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Abstract

An extension of the latent class model is presented for clustering categorical data by
relaxing the classical “class conditional independence assumption” of variables. This model
consists in grouping the variables into inter-independent and intra-dependent blocks, in order
to consider the main intra-class correlations. The dependency between variables grouped
inside the same block of a class is taken into account by mixing two extreme distributions,
which are respectively the independence and the maximum dependency. When the variables
are dependent given the class, this approach is expected to reduce the biases of the latent
class model. Indeed, it produces a meaningful dependency model with only a few additional
parameters. The parameters are estimated, by maximum likelihood, by means of an EM
algorithm. Moreover, a Gibbs sampler is used for model selection in order to overcome the
computational intractability of the combinatorial problems involved by the block structure
search. Two applications on medical and biological data sets show the relevance of this new
model. The results strengthen the view that this model is meaningful and that it reduces
the biases induced by the conditional independence assumption of the latent class model.
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1 Introduction

Nowadays practitioners often face very large data sets, which are difficult to analyze directly. In

this context, clustering (Jajuga et al. , 2002) is an important tool providing a partition among

individuals. Other approaches cluster both individuals and variables simultaneously (Govaert &

Nadif, 2003). Furthermore, with the increasing number of variables at hand, the risk of observing

correlated descriptors, even within the same class, is often high. In view of these difficulties,

the practitioner can choose between two approaches. The first approach consists in performing a

selection among the observed variables (Maugis et al. , 2009) in order to extract uncorrelated data,

thereby losing some potentially crucial information. The second approach consists in applying a

method for modeling the conditional dependencies on the whole set of variables.

Clustering methods can be divided into two kinds of approaches: geometric ones based on

the distances between individuals and probabilistic ones modelling the data generation process.

Geometric methods are generally faster than probabilistic ones, but they are often quite sensitive

to the choice of distance between individuals. Furthermore, as the probabilistic tools are not

available for these methods, difficult questions, e.g. the selection of the number of clusters cannot

be addressed rigorously. For categorical data, geometric methods either define a metric in the

initial variables space e.g. k-means (Huang et al. , 2005), or compute their metric on the axes of

the multiple correspondence analysis (Chavent et al. , 2010; Guinot et al. , 2001).

Many geometric approaches can also be interpreted in a probabilistic way. Thus, for the

continuous data, the classical k-means algorithm can be identified as an homoscedastic Gaussian

mixture model (Banfield & Raftery, 1993; Celeux & Govaert, 1995) with equal proportions. For

the categorical variables, Celeux & Govaert (1991) show that the CEM algorithm (McLachlan

& Krishnan, 1997), applied to a classical latent class model, maximizes a classical information

criteria close to a χ2 metric. Other links between the two approaches are described in Govaert

(2010), Chapter 9. Let us now introduce our proposal for this problem.

In the categorical case, the latent class model also known as naive Bayes belongs to the folk-

lore (Goodman, 1974; Celeux & Govaert, 1991). In this article, we refer to this model as the

conditional independence model (further denoted by cim). Classes are explicitly described by the

probability of each modality for each variable under the conditional independence assumption.
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The sparsity of the model, implied by this assumption, is a great advantage since it restricts the

curse of dimensionality. cim has obtained quite good results in practice in different areas (Hand

& Yu, 2001), e.g. behavioral science (Reboussin et al. , 2006) and medicine (Strauss et al. , 2006).

However, cim may suffer from severe biases when the data are intra-class correlated. For instance,

an application presented by Van Hattum & Hoijtink (2009) shows that cim over-estimates the

number of clusters when the conditional independence assumption is violated. For a long time,

people have tried to relax the conditional independence assumption by modeling conditional in-

teractions between variables using an additive model (Harper, 1972). The main drawback of this

approach is that its number of parameters becomes huge, making their estimation intractable.

Some other methods take into account the intra-class dependencies as mixtures of Bayesian

networks (Cheng & Greiner, 1999). Conditionally on each class, a directed acyclic graph is built

with a set of nodes representing each variable. However, if no constraint is added, the network

estimation is also quite complex. By constraining the network to be a tree, the model selection and

the parameter estimation can be easily performed. Moreover the correlation model enjoys great

flexibility. The extension of the dependency tree of Chow & Liu (1968) was done by Friedman

et al. (1997) for the supervised classification and by Meila & Jordan (2001) for the clustering.

However the main problem of these models is that they too often require too many parameters.

When covariates are available, the conditional dependencies between the categorical ones can

be modeled by a logistic function (Formann, 1992; Reboussin et al. , 2008). By assuming that

these covariates are unobserved, the multilevel latent class model (Vermunt, 2003, 2007) naturally

incorporates the intra-class dependencies. This model has connections with the approach of Qu

et al. (1996) where the intra-class dependencies are modeled by a latent continuous variable with

a probit function. The hybrid model (Muthén, 2008) is more general approach in which, for each

class, a factor analysis model is fitted to either all categorical variables or to those categorical

variables having dependencies. Recently, Gollini & Murphy (2013) proposed the mixture model

of latent traits analyzers which assumes that the distribution of the categorical variables depends

on both a categorical latent variable (the class) and many continuous latent traits variables. The

parameter estimation is also a difficult point which is solved via a variational approach. All these

models consider the intra-class dependencies, but their main drawback is that these dependencies

must be interpreted among relations with a latent variable. As a result, pertinent interpretation

3



can be difficult.

The log-linear models (Agresti, 2002; Bock, 1986) were originally proposed to model the log-

probability of each individual by selecting interactions between variables. The most general mix-

ture model is the log-linear mixture model as it is able to incorporate many forms of interactions.

It has been used at least since Hagenaars (1988). Espeland & Handelman (1989) used it to clus-

ter radiographic cross-diagnostics and Van Hattum & Hoijtink (2009) in a market segmentation

problem. However this model family is huge and the model selection is a real challenge. In the

literature, authors often require the modeled interactions ahead of time. Another option is to

perform a deterministic search e.g. the forward method which is sub-optimal. Furthermore, the

number of parameters to estimate increases with the conditional modalities interactions, thus im-

plying potential over-fitting and more difficult interpretation. The latent class model (cim) can

be seen as a particular log-linear mixture model, in which interactions are discarded. Our aim is

to present a version of the log-linear mixture model which takes into account the interactions of

order one or more while keeping the number of unknown parameters to a reasonable amount.

We propose to extend the classical latent class model (cim) for categorical data, by a new latent

class model which relaxes the conditional independence assumption. We refer to this new model

as the conditionally correlated model (denoted by cmm). This model is a parsimonious version of

the log-linear mixture model, and thus benefits from its interpretative power. Furthermore, we

propose a Bayesian approach to automatically perform model selection.

The ccm model groups the variables into conditionally independent blocks given the class.

The main intra-class dependencies are thus shown by the repartition of the variables into blocks.

This approach, allowing modeling of the main conditional interactions, was first proposed by

Jorgensen & Hunt (1996) in order to cluster continuous and categorical data. For cmm, each block

follows a particular dependency distribution which corresponds to our main contribution. This

distribution consists in a bi-component mixture of an independence and a maximal dependency

distribution according to the Cramer’s V criterion. This specific distribution of the blocks allows

summarizing the conditional dependencies of the variables with only one continuous parameter: the

maximum dependency distribution proportion. Thus, the model underlines the main conditional

dependencies and their strength.

