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Grid-based Localization and Online Mapping with Moving Objects

Detection and Tracking: new results

Trung-Dung Vu, Julien Burlet and Olivier Aycard
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Abstract— In this paper, we present a real-time algorithm
for local simultaneous localization and mapping (SLAM) with
detection and tracking of moving objects (DATMO) in dynamic
outdoor environments from a moving vehicle equipped with
a laser scanner. To correct vehicle location from odometry
we introduce a new fast implementation of incremental scan
matching method that can work reliably in dynamic outdoor
environments. After a good vehicle location is estimated, the
surrounding map is updated incrementally and moving objects
are detected without a priori knowledge of the targets. Detected
moving objects are finally tracked by a Multiple Hypothesis
Tracker (MHT) coupled with an adaptive IMM (Interacting
Multiple Models) Filter. The experimental results on datasets
collected from different scenarios such as: urban streets,
country roads and highways demonstrate the efficiency of the
proposed algorithm on a Daimler Mercedes demonstrator in the
framework of the European Project PReVENT-ProFusion2.

I. INTRODUCTION

Perceiving or understanding the environment surrounding

of a vehicle is a very important step in driving assistant

systems or autonomous vehicles. The task involves both

simultaneous localization and mapping (SLAM) and de-

tection and tracking of moving objects (DATMO). While

SLAM provides the vehicle with a map of static parts of

the environment as well as its location in the map, DATMO

allows the vehicle being aware of dynamic entities around,

tracking them and predicting their future behaviors. It is

believed that if we are able to accomplish both SLAM and

DATMO in real time, we can detect every critical situations

to warn the driver in advance and this will certainly improve

driving safety and can prevent traffic accidents.

Recently, there have been considerable research efforts

focusing on these problems [6][11]. However, for highly

dynamic outdoor environments like crowded urban streets,

there still remains many open questions. These include, how

to represent the vehicle environment, how to obtain a precise

location of the vehicle in presence of dynamic entities, and

how to differentiate moving objects and stationary objects as

well as how to track moving objects over time.

In this context, we design and develop a generic archi-

tecture to solve SLAM and DATMO in dynamic outdoor

environments. This architecture (Fig. 2) is divided into two

main parts: the first part where the vehicle environment is

mapped, fusion between different sensors is performed and

moving objects are detected; and the second part where

previously detected moving objects are verified and tracked.

This architecture is currently used in the framework of the

Fig. 1. The Daimler Mercedes demonstrator car.

European project PReVENT-ProFusion1. The goal of this

project is to design and develop generic architectures to

perform perception tasks (ie, mapping of the environment,

localization of the vehicle in the map, and detection and

tracking of moving objects). In this context, our architecture

has been integrated and tested on two demonstrators: a

Daimler-Mercedes demonstrator and a Volvo truck demon-

strator. In previous paper [10], a description of the first

level is reported. In this paper, we detail the description

of the sensor data fusion part of the first level and the

second level and show some results on the Daimler-Mercedes

demonstrator moving at high speed.

The rest of the paper is organized as follows. In the next

section, we present the Daimler Mercedes demonstrator. A

brief overview of our architecture is given in section III.

Description of first level of architecture is summarized and

Sensor Data Fusion is described in Section IV. Second level

is detailed in section V. Experimental results are given in

Section VI and finally in Section VII conclusions and future

works are discussed.

II. THE DAIMLER MERCEDES DEMONSTRATOR

The DaimlerChrysler demonstrator car is equipped with a

camera, two short range radar sensors and a laser scanner

(Fig. 1). The radar sensor is with a maximum range of 30m

and a field of view of 80◦. The maximum range of laser

sensor is 80m with a field of view of 160◦ and a horizontal

1www.prevent-ip.org/profusion



Fig. 2. Architecture of the perception system

resolution of 1◦. In addition, vehicle odometry information

such as velocity and yaw rate are provided by the vehicle

sensors. The measurement cycle of the sensor system is

40ms. Images from camera are for visualization purpose.

III. GENERAL ARCHITECTURE

We design and develop a generic architecture (Fig. 2) to

solve SLAM and DATMO in dynamic outdoor environments.

