPERIMENTAL RESULTS

We test our approach described above using the Navlab
datasets [3]. The datasets were collected using a SICK
laser scanner mounted on a moving vehicle. The vehicle
was driven in urban streets with real-life traffics. The data
was collected at 37.5 Hz with 0.5 degree resolution. The
maximum measurement range of the scanner is 80 m.

We have implemented the described algorithm as an online
process within a sliding window which contains T = 10
frames and only moving object hypotheses generated within
this sliding window are stored in the graph structure. Actu-
ally, our tracking process is performed for every four ”origi-
nal” scans so that the data cycle time from frame to frame in
our program is about 100 ms. For each time step when new



Fig. 8. Moving object detection and tracking in action.

measurements arrive, the solution obtained in the previous
step is used to initialize a new MCMC search. Tracks are
confirmed if their length are greater than three, otherwise
they are considered false alarms. The MCMC sampler is run
for a total of 250 iterations. The average computational time
for the total detection and tracking process is about 60 ms
on P4 3.0 GHz PC with unoptimized codes so that it can
fulfill the real time requirement.

Fig. 8 shows an example of our detection and tracking
algorithm in action. In the ego-vehicle’s view, the detected
moving objects and their trajectories are shown in pink color
with current laser scan is in blue color. Moving objects in the
situation include a bus moving in the opposite direction on
the left, three cars moving ahead, two pedestrians walking
on the left pavement and the other two pedestrians passing
the intersection. The bus is divided into several segments
and pedestrians are easy to be confused with noises and
other small objects that make the detection and tracking
challenging. However, thanks to our approach, the bus model
helps connecting the discontinued segments and temporal
information helps to distinguish pedestrians with noises and
reduce ambiguities. All moving objects are identified and
tracked successfully.

With initial evaluations, the MCMC detection and track-
ing outperforms the detection and tracking using MHT
in our previous work [10] in terms of a higher detec-
tion rate and less false alarms. Particularly pedestrians are
tracked successfully. In addition, with the use of object
models, segmented objects caused by laser discontinuities
are no longer a problem and tracking results are more
accurate. Note that in our model-based approach moving
objects are naturally classified. The readers can refer to:
http://emotion.inrialpes.fr/˜tdvu/videos/ for more resulting
videos.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a general framework for simultaneous
detection, classification and tracking moving objects in real
time using a laser scanner. The success of our approach
mainly lies in the combination of a top-down analysis process
and a bottom-up detection method that takes advantages of
the computational efficiency of the detection and retains the
optimality and robustness of the Bayesian formation from
the global view. A model-based approach is introduced to
help overcoming existing problems of detection and tracking
using laser scanners. Experiments and initial evaluations on
challenging real-life data show promising results.

Future works include a quantitative evaluation of our
algorithm. We intend to integrate a road detection procedure
in order to provide prior information on moving objects
that certainly improve the effectiveness of the detection and
tracking process. An optimization of code is ongoing.
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