The new model is a two-degree parsimonious version of a log-linear mixture model. A first
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degree of parsimony is introduced by grouping the variables which are conditionally dependent

into the same block. This repartition of the variables per blocks defines the interactions considered

by the model for each class. Moreover, the strength of the correlation is reflected by the proportion

of maximum dependency distribution. A second degree of parsimony is induced by the specific

distribution of the blocks. As for all log-linear mixture models, the selection of the pertinent

interactions is a combinatorial problem. We propose to perform this model selection via a Gibbs

sampler in order to overcome the enumeration of all the models. Thus, this general approach

could also select the interactions of any log-linear mixture model.

This paper is organized as follows. Section 2 reviews the principles of the latent class model.

Section 3 presents the new mixture model taking into account the intra-class correlations. Sec-

tion 4 is devoted to parameter estimation in the case where the number of classes and the blocks

of variables are supposed to be known. Section 5 presents a Gibbs algorithm for avoiding the

combinatorial difficulties inherent to block selection. Section 6 presents results on simulated data.

Section 7 presents a comparison between two main model-based clustering approaches and our

proposal on a classical medical data set, and presents another application on a larger real data set.

A tutorial of the R package Clustericat1 which performs the model selection and the estimation

of the parameters of cmm is given with the first application (see Appendix A). Section 8 presents

our conclusions.

2 Classical models

2.1 Latent class model: intra-class independence of variables

Observations to be classified are described with d discrete variables x = (x1, . . . ,xd) defined on

the probabilistic space X . Each variable j has mj response levels with mj ≥ 2 and is written

xj = (xj1, . . . , xjmj) where xjh = 1 if variable j takes modality h and xjh = 0 otherwise. In

the standard latent class model (cim), the variables are assumed to be conditionally independent

knowing the latent cluster. Furthermore, data are supposed to be drawn independently from a

mixture of g multivariate multinomial distributions with probability distribution function (pdf)

1The R package Clustericat is available on Rforge website at the following url: https://r-forge.r-

project.org/R/?group id=1803
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p(x ;θ) =

g
∑

k=1

πkp̊(x ;αk) with p̊(x ;αk) =
d
∏

j=1

mj
∏

h=1

(αjh
k )x

jh

, (1)

with θ = (π1, . . . , πg,α1, . . . ,αg), πk being the proportion of the component k in the mixture

where πk > 0 and
∑g

k=1 πk = 1, and αk = (αjh
k ; j = 1, . . . , d;h = 1, . . . ,mj) where αjh

k denotes the

probability that variable j has level h if the object is in cluster k and satisfies the two following

constraints: αjh
k > 0 and

∑mj

h=1 α
jh
k = 1.

The classical latent class model is much more parsimonious than the saturated log-linear model,

which requires (
∏

j mj) − 1 parameters, since it only requires νcim parameters with

νcim = (g − 1) + g

g
∑

k=1

(mj − 1). (2)

Its maximum likelihood estimator is easily computed via an EM algorithm (McLachlan & Krish-

nan, 1997). For the cluster analysis, the mixture identifiability up to a permutation of the class is

generally necessary (McLachlan & Peel, 2000). However, there are mixtures, such as the products

of Bernoulli distributions, which are not identifiable but which produce good results in several

applications. In order to relax this too stringent concept of identifiability, the notion of generic

identifiability was introduced by Allman et al. (2009): a model is generically identifiable if it is

identifiable except for a subset of the parameter space with Lebesgue measure zero.

2.2 Latent class model extension: intra-class independence of blocks

Despite its simplicity, the latent class model s to good results in many situations (Hand & Yu,

2001). However, in the case of intra-correlated variables, it can entail severe biases in the partition

estimation and it may also overestimate the number of clusters. In order to reduce these biases,

a classical extension of the latent class model was introduced by Jorgensen & Hunt (1996) for

conditionally correlated mixed data. This model is implemented in the Multimix software (Hunt

& Jorgensen, 1999).

It considers that conditionally on the class k, variables are grouped into bk independent blocks

and that each block follows a specific distribution. The repartition in blocks of the variables

determines a partition σk = (σk1, . . . ,σkbk) of {1, . . . , d} in bk disjoint non-empty subsets where

σkb represents the subset b of variables in the partition σk. This partition defines x{kb} = xσkb =
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(x{kb}j; j = 1, . . . , d{kb}) which is the subset of x associated to σkb. The integer d{kb} = card(σkb)

is the number of variables in block b of component k and x{kb}j = (x{kb}jh;h = 1, . . . ,m
{kb}
j )

corresponds to variable j of block b for component k with x{kb}jh = 1 if the individual takes

modality h for variable x{kb}j and x{kb}jh = 0 otherwise and where m
{kb}
j represents the number

of modalities of x{kb}j. Note that different repartitions of the variables into blocks are allowed for

each component and they are grouped into σ = (σ1, . . . ,σg).

For each component k, each block b follows a specific parametric distribution denoted as

p(x {kb};θkb) where θkb groups the parameters of this distribution. The model pdf is written as

p(x ;σ,θ) =

g
∑

k=1

πkp(x ;σk,θk) with p(x ;σk,θk) =

Bk
∏

b=1

p(x {kb};θkb), (3)

where θ is redefined as θ = (π1, . . . , πg,θ1, . . . ,θg) with θk = (θk1, . . . ,θkbk). Figure 1 presents an

example of the distribution with conditional independent blocks for a mixture with two components

described by five variables. Blank cells indicate that the intra-class correlation is neglected and

black cells indicate that this correlation is taken into account. For instance, Figure 1.a illustrates

the distribution of the class 1 where two blocks (b1 = 2) are considered. More precisely, the first

block is composed by the first two variables (σ11 = {1, 2}) and the second block is composed by the

last three variables (σ12 = {3, 4, 5}). Note that the classical latent class model with conditional

independence, would be represented by white cells off the diagonal and black cells on the diagonal.
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x
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x
{22}

x
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(b)

Figure 1: Example of the conditional independent blocks mixture model with g = 2 and d = 5,

(a) k = 1, B1 = 2 and σ1 = ({1, 2}, {3, 4, 5}), (b) k = 2, B2 = 3 and σ2 = ({1, 5}, {2, 4}, {3}).

This approach is very general, since any distribution can be chosen for each block as soon as it
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is different from the distribution of independence. The mixture model by conditional independent

blocks is a parsimonious version of the log-linear mixture model. Indeed, the distribution of

variables in blocks determines which interactions are modeled. The interactions between variables

of different blocks will be zero and those between variables of the same block can be modeled by

the specific distribution of the block. The limiting case of this model where bk = d for each class

is equivalent to the latent class model with the conditional independence assumption.

The generic identifiability of the mixture model with conditionally independent blocks follows,

under specific constraints, from Theorem 4 of Allman et al. (2009) by assuming that the dis-

tribution of each block is itself identifiable. This proof is given in Appendix A of Marbac et al.

(2013).