In the first part of the architecture, to model the environ-

ment surrounding the vehicle, we use the Occupancy Grid

framework developed by Elfes [4]. Compared with feature-

based approaches, grid maps can represent any environment

and are specially suitable for noisy sensors in outdoor

environments where features are hard to define and extract.

In general, in order to perform mapping or modelling

the environment from a moving vehicle, a precise vehicle

localization is essential. To correct vehicle locations from

odometry, we introduce a new fast laser-based incremental

localization method that can work reliably in dynamic envi-

ronments. When good vehicle locations are estimated, by in-

tegrating laser measurements we are able to build a consistent

grid map surrounding of the vehicle. Finally by comparing

new measurements with the previously constructed local

vehicle map, dynamic objects then can be detected.

Finally, sensor data coming from different sensors are

fused.

In the second part, detected moving objects in the ve-

hicle environment are tracked. Since some objects may be

occluded or some are false alarms, multi objects tracking

helps to identify occluded objects, recognize false alarms

and reduce mis-detections.

IV. FIRST LEVEL

In this section, we first summarized the description of

the first level of our architecture: Environment Mapping &

Localization, Moving Objects Detection. More details on the

two first parts could be found in [10]. In the last subsection,

we describe the fusion between objects detected by laser and

radar data.

Fig. 3. Moving object detection example. See text for more details.

A. Environment Mapping & Localization

To map the environment and localize in the environment,

we propose an incremental mapping approach based on a fast

laser scan matching algorithm in order to build a consistent

local vehicle map. The map is updated incrementally when

new data measurements arrive along with good estimates of

vehicle locations obtained from the scan matching algorithm.

The advantages of our incremental approach are that the

computation can be carried out very quickly and the whole

process is able to run online.

1) Environment mapping using Occupancy Grid Map:

Using occupancy grid representation, the vehicle environ-

ment is divided into a two-dimensional lattice M of rectan-

gular cells and each cell is associated with a measure taking

a real value in [0,1] indicating the probability that the cell

is occupied by an obstacle. A high value of occupancy grid

indicates the cell is occupied and a low value means the cell

is free. Suppose that occupancy states of individual grid cells

are independent, the objective of a mapping algorithm is to

estimate the posterior probability of occupancy P(m |x1:t ,z1:t)
for each cell of grid m, given observations z1:t = {z1, ...,zt}
from time 1 to time t at corresponding known poses x1:t =
{x1, ...,xt}.from time 1 to time t.

2) Localization of the vehicle in the Occupancy Grid Map:

In order to build a consistent map of the environment, a good

vehicle localization is required. Because of the inherent error,

using only odometry often results in an unsatisfying map.

To solve this problem, we used a particle filter. We predict

different possible positions of the vehicle (ie, one position

of the vehicle corresponds to one particle) using the motion

model and compute the probability of each position (ie, the

probability of each particle) using the laser data and a sensor

model.

B. Moving Objects Detection

After a consistent local grid map of the vehicle is

constructed, moving objects can be detected when new

laser measurements arrive by comparing with the previously

constructed grid map. The principal idea is based on the

inconsistencies between observed free space and occupied

space in the local map. If an object is detected on a location

previously seen as free space, then it is a moving object. If

an object is observed on a location previously occupied then

it probably is static. If an object appears in a previously not

observed location, then it can be static or dynamic and we

set the unknown status for the object in this case.



Fig. 4. Moving object detected from laser data is confirmed by radar data.

Fig. 3 illustrates the described steps in detecting moving

objects. The leftmost image depicts the situation where the

vehicle is moving along a street seeing a car moving ahead

and a motorbike moving in the opposite direction. The mid-

dle image shows the local static map and the vehicle location

with the current laser scan drawn in red. Measurements

which fall into free region in the static map are detected

as dynamic and are displayed in the rightmost image. After

the clustering step, two moving objects are identified (in

green boxes) and correctly corresponds to the car and the

motorbike.

C. Fusion with radars

After moving objects are identified from laser data, we

confirm the object detection results by fusing with radar data

and provide the detected objects with their velocities. For

each moving object detected from laser data as described in

the previous section, a rectangular bounding box is calculated

and the radar measurements which lie within the box region

are then assigned to corresponding object. The velocity of

the detected moving object is estimated as the average of

these corresponding radar measurements.

Figure 4 shows an example of how the fusion process

takes place. Moving objects detected by the Laserscanner

are displayed in red with green bounding boxes. The targets

detected by two radar sensors are represented as small circles

in different colors along with corresponding velocities. We

can see in the radar field of view, that two objects detected

by the Laserscanner are also seen by two radars so that

they are confirmed and their velocities are estimated. Radar

measurements that do not correspond to any dynamic object

or fall into another region of the grid are not considered.

V. SECOND LEVEL

In general, the multi objects tracking problem is complex:

it includes the definition of tracking methods, but also

association methods and maintenance of the list of objects

currently present in the environment [2][9]. Regarding track-

ing techniques, Bayesian filters [1] are generally used. These

filters require the definition of a specific motion model of

tracked objects to predict their positions in the environment.

Using this prediction and some observations, in a second

stage, an estimation of the position of each object present in

the environment is computed.

In this section, we describe the four different parts of our

architecture (figure 2) to solve the different parts of multi-

objects tracking:

• The first one is the gating. In this part, taking as input

predictions from previous computed tracks, we compute

the set of new detected objects which can be associated

to each track.

• In a second part, using the result of the gating, we

perform objects to tracks association and generate as-

sociation hypothesis, each track corresponding to a

previously known moving object. Output is composed

of the computed set of association hypothesis.

• In the third part called tracks management, tracks are

confirmed, deleted or created according to the associa-

tion results and a pruned set of association hypothesis

is output.

• In the last part corresponding to the filtering step,

estimates are computed for ’surviving’ tracks and pre-

dictions are performed to be used the next step of the

algorithm. In this part, we use an adaptive method based

on Interacting Multiple Models (IMM).

More details about these different parts are outlined next.

A. Gating

In this part, taking as input predictions from previous

computed tracks and newly detected objects, a gating is

performed. It consists in, according to an arbitrary distance

function, determine the detected objects which can be as-

sociated with tracks. Also during this stage, clustering is

performed in order to reduce the number of association hy-

pothesis. It consists in making clusters of tracks which share

at least one detected object. In the next stage, association can

be performed independently for each cluster decomposing a

large problem in smaller problems which induce generation

of less hypothesis.

Fig. 5. Example of association problem

If we take as an example the situation depict by the Fig. 5,

in this stage one set is computed as T1 and T2 share object O2.

Also according to gates, objects O1 and O2 can be assigned

to T1 and objects O2 and O3 to T3.

B. Association

In this part, taking as input clusters of tracks and detected

objects validated by the gating stage, association hypothesis

are evaluated. By considering likelihood of objects with

tracks, new track apparition probability and non-detection

probability, an association matrix is formed.

Let be L(oi, t j) the function giving the likelihood of object

i with track j, PNT the new track apparition probability and



PND the non detection probability. Taking as an example the

situation in the Figure 5, the association matrix is written:









L(o1, t1) −∞ PNT

L(o2, t1) L(o2, t2) PNT

−∞ L(o3, t2) PNT

PND PND −∞









Thus a possible association hypothesis corresponds to a

valid assignation in the matrix of detected objects with tracks

i.e one unique element in each row and each column is

chosen to compose the assignation. In order to reduce the

number of hypothesis, only the m-best association hypothesis

are considered. The m-best assignment in the association

matrix are computed using the Murty method [7] which

computes the m-Best assignations in the matrix and by this

way we obtain the m-Best Hypothesis.

C. Track management

In this third stage, using the m-Best Hypothesis resulting

of the association stage, the set of tracks, is maintained i.e

tracks are confirmed, deleted or created.

New tracks are created if a new track creation hypothesis

appears in the m-best hypothesis. A new created track is

confirmed if it is updated by detected objects after a fixed

number of algorithm steps (three in our implementation).

Thus spurious measurements which can be detected as ob-

jects in the first step of our method are never confirmed.

If a non-detection hypothesis appears and so to deal with

non-detection cases (which can appear for instance when an

object is occulted by an other one, tracks without associated

detected objects are updated according to their last associated

objects and next filtering stage becomes a simple prediction.

But if a track is not updated by a detected object for a given

number of steps, it is deleted.