3 Intra-block parsimonious distribution

The goal is now to define a parsimonious distribution for each block that takes into account the

dependency between variables. Furthermore, the parameters of the distribution inside the block

must be meaningful for the practitioner. In this context, we propose to model the distribution

of each block by a mixture of the extreme distributions according to the Cramers V criterion

computed on all the variable couples. The model results in a bi-component mixture between an

independence distribution and a maximum dependency distribution which can be easily interpreted

by the user. The maximum dependency distribution is introduced first. The resulting conditional

correlated model (CCM) is also defined as a block model extension of the latent class model where

the distribution inside the block is modeled by this bi-component mixture. Remark: Without loss

of generality, the variables are considered as ordered by decreasing number of modalities in each

block: (k, b) mkb j mkb j

The goal is now to define a parsimonious distribution for each block that takes into account the

dependency between variables. Furthermore, the parameters of the distribution inside the block

must be meaningful for the practitioner. In this context, we propose to model the distribution

of each block by a mixture of the extreme distributions according to the Cramers V criterion

computed on all the variable couples. The model results in a bi-component mixture between an

independence distribution and a maximum dependency distribution which can be easily interpreted

by the user. The maximum dependency distribution is introduced first. The resulting conditional
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correlated model (ccm) is also defined as a block model extension of the latent class model where

the distribution inside the block is modeled by this bi-component mixture.

Remark: Without loss of generality, the variables are considered as ordered by decreasing number

of modalities in each block: ∀(k, b) m
{kb}
j ≥ m

{kb}
j+1 where j = 1, . . . , d{kb} − 1.

3.1 Maximum dependency distribution

The maximum dependency distribution is defined as the “opposite” distribution of independence

according to the Cramer’s V criterion computed on all the variable couples. Indeed, this latter

minimizes this criterion while the maximum dependency distribution maximizes it. Under this

distribution, the modality knowledge of one variable provides the maximum information on all the

subsequent variables. Note that it is a non-reciprocal functional link between variables. Indeed,

if x{kb} arises from this distribution, the knowledge of the variable having the largest number

of modalities determines exactly the others but the reverse does not necessarily apply. So, this

distribution defines successive surjections from the space of x{kb}j to the space of x{kb}j+1 with

j = 1, . . . , d{kb} − 1 (recall that the variables are ordered by decreasing number of modalities in

each block). In fact, it is a reciprocal functional link only when m
{kb}
j = m

{kb}
j+1 .

Since the first variable determines the other ones, this distribution is defined by a prod-

uct between the multinomial distribution of the first variable parametrized by τ kb = (τhkb;h =

1, . . . ,m
{kb}
1 ) with τhkb ≥ 0 and

∑m
{kb}
1

h=1 τhkb = 1, and the product between the conditional distri-

butions defined as specific multinomial distributions. So, conditionally on x{kb}1h = 1, x{kb}j is

deterministic for each j = 2, . . . , d{kb}. Indeed, in such a case, x{kb}j follows a specific multinomial

distribution whose parameters are 0 and 1. More precisely, this distribution is parametrized by

δ
hj
kb = (δhjh

′

kb ;h′ = 1, . . . ,m
{kb}
j ) with the following constraints defining the successive surjections:

δhjh
′

kb ∈ {0, 1},
∑m

{kb}
j

h′=1 δhjh
′

kb = 1 (multinomial distribution) and
∑m

{kb}
1

h=1 δhjh
′

kb ≥ 1 (surjections).

By denoting δkb = (δhj
kb ;h = 1, . . . ,m

{kb}
1 ; j = 2, . . . , d{kb}), the pdf of maximum dependency

distribution is defined as:

ṕ(x{kb}; τ kb, δkb) = p(x{kb}1; τ kb)
d{kb}
∏

j=2

p(x{kb}j|x{kb}1; {δhj
kb}h=1,...,m

{kb}
1

)

=

m
{kb}
1
∏

h=1

(

τhkb

d{kb}
∏

j=2

m
{kb}
j
∏

h′=1

(δhjh
′

kb )x
{kb}jh′

)x{kb}1h

. (4)
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Figure 2 shows two examples of the maximum dependency distributions. The probabilities of

the joint distribution are represented by the area of dark boxes. Notice that δkb defines the position

where the probabilities are non-zero (location of a dark boxes) and τ kb defines the probabilities

of this non-zero cells (area of the dark boxes). For the example illustrated in Figure 2.a, the

probability that the first variable takes the modality one is 0.1 (τ 111 = 0.1). Moreover, conditionally

on x{11}11 = 1, variable x{11}2 is deterministic since the probability that x{11}21 = 1 given x{11}11 =

1 is one.

τ11

1

τ11

2

τ11

3
τ11

4

x
{11}11

x
{11}12

x
{11}13

x
{11}14

x
{11}23

x
{11}22

x
{11}21

(a) (b)

Figure 2: Two examples of the maximum dependency distributions for the first component of the

mixture illustrated by Figure 1(a). (a) The first block is displayed with m{11}1 = 4, m{11}2 = 3,

δh1h11 = 1 for h = 1, 2, 3, δ41311 = 1 and τ 11 = (0.1, 0.3, 0.2, 0.4); (b) The second block is displayed

with m{12}1 = m{12}2 = m{12}3 = 2, δhjh
′

12 = 1 iff (h = h′) and τ 12 = (0.5, 0.5).

A sufficient condition of identifiability is to impose τhkb > 0 for all h = 1, . . . ,m
{kb}
1 . This

distribution has very limited interest because it is so unrealistic that it can almost never be used

alone. We will see in the next section how to use it in a more efficient way.

3.2 A new block distribution: mixture of two extreme distributions

We proposed to model the distribution of each block by a bi-components mixture between an

independence distribution and a maximum dependency distribution. For block b of component k,
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the block distribution is modeled by:

p(x {kb};θkb) = (1 − ρkb)p̊(x {kb};αkb) + ρkbṕ(x {kb}; τ kb, δkb), (5)

where θkb = (ρkb,αkb, τ kb, δkb) and where ρkb is the proportion of the maximum dependency distri-

bution in this mixture with 0 ≤ ρkb ≤ 1. The proposed model requires few additional parameters

compared with the conditional independence model. In addition, it is easily interpretable as ex-

plained in the next paragraph. Note that the limiting case where ρkb = 0 considers that the block

follows an independence distribution. In this particular case, the parameters of the maximum

dependency distribution are no longer defined.

Under this distribution, the proportion of the maximum dependency distribution reflects the

deviation from independence under the assumption that the other allowed distribution is the

maximum dependency distribution. The parameter ρkb gives an indicator of the inter-variables

correlation of the block. It is not here a pairwise dependency among variables but a dependency

between all variables of the block. Furthermore, it stays bounded when the number of variables

is larger than two while the Cramer’s V is non-upper-bounded in this case. The intra-variables

dependencies between the variables are defined by δkb. The strength of these dependencies is

explained by τ kb since it gives the weight of the over-represented modalities crossing compared

with the independence distribution.

Above, we interpreted the distribution by conditionally independent blocks as a parsimonious

version of the log-linear mixture model because it determines the interactions to be modeled for

each class. By choosing the proposed distribution for blocks, a second level of parsimony is added.

Indeed, among the interactions allowed by this distribution with independent blocks, only those

corresponding to the maximum dependency distribution will be modeled. Other interactions are

considered as null.

Properties:

• The ccm, stays parsimonious compared with cim since, for each block with at least two

variables, the number of the additional parameters depends only on the number of modalities

of the first variable of the block and not on the number of variables in the block. By using
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νcim defined in Equation (2), the number of parameters of ccm is denoted νccm by:

νccm = νcim +
∑

{(k,b)|d{kb}>1}

m
{kb}
1 . (6)

• The proposed distribution is identifiable under the condition that the block is composed by

at least three variables (d{kb} > 2) or that the modality number of the last variable of the

block is more than two (m
{kb}
2 > 2). This result is demonstrated in Appendix B of Marbac

et al. (2013). The parameter ρkb is a new indicator allowing measuring the correlation

between variables, not limited to correlation between variable couples. In the case where the

identifiability conditions cannot be met, we distinguish two cases. If d{kb} = 1, then block

b contains only one variable, and the proposed model is reduced to model a multinomial

distribution, ρkb = 0 and the maximum dependency distribution is not defined. If d{kb} = 2

and m
{kb}
2 = 2 then a new constraint is added. In order to have the most meaningful

parameters, the chosen value of ρkb is the largest value maximizing the log-likelihood. This

additional constraint does not falsify the definition of ρkb as an indicator of the dependency

strength between the variables of the same block. Furthermore, this constraint is natural

since blocks with the biggest dependencies are wanted. Note that ρkb seems to be correlated

with the Cramer’s V. An example is given in Section 3 of Marbac et al. (2013).

• Note that the marginal probabilities given class can be straightforwardly deduced from the

parameters of the model.

4 Estimation of the parameters

For a fixed model (g,σ), the parameters must be estimated. Since the proposed distribution ccm

has two latent variables (the class membership and the intra-block distribution membership), two

algorithms derived from the EM algorithm perform the estimation of the associated continuous

parameters. The combinatorial problems arising from the consideration of the discrete parameters

are avoided by using a Metropolis-Hastings algorithm.
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4.1 Global GEM algorithm

The whole data set consisting of n independent and identically distributed individuals is denoted

by x = (x 1, . . .xn) where x i ∈ X . The objective is to obtain the maximum log-likelihood estimator

θ̂ defined as (g is now implicit in each expression)

θ̂ = argmaxθL(θ;x,σ) with L(θ;x,σ) =
n

∑

i=1

ln
(

p(x i;σ,θ)
)

. (7)

The search for maximum likelihood estimates for mixture models entails solving equations

having no analytical solutions. For the mixture models, the assignments of the individuals into

the classes can be considered as missing data. So, the tool generally used is the Expectation-

Maximization algorithm (denoted EM algorithm) and its extensions (Dempster et al. , 1977;

McLachlan & Krishnan, 1997). We denote the unknown indicator vectors of the g clusters by

z = (zik; i = 1, . . . , n; k = 1, . . . , g) where zik = 1 if x i arises from cluster k, zik = 0 otherwise.

Thus, the mixture model distribution corresponds to the marginal distribution of the random

variable X obtained from the couple distribution of the random variables (X,Z). In order to

maximize the log-likelihood, the EM algorithm uses the complete-data log-likelihood which is

defined as

Lc(θ;x, z,σ) =
n

∑

i=1

g
∑

k=1

zik ln
(

πkp(x i;σk,θk)
)

. (8)

The EM algorithm is an iterative algorithm which alternates between two steps: the compu-

tation of the complete-data log-likelihood conditional expectation (E step) and its maximization

(M step). Many algorithms are derived from the EM algorithm and among them the Generalized

EM algorithm (GEM) is of interest to us. It works on the same principle as the EM algorithm,

but the maximization step is replaced by a GM step where the proposed parameters increase the

expectation of the complete-data log-likelihood according to its previous value without necessarily

maximizing it.

We prefer to use the GEM algorithm, since the maximization step in the EM algorithm requires

estimating the continuous parameters for too many possible values of the discrete parameters

in order to warrant the maximization of the complete-data log-likelihood expectation. Indeed,

exhaustive enumeration for estimating the discrete parameters is generally impossible when a

block contains variables with many modalities and/or many variables, as detailed below. If S(a, b)

is the number of possible surjections from a set of cardinal a into a set of cardinal b, then δkb is
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defined in the discrete space of dimension
∏d{kb}−1

j=1 S(m
{kb}
j ,m

{kb}
j+1 ). For example, a block with three

variables and m{kb} = (5, 4, 3) implies 51, 840 possibilities for δkb. Thus, a stochastic approach

is proposed in Section 4.2 to overcome this problem. Then, the estimation of the continuous

parameters conditionally on the discrete parameters is performed via the classical EM algorithm

presented in Section 4.3 since their estimation cannot be obtained in closed form. At iteration

(r), the steps of the global GEM can be written as:

• Eglobal step: z
(r)
ik =

π
(r)
k

p(xi;σk,θ
(r)
k

)
∑g

k′=1
π
(r)

k′
p(xi;σk′ ,θ

(r)

k′
)
,

• GMglobal step: π
(r+1)
k =

n
(r)
k

n
where n

(r)
k =

∑n

i=1 z
(r)
ik and ∀(k, b) θ

(r+1)
kb is updated under the

constraint that the conditional expectation of complete-data log-likelihood increases (see

Sections 4.2 and 4.3).

Initialization of the algorithm: Since this algorithm is performed in an stochastic algorithm

used for the model selection (see Section 5) and since this latter has an influence on the GEM

initialization, this point will be detailed in Section 5.2.

Stopping criterion: The GEM algorithm is stopped after rmax iterations and we fix θ̂ = θ
(rmax).

4.2 Details of the GMglobal step of the GEM

The maximization of the expected complete-data log-likelihood is done by optimizing its terms

for each (k, b). Thus, the determination of θ
(r+1)
kb is performed independently of the parameters

of the other blocks. A Metropolis-Hastings algorithm (Robert & Casella, 2004) is also performed,

for each (k, b), to avoid the combinatorial problems induced by the detection of the discrete

parameters δkb. It performs a random walk over the discrete parameters space and computes the

maximum likelihood estimators of the continuous parameters (ρkb,αkb, τ kb) associated with them.

This stochastic algorithm allows finding the estimator maximizing the expected complete-data

log-likelihood of block b for component k:

argmax
θkb

n
∑

i=1

z
(r)
ik ln p(x

{kb}
i ;θkb). (9)

At each iteration (s) of this Metropolis-Hastings algorithm, a discrete parameter denoted by

δ
(r,s+ 1

2
)

kb is sampled with a uniform distribution in a neighborhood of δ
(r,s)
kb denoted as ∆(δ

(r,s)
kb ).