D. Adaptive Filtering using Interacting Multiple Models

In this filtering stage, according to previously computed

predictions, estimations are performed for each association

of all hypothesis and new predictions are computed for

the gating stage. Regarding filtering techniques, there exists

several kinds of filters, the most classical is the well known

Kalman filter. But in all kinds of filters, the motion model

is the main part of the prediction step.

To deal with these motion uncertainties, Interacting Mul-

tiple Models (IMM) [8] have been successfully applied in

several applications [3]. The IMM approach overcomes the

difficulty due to motion uncertainty by using more than one

motion model. The principle is to assume a set of motion

models as possible candidates of the true displacement model

of the object at one time. To do so, a bank of elemental filters

is ran at each time, each corresponding to a specific motion

model, and the final state estimation is obtained by merging

the results of all elemental filters according to the distribution

probability over the set of motion models (in the next part

we note µ this probability). By this way different motion

models are taken into account during filtering process.

Fig. 6. Principle of our adaptive filtering program

As the quality of gating relies directly on the quality of

filtering and especially the prediction step, we have chosen

Interacting Multiple Models (IMM) [8] to deal with motion

uncertainties in this filtering part.

Besides, we developed an efficient method in which criti-

cal parameter of the IMM is on-line adapted according to the

most probable trajectories formed by tracks. Thus as Fig. 6

shows our filtering stage is composed of three parts : an IMM

filtering part, a part in which most probable trajectories are

computed and a last part in which we adapt the IMM filter.

These three parts are described in the next paragraphs.

Fig. 7. The sixteen chosen motion models in the vehicle’s frame

1) Definition of our IMM: Nevertheless, to apply IMM

on real applications a number of critical parameters have to

be defined, for instance the set of motion models and the

transition probability matrix(TPM). To cope with this design

step which can no match the reality, we propose an efficient

method in which the TPM is on-line adapted.

In our specific application, different objects such as cars

or motorcycles can move in any directions and can often

change their motions. Thus in our aim we choose various

IMM’s motion models to cover the set of possible directions

and velocities. As each filter corresponds to a specific motion

model, we have to define each motion model. So, assuming

we have different possible velocities defined according to the

vehicle velocity and eight directions in the set of possible

directions an object can follow, we obtain sixteen motion

models (Fig. 7).

Hence, according to the definition of these sixteen motion

models, our IMM is composed of sixteen kalman filters.

The TPM is initially chosen to be uniform.

2) Computation of the most probable trajectories: Once

estimates are performed for all hypothesis, the most probable



trajectory is computed for each track. This step permits to

give users more readability on what is happening during

tracking process and also permits us to adapt on-line the

IMM parameter according to these trajectories.

3) Adaptation of the IMM: To adapt the TPM in our

specific situation i.e tracking detected objects, most prob-

able trajectories are considered. Taking as input the set of

trajectories computed during filtering process, we will adapt

online the TPM of the IMM filter in order to obtain a better

transition between motion models close to the real behavior

of tracked objects.

The principle is the following. For a given number N

of trajectories we build sequences of associated motion

models probabilities. And then, using these motion models

probabilities, the TPM is adapted and reused in the IMM

filters for the next estimations. In more details, algorithm 1,

given in pseudo-code, is the algorithm defined to compute

one adaptation of the TPM.

Algorithm 1 Adaptive IMM Algorithm

1: Adaptation of TPM(T0, ...,TN)

2: n← 0

3: repeat

4: Sn← [ ]
5: /* Store µk,...µk′ from Tn the most probable nth

trajectory */

6: for all Ob ject pose xk in Tn do

7: {µk}← Tn(k)
8: Sn← Sn∪ [µk]
9: end for

10: /* Compute the most probable model sequence

MPS */

11: MPS←Viterby(Sn)
12: /* Quantification of model transitions */

13: for all Couple ( MPSk, MPSk+1) in MPS do

14: i←MPSk

15: j←MPSk+1

16: Fi j = Fi j + 1

17: end for

18: n← n+1

19: until n = N

20: /* Update of TPM in IMM */

21: T PM← Normalization(F)
22: Return TPM in IMM

An adaptation of the TPM is done after a given number

N of trajectories obtained from tracks, to update TPM using

a window on trajectories (cf. loop line 3-19 of algorithm

1). Moreover trajectories are processed one by one in three

steps:

1- Models’ probabilities are collected by travel through the

computed most probable sequence

2- Most probable models’ sequence is computed

3- Most probable models’ transitions are quantified

Collection of models’ probabilities : : For each part of a

given most probable trajectory computed in last stages of the

filtering process, we collect the distribution over models(lines

7). Thus a model probabilities’ sequence Sn obtained in such

a way and is stored to be processed (line 8).