14



Then the continuous parameters (ρ
(r,s+ 1

2
)

kb ,α
(r,s+ 1

2
)

kb , τ
(r,s+ 1

2
)

kb ) are computed, conditionally on the

value of δ
(r,s+ 1

2
)

kb , in order to maximize the expected complete-data log-likelihood of block b for

component k:
n

∑

i=1

z
(r)
ik ln p(x

{kb}
i ; ρkb,αkb, τ kb, δ

(r,s+ 1
2
)

kb ). (10)

The candidate parameters are now denoted by θ
(r,s+ 1

2
)

kb = (ρ
(r,s+ 1

2
)

kb ,α
(r,s+ 1

2
)

kb , τ
(r,s+ 1

2
)

kb , δ
(r,s+ 1

2
)

kb ). The

whole block parameters θ
(r,s+1)
kb of the next step are then defined as θ

(r,s+ 1
2
)

kb with the acceptance

probability µ(r,s+1) and θ
(r,s)
kb otherwise, where:

µ(r,s+1) = min

{

∏n

i=1 p(x
{kb}
i ;θ

(r,s+ 1
2
)

kb )z
(r)
ik |∆(δ

(r,s+ 1
2
)

kb )|
∏n

i=1 p(x
{kb}
i ;θ

(r,s)
kb )z

(r)
ik |∆(δ

(r,s)
kb )|

, 1

}

, (11)

|∆(δ
(r,s)
kb )| denoting the cardinal of ∆(δ

(r,s)
kb ). Thus, at iteration (s), the algorithm performs the

three following steps:

• Stochastic step on δkb: generate δ
(r,s+ 1

2
)

kb with a uniform distribution among the elements

of ∆(δ
(r,s)
kb ),

• Maximization step on the continuous parameters (Mθ step): compute the continu-

ous parameters of θ
(r,s+ 1

2
)

kb (see Section 4.3),

• Stochastic step on θkb: sample θ
(r,s+1)
kb =







θ
(r,s+ 1

2
)

kb with probability µ(r,s+1)

θ
(r,s)
kb otherwise.

Neighborhood ∆(δ
(r,s)
kb ) is defined as the set of parameters where at most two surjections are

different from that of δ
(r,s)
kb . Figure 3 illustrates this definition.

Initialization of the algorithm: The initialization of the algorithm is done by θ
(r+1,0)
kb = θ

(r)
kb .

Stopping criterion: This algorithm is stopped after a number of iterations smax. The parameter

θ
(r+1)
kb = θ

(r+1,s̃)
kb is returned with s̃ = argmax

s

∑n

i=1 z
(r)
ik ln p(x

{kb}
i ;θ

(r,s)
kb ). Thus, the proposed

initialization ensures an increased likelihood at each iteration of the GEM algorithm.
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Figure 3: Example of ∆(δkb) with d{kb} = 2 and m{kb} = (3, 2). For row h′ and column h, a black

cell indicates that δh2h
′

kb = 1 and a white cell that δh2h
′

kb = 0: (a) δkb; (b.1), (b.2), (b.3), (b.4) are

the elements of ∆(δkb).

Remark: When the space of possible δkb is small (for example when the block groups a small

number of binary variables), an exhaustive approach obtains the same results as the proposed

algorithm with less computation time. Thus, the retained approach (exhaustive or stochastic)

depends on the number of variables and modalities.

4.3 Details of the Mθ step of the GMglobal step

As there is a second level of mixing, another EM algorithm can be performed for the contin-

uous parameters (ρkb,αkb, τ kb) estimation by introducing other unknown vectors corresponding

to the indicator of the blocks distributions conditionally on z. These vectors are denoted by

y = (y{kb}; k = 1, . . . , g; b = 1, . . . ,bk) with y{kb} = (y
{kb}
1 , ..., y

{kb}
n ) where y

{kb}
i = 1 if x

{kb}
i arises

from the maximum dependency distribution for block b of cluster k and y
{kb}
i = 0 if x

{kb}
i arises

from the independence distribution for block b of cluster k. The whole mixture model distribu-

tion corresponds to the marginal distribution of the random variable X obtained from the triplet

distribution of the random variables (X,Y,Z). Since the blocks are independent conditionally on

Z, the full complete-data log-likelihood (both in Y and Z) is defined as:

Lfull
c (θ;x,y, z,σ) =

n
∑

i=1

g
∑

k=1

zik

(

lnπk +

Bk
∑

b=1

(

(1− y
{kb}
i ) ln(1− ρkb) + (1− y

{kb}
i ) ln p̊(x

{kb}
i ;αkb)

+ y
{kb}
i ln ρkb + y

{kb}
i ln ṕ(x

{kb}
i ; τ kb, δkb)

)

)

. (12)

At iteration (t), the local EM algorithm estimates the continuous parameters of block b, with

fixed values of z(r) and δ
(r,s+ 1

2
)

kb , by the following two steps:
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• Elocal step: y
{kb}(r,s+ 1

2
,t)

i =
ρ
(r,s+1

2 ,t)

kb
ṕ(x

{kb}
i ;τ

(r,s+1
2 ,t)

kb
,δ

(r,s+1
2 )

kb
)

p(x
{kb}
i ;ρ

(r,s+1
2 ,t)

kb
,α

(r,s+1
2 ,t)

kb
,τ

(r,s+1
2 ,t)

kb
,δ

(r,s+1
2 )

kb
)
,

• Mlocal step: ρ
(r,s+ 1

2
,t+1)

kb =
n
(r,s+1

2 ,t)

kb

n
(r)
k

, τ
(r,s+ 1

2
,t+1)

kb =
∑n

i=1 z
(r)
ik

y
{kb}(r,s+1

2 ,t)

i x
{kb}1h
i

n
(r,s+1

2 ,t)

kb

,

α
(r,s+ 1

2
,t+1)

kb =
∑n

i=1 z
(r)
ik

(1−y
{kb}(r,s+1

2 ,t)

i )x
{kb}jh
i

n
(r)
k

−n
(r,s+1

2 ,t)

kb

, where n
(r,s+ 1

2
,t)

kb =
∑n

i=1 z
(r)
ik y

{kb}(r,s+ 1
2
,t)

i .

Conjecture: During our numerous experiments, we empirically noticed that the log-likelihood

function of the mixture between the independence and the maximum dependency distributions

had a unique optimum. We conjecture that this function has indeed a unique maximum.

Initialization of the algorithm: The previous conjecture allows to perform only one initial-

ization of the EM algorithm fixed to: (ρ
(r,s+ 1

2
,0)

kb ,α
(r,s+ 1

2
,0)

kb , τ
(r,s+ 1

2
,0)

kb ) = (ρ
(r,s)
kb ,α

(r,s)
kb , τ

(r,s)
kb ).

Stopping criterion: This algorithm is stopped after a number of iterations denoted by tmax

and returns the value of block parameters θ
(r,s+ 1

2
)

kb defined as θ
(r,s+ 1

2
)

kb = θ
(r,s+ 1

2
,tmax)

kb .

Remark: In the specific case where δkb are known for each (k, b), the estimation of all the

continuous parameters could be performed by a unique EM algorithm where, at iteration (r), the

E step would compute both z(r) and y(r) while the M step would estimate all the parameters

maximizing the expectation of the full complete-data log-likelihood.

5 Model selection

5.1 Gibbs algorithm for exploring the space of models

Since the number of components g determines the dimension of σ, the model construction is done

in two steps. Firstly, the selection of the number of components and, secondly, the determination

of the variable repartition per blocks for each component. In a Bayesian context, the best model

(ĝ, σ̂) is defined as (Robert, 2005):

(ĝ, σ̂) = argmax
g,σ

p(g,σ|x). (13)
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Thus, by considering that p(g) = 1
gmax

if g ≤ gmax and 0 otherwise, where gmax is the maximum

number of classes allowed by the user, and by assuming that p(σ|g) follows a uniform distribution,

the best model is also defined as:

(ĝ, σ̂) = argmax
g

[

argmax
σ

p(x|g,σ)
]

. (14)

To obtain (ĝ, σ̂), a Gibbs algorithm is used for estimating argmaxσ p(x|g,σ), for each value

of g ∈ {1, . . . , gmax}. Indeed, this method limits the combinatorial problem involved by the

detection of the block structure of variables. A reversible jump method could be used (Richardson

& Green, 1997), but this approach is rarely performed with mixed parameters (continuous and

discrete). Indeed, in such a case, it is difficult to define a mapping between the parameters space

of two models. So, we propose to use an easier Gibbs sampler-type having p(σ|x, g) as stationary

distribution. It alternates between two steps: the generation of a stochastic neighborhood Σ[q]

conditionally on the current model σ[q] by a proposal distribution and the generation of a new

pattern σ[q+1] included in Σ[q] with a probability proportional to its posterior probability. At

iteration [q], it is written as:

• Neighborhood step: generate a stochastic neighborhood Σ[q] by a proposal distribution

given below conditionally on the current model σ[q],

• Pattern step: σ[q+1] ∼ p(σ|x, g,Σ[q]) with p(σ|x, g,Σ[q]) =







p(x|g,σ)∑
σ
′∈Σ[q] p(x|g,σ

′)
if σ ∈ Σ[q]

0 otherwise.

A possible deterministic neighborhood of σ[q] could be defined as the set of models where, at

most one variable is affected, for one component, in another block (possibly creating a new block):
{

σ : ∃!(k, b, j) j ∈ σ
[q]
kb and j /∈ σkb

}

∪
{

σ[q]
}

. However, as this deterministic neighborhood can

be very large, our proposal distribution allows reducing it to a stochastic neighborhood Σ[q] by

reducing the number of (k, b) where σkb could be different to σ
[q]
kb . Thus, one component k[q]

is randomly sampled in {1, . . . , g} then one block b
[q]
from is randomly sampled in {1, . . . , B

[q]

k[q]
}.

Another block b[q] is randomly sampled in {1, . . . , B
[q]

k[q]
} \ b

[q]
from and the set b

[q]
to = {b[q], B

[q]

k[q]
+ 1}

is built. The stochastic neighborhood Σ[q] is then defined as:

Σ[q] =
{

σ : ∃!(k, b, j) j ∈ σ
[q]
kb , j /∈ σkb and j ∈ σkb′ with k = k[q], b = b

[q]
from, b

′ ∈ b
[q]
to

}

∪
{

σ
[q]
}

. (15)

We denote the elements of Σ[q] as σ[q+ε(e)] where ε(e) = e

|Σ[q]|+1
and e = 1, . . . , |Σ[q]|. Figure 4

shows an illustration of this definition.

18



X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

(a)

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

(b)

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

X
4

X
3

X
2

X
1

X
1

X
2

X
3

X
4

(c)

Figure 4: Example of the support of Σ[q] in a case of four variables. If the variable of row j and

the variable of column j′ are in the same block then cell (j, j′) is painted in black. This cell is

painted in white otherwise. (a) Graphical representation of σ
[q]
k = ({1, 2}, {3, 4}); (b) Elements of

Σ[q] if b
[q]
from = 1; (c) Elements of Σ[q] if b

[q]
from = 2.

At the generation pattern step, the previous algorithm needs the value of p(x|g,σ) ∀σ ∈ Σ[q].

By using the BIC approximation (Schwarz, 1978; Lebarbier & Mary-Huard, 2006), this probability

is approximated by:

ln p(x|g,σ) ≃ L(θ̂;x, g,σ) −
νccm

2
log(n), (16)

θ̂ being the maximum likelihood estimator obtained by the GEM algorithm previously described

in Section 4. Thus, at the iteration [q], for each e = 1, . . . , |Σ[q]|, estimator θ̂
[q+ε(e)]

associated to

element σ[q+ε(e)] is computed by the GEM algorithm.

Initialization: Whatever the initial value selected for σ[0], the algorithm converges to the same

value of σ. However, this convergence can be very slow when the initialization is poor. Since

blocks consist of the most correlated variables, a Hierarchical Ascendant Classification (HAC) is

used on the matrix of Cramer’s V distances on the variable couples. The partition produced by the

HAC minimizing the block number without blocks consisting of more than four variables is chosen

for each σ
[0]
k . For the initialization, the variables number of a block is limited to four, because

very few blocks having more than four variables were exhibited in the course of our experiments.

Obviously, the Gibbs algorithm can then violate this initial constraint if necessary.
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Stopping criterion: The algorithm is stopped when qmax successive iterations have not discov-

ered a better model.

5.2 Consequences of the Gibbs algorithm on the GEM algorithm

Initialization of the GEM algorithm: At iteration [q] of the Gibbs algorithm, the GEM al-

gorithm estimates θ̂
[q+ε(e)]

associated to model σ[q+ε(e)] for e = 1, . . . , |Σ[q]|. Since these models are

close to σ[q], their maximum likelihood estimators should be closed to θ̂
[q]

. The GEM algorithm

initialization is also done by the value of θ̂
[q]

for the not modified blocks. Thus, θ
[q+ε(e)](0)
kb = θ̂

[q]

kb

if the blocks are not modified (σ
[q+ε(e)]
kb = σ

[q]
kb). For the other blocks, the continuous parameters

are randomly sampled. For those blocks, in order to avoid the combinatorial problems, we use a

sequential method to initialize δ
[q+ε(e)](0)
kb : the surjections from x{kb}1 to x{kb}j are sampled, accord-

ing to x and to the continuous parameters previously sampled (ρ
[q+ε(e)](0)
kb ,α

[q+ε(e)](0)
kb , τ

[q+ε(e)](0)
kb ),

for each j = 2, . . . , d{kb} as follows:

δ
.j[q+ε(e)](0)
kb ∝

n
∏

i=1

p(x
{kb}1
i , x

{kb}j
i ; ρ

[q+ε(e)](0)
kb ,α

1[q+ε(e)](0)
kb ,α

j[q+ε(e)](0)
kb , τ

[q+ε(e)](0)
kb , δ.jkb)

z
[q]
ik , (17)

where δ
.j[q+ε(e)]
kb = (δ

hj[q+ε(e)]
kb ;h = 1, . . . ,m

{kb}
1 ) and where z

[q]
ik = E

[

Zik|xi,θ
[q]
]

.

Remark about rmax: As said in Section 4.1, the algorithm is stopped after a fixed number of

iterations rmax. If the algorithm is stopped before its convergence, the proposed initialization limits

the problems. Indeed, if the model has a high a posteriori probability, it will stay in neighborhood

Σ[q] during some successive iterations, so its log-likelihood will increase.

6 Simulations

Table 1 presents the adjustment parameters values used for all the simulations.

Algorithms Gibbs GEM Metropolis-Hastings EM

Criteria qmax = 20 × d rmax = 10 smax = 1 tmax = 5

Table 1: Values of the different stopping criteria.
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As these algorithms are interlocked, the iterations number of the most internal algorithms are

small. Since the number of possible models increases with d, we propose to set: qmax = 20 × d.