Computation of the most probable model sequence : :

In a next step, the most probable models’ sequence of Sn is

computed (line 11). More precisely, considering the actual

TPM and a set Sn = µ0...µK of model probabilities through

time 0 to K, we aim to obtain the most probable models’

sequence knowing the estimates computed by the IMM:

Max P(µ0 µ1...µk | x0 x1... xK) (1)

We just need to obtain the maximum of the distribution

P(µ1 µ2...µK | x0 x1... xK), thus the inference is made

using the Viterbi Data Algorithm [5]. As complexity of

this algorithm is in O(KM2), we efficiently obtain the most

probable models’ sequence.

Quantification of most probable model transitions : :

Using this most probable models’ sequence, the number of

transitions from one model to an other is quantified (lines

13 to 17). To do so a frequencies matrix is considered. This

matrix models the number of transitions which have occurred

from one model to an other. We note F this matrix and so

Fi j gives the number of transitions which has occurred from

model i to j. Using the most probable models’ sequence

corresponding to a specific trajectory and computed by the

Viterbi algorithm, the update of F is directly obtained by

counting transitions in this sequence. Furthermore, F is kept

in memory to be used in next adaptation and before the first

update all its elements are set to 1.

Finally, when N trajectories have been treated, the new

TPM is obtained by normalization of the frequencies matrix

F . Thus the TPM is re-estimated using all model sequences

S1...SN and is reused in the IMM for next executions (lines

21 and 22). In practice, before the first run, the TPM is

chosen uniform (according to F initialization) as we do not

want to introduce a priori data.

VI. EXPERIMENTAL RESULTS

The detection and tracking results are shown in Fig. 8.

The images in the first row represent online maps and

objects moving in the vicinity of the vehicle are detected

and tracked. The current vehicle location is represented by

blue box along with its trajectories after correction from the

odometry. The red points are current laser measurements

that are identified as belonging to dynamic objects. Green

boxes indicate detected and tracked moving objects with

corresponding tracks displayed in different colors. Informa-

tion on velocities is displayed next to detected objects if

available. The second row are images for visual references

to corresponding situations.

In Fig. 8, the leftmost column depicts a scenario where

the demonstrator car is moving at a very high speed of about

100 kph while a car moving in the same direction in front

of it is detected and tracked. On the rightmost is a situation

where the demonstrator car is moving at 50 kph on a country

road. A car moving ahead and two other cars in the opposite

direction are all recognized. Note that the two cars on the



Fig. 8. Experimental results show that our algorithm can successfully perform both SLAM and DATMO in real time for different environments

left lane are only observed during a very short period of

time but both are detected and tracked successfully. The third

situation in the middle, the demonstrator is moving quite

slowly at about 20 kph in a crowded city street. Our system

is able to detect and track both the other vehicles and the

motorbike surrounding. In all three cases, precise trajectories

of the demonstrator are achieved and local maps around the

vehicle are constructed consistently. In our implementation,

the computational time required to perform both SLAM and

DATMO for each scan is about 20−30 ms on a 1.86GHz,

1Gb RAM laptop running Linux. This confirms that our

algorithm is absolutely able to run synchronously data cycle

in real time. More results and videos can be found at http:

//emotion.inrialpes.fr/∼tdvu/videos/.

VII. CONCLUSIONS AND FUTURE WORKS

We have presented an approach to accomplish online

mapping and moving object tracking simultaneously. Exper-

imental results have shown that our system can successfully

perform a real time mapping and moving object tracking

from a vehicle at high speeds in different dynamic outdoor

scenarios. This is done based on a fast scan matching

algorithm that allows estimating precise vehicle locations

and building a consistent map surrounding of the vehicle.

After a consistent local vehicle map is built, moving objects

are detected and are tracked using