When the best model is selected by the Gibbs algorithm, this latter will stay in this model during

many iterations so the Metropolis-Hastings and the EM algorithm are performed many times.

Thus, it is not necessary to have a large number of iterations as stopping criterion.

6.1 Study of the algorithm for the δkb estimation

In this section, we illustrate the performance of the Metropolis-Hastings algorithm used for the δkb

estimation (see Section 4.2) and the relevance of its initialization (see Equation (17)). Since this

algorithm is interlocked in the Gibbs and in the GEM algorithm, we need it to converge quickly.

The following simulations show that the algorithm stays relevant up to six modalities per variable

and up to six variables per block. These conditions hold in most situations.

Samples of size 200 described by variables having the same number of modalities are generated

by a mixture between an independence distribution and a maximum dependency distribution.

The parameter estimation is also performed by the Metropolis-Hastings algorithm, described in

Section 4.2, since only one class is generated. The discrete parameters initializations are performed

according to Equation (17) with zi1 = 1 for i = 1, . . . , 200.

Figure 5 shows the box-plots of the iterations number needed by the Metropolis-Hastings

algorithm for finding the true links between modalities maximizing the likelihood2. According

to these simulations, one observes that the results of this algorithm are good as a result of its

initialization which allows significantly reducing the number of iterations needed in order to find

the maximum likelihood estimators.

6.2 Study of the algorithm for model selection

In order to illustrate the efficiency of the algorithm for the model selection (and also the included

estimation process), we want to study the evolution of the Kullback-Leibler divergence according to

the number of variables and to the size of the data set. Thus, 100 samples are generated for many

situations according to the ccm with two components. Note that the parameter u is introduced

2In fact, the algorithm is stopped as soon as it finds a discrete estimator involving a likelihood higher than or

equal to the likelihood obtained with the true discrete parameters used for the simulation.

21



2 3 4 5 6

0
1
0
0

2
0
0

3
0
0

4
0
0

modalities number

it
e
ra

ti
o
n
s
 n

u
m

b
e
r

(a)

2 3 4 5 6

0
1
0
0

2
0
0

3
0
0

4
0
0

modalities number

it
e
ra

ti
o
n
s
 n

u
m

b
e
r

(c)

3 4 5 6

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

number of variables

it
e
ra

ti
o
n
s
 n

u
m

b
e
r

(b)

3 4 5 6

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

number of variables

it
e
ra

ti
o
n
s
 n

u
m

b
e
r

(d)

Figure 5: Box-plots of the number of iterations required by the Metropolis-Hastings algorithm for finding the best

links between modalities, according to the number of modalities when datasets are simulated with a proportion

of maximum dependency distribution equal to 0.5. (a) Three variables with the proposed initialization; (b) Three

modalities per variable with the proposed initialization; (c) Three variables with a random initialization; (d) Three

modalities per variable with a random initialization.

for controlling the overlapping of classes: when it is close to one their overlapping (Bayes error)

is close to one. These parameters set the error rate to 0.10 for each studied situation:

σkb = (d/b, 1 + d/b) ρkb = 0.6(1− u) τ kb = (0.60, 0.20, 0.20),

δh2h
′

1b = 1 iff h = h′ δ1221b = δ2231b = δ3211b = 1 α
j
1b = (0.20, 0.20, 0.60),

α
1
2b = α

1
1b(1− u) + (0.075, 0.850, 0.075)u and α

2
2b = α

2
1b(1− u) + (0.850, 0.075, 0.075)u.
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Table 2 shows the mean and the standard deviation of the Kullback-Leibler divergence between

the parameters used for the dataset generation and the estimated parameters according to the

number of variables. When n increases, the Kullback-Leibler divergence converges to zero. It

confirms the good behavior of the proposed algorithm.

d \ n 100 200 400 800

4 0.77 (1.34 ) 0.26 (0.26 ) 0.15 (0.05 ) 0.12 (0.05 )

6 1.22 (1.77 ) 0.27 (0.14 ) 0.09 (0.07 ) 0.05 (0.05 )

8 1.72 (2.50 ) 0.41 (0.20 ) 0.09 (0.05 ) 0.05 (0.03 )

10 1.73 (4.06 ) 0.52 (0.14 ) 0.10 (0.03 ) 0.04 (0.03 )

Table 2: Mean (standard deviation) of the Kullback-Leibler divergence.

7 Application

7.1 Dentistry clustering

The Handelman’s dentistry data (Handelman et al. , 1986) display the evaluation of 3869 dental

x-rays (sound or carious) performed by five dentist and possibly showing incipient caries. This

data set has been clustered by several models in the past. It is suggested that there are two main

classes: the sound teeth and the carious ones.

According to the BIC criterion, data are split into three classes by cim. Furthermore, depen-

dencies are observed between the variables into classes since the Cramer’s V computed per class is

not close to zero. Thus, Espeland & Handelman (1989) apply a log-linear mixture model to fit the

data. The authors set the model, by adding some assumptions to better fit the data. More pre-

cisely, they consider a mixture with four components. The first two components take into account

the interactions between dentists 3 and 4. The last two components are specific since they allow

only one modality interaction, when all the diagnoses are respectively carious and sound. Note

that these assumptions are required by the above authors due to their realistic nature. Indeed,

this model fits the data better than cim. On the other hand, its interpretation needs the analysis

of four classes.
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As the last two classes seem artificial, Qu et al. (1996) prefer to use the random effects models

in a latent class analysis with two classes. They assume that the conditional dependencies can be

modeled by a single continuous latent variable varying among the individuals. According to the

authors, one class represents the sound teeth and the other represents the carious ones, while the

random effect represents all the patient-specific unrecorded characteristics of the x-ray images.

Their model does not need the two additional artificial classes. Thus their interpretation is easier.

We now display the results of the proposed model ccm estimated with the R package Clustericat

(the code is presented in Appendix A). The BIC criterion selects two classes with a value of -7473.

It claims that cmm better fits the data than the model of Qu et al. (1996) since their BIC criterion

value is -7487. The BIC criterion values for cim and cmm are displayed in Table 3. We indicate

the computing time (in seconds), obtained with an Intel Core i5-3320M processor, to estimate

cmm where 20 MCMC chains were started with a stopping rule qmax = 100 while cim needs less

than 0.1 sec with the R package RMixmod (Lebret et al. , 2012).

g 1 2 3 4

cim BIC -8766 -7511 -7481 -7503

ccm BIC -7743 -7473 -7481 -7503

time (sec) 1.7 4.9 6.1 7.7

Table 3: BIC criterion values for the cim and the cmm according to different numbers of classes

for the dentistry data set. For each model, the best results according to the BIC criterion are in

bold. The computing time in seconds is indicated for cmm where 20 MCMC chains were started

with a stopping rule qmax = 500.

We note that cmm obtains better values for the BIC criterion than cim when g = 1, 2. When

the number of classes is larger (g ≥ 3) the best model of cmm assumes the conditional indepen-

dence between variables.

The BIC criterion selects two classes for cmm and this is coherent with a clustering of the teeth

between the sound and the carious ones. Furthermore, the two main characteristics of the model

fixed by Espeland & Handelman (1989) are automatically detected by the model: importance

of the two modality crossings where all the dentists have the same diagnosis and a dependency

between the diagnosis of dentists 3 and 4. Thus, the estimated model is coherent with the imposed
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model of Espeland & Handelman (1989) while no information was given a priori.

The fitted model can be interpreted as:

• the majority class (π1 = 0.86) mainly gathers the sound teeth. There is a strong dependency

between the five dentists (σ1 = ({1, 2, 3, 4, 5}) and ρ11 = 0.35). The dependency structure

of the maximum dependency distribution indicates an over-contribution of both modality

interactions where the five dentists have the same diagnosis, especially when they claim that

the teeth are sound (τ all sound11 = 0.93 and τ all carious11 = 0.07). This class could be interpreted

as grouping the teeth who these diagnosis is obvious.

• the minority class (π2 = 0.14) groups principally the carious teeth. There is a dependency

between dentists 3 and 4 while the diagnosis of the other ones are independent given the

class (σ2 = ({3, 4}, {1, 2, 5}), ρ21 = 0.31 and ρ22 = 0). This class could be interpreted as

grouping the teeth whose diagnosis is more complex.

Figure 6 helps the interpretation of the clusters for the ccm with two components (best model

according to the BIC criterion). On ordinates, the estimated classes are represented with respect

to their proportions in decreasing order. Their corresponding area depends on their proportion.

The cumulated proportions are indicated on the left side. On abscissae, three indications are given.

The first one is the inter-variables correlations (ρkb) for all the blocks of the class ordered by their

strength of correlation (in decreasing order). The second one is the intra-variables correlations

(τ kb) for each block drawn according to their strength dependencies (in decreasing order). The

third is the variables repartition per block. A black cell indicates that the variable is assigned to

the block and a white cell indicates that, conditionally on this class, the variable is independent

of the variables of this block. For example, this figure shows that the first class has a proportion

of 0.86 and that all the variables are assigned into the same block.

7.2 Calves clustering

In this section, the results obtained by the ccm are compared to those obtained for the cim

by the RMixmod software (Lebret et al. , 2012). The “Genes Diffusion” company has collected

information from French breeders in order to cluster calves. The 4270 studied calves are described

by nine variables related to behavior (aptitude for sucking Apt, behavior of the mother just before
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Figure 6: Summary of the best ccm according to BIC for the dentists data set.

the calving Iso) and health (treatment against omphalitis TOC, respiratory disease TRC and

diarrhea TDC, umbilicus disinfection Dis, umbilicus emptying Emp, mother preventive treatment

against respiratory disease TRM and diarrhea TDM ).

Table 4 displays the BIC criterion values and the number of parameters for the cim and ccm

models. Furthermore, the computing time in minutes (obtained with an Intel Core i5-3320M

processor) to estimate ccm by starting 20 MCMC chains with a stopping criterion of qmax = 180

while cim needs 3 seconds with the R package RMixmod (Lebret et al. , 2012).

g 1 2 3 4 5 6 7 8

cim BIC -28589 -26859 -26526 -26333 -26238 -26235 -26226 -26185

νcim 17 35 53 71 89 107 125 143

ccm BIC -26653 -26289 -26173 -26038 -26025 -26059 -26045 -26058

νccm 24 48 80 89 112 131 148 163

time (min) 0.97 3.32 6.16 6.56 10.03 11.76 12.31 14.92

Table 4: Results for the cim and the cmm according to different class numbers. For both models,

first row corresponds to the BIC criterion values and the second row indicates the continuous

parameter number. For each model, the best results according to the BIC criterion are in bold.

The computing time for the ccm estimation is given in minutes.

26



For the cim, the BIC criterion selects a high number of classes, since it selected eight classes.

The interpretation of the clusters is also difficult and we can assume that the estimator’s quality

is very poor. Figure 7 helps the interpretation for the ccm with five components (best model

according to the BIC criterion). Its interpretation is the same as the interpretation of Figure 6.

For example, this figure shows that the first class has a proportion of 0.29 and that it is composed

of four blocks. The most correlated block of the first class has ρkb ≃ 0.80 and the strength of the

biggest modalities link is also close to 0.85. This block consists of the variables TDC and TRM.

Here is now a possible interpretation of Class 1 (note that the others classes are also meaningful;
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Figure 7: Summary of the best ccm according to BIC for the calves data set.

see details in Marbac et al. (2013)):

• General: This class has a proportion equal to 0.29 and consists of three blocks of depen-

dency and one block of independence.

• Block 1: There is a strong correlation (ρ11) between the variables diarrhea treatment of

the calf and mother preventive treatment against respiratory disease, especially between the
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modality no treatment against the calf diarrhea and the absence of preventive treatment

against respiratory disease of its mother (τ 11 and δ11).

• Block 2: There is a strong correlation (ρ12) between the variables treatment against

respiratory illness of the calf and mother preventive treatment against diarrhea, especially

between the modality preventive treatment against respiratory illness of the calf and the

presence of diarrhea preventive treatment of its mother (τ 12 and δ12).

• Block 3: There exists another strong link between the behavior of the mother, the emptying

of the umbilical and its disinfection (τ 13 and δ13).

• Block 4: This block is characterized by absence of preventive treatment against omphalitis

and having 50% of the calves infected by this illness (α14).

8 Conclusion

By using the block extension of the latent class model, a new mixture model is proposed for

clustering categorical data by taking into account the intra-class correlation. The block distri-

bution is defined as a mixture between an independent distribution and a maximum dependency

distribution. This specific distribution, which remains parsimonious, is compared to the full la-

tent class model and allows different levels of interpretation. The blocks of variables detect the

conditional dependencies between variables while their strengths are reflected by the proportions

of maximum dependency distribution. The parameters of the block distribution reflect the links

and the strength between modalities.

The parameter estimation and the model selection are simultaneously performed via a Gibbs

sample-type algorithm. It allows reducing the combinatorial problems of the block structure

detection and the links between modalities search for the estimation of the maximum dependency

distribution. The results are good when the number of modalities is small for each variable. For

more than six modalities, the detection of other links encounters some persistent difficulties. So

the algorithm can be slow in this case. The proposed approach to estimate the block structure is

not adapted for data sets with many variables. A deterministic but sub-optimal solution could be

used to perform a forward algorithm.
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The R package Clustericat allows clustering categorical data sets by using cmm. This package

is available on Rforge at the following url https://r-forge.r-project.org/R/?group id=1803.

The proposed model can be easily extended to the case of ordinal data. For this purpose, some

additional constraints on the dependency structure of each distribution of maximum dependency

need to be added.
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A Dentistry clustering with the R package Clustericat

The R package Clustericat is available on Rforge website at the following url: https://r-forge.r-

project.org/R/?group id=1803. This section presents the code used to cluster the dentistry data

set.

# Loading of the data set

> data("dentist")

# to define the parameters of the algorithm performing the estimation

# here 25 MCMC are performed with a stopping criterion equals to

# 200 successive iterations having not found a better model

> st <- strategycat(dentist, nb init=25, stop criterion=200)

# estimation of the model for a class number equal to 2.

# for the data set with five binary variables (modal)

> res <- clustercat(dentist, 2, modal=rep(2,5), st)

# presentation of the best model

> summary(res)

# presentation of the parameters of the conditional dependencies for the best model

> summary dependencies(res)

# a plot summarizing the best model like Figure 6

> plot(res)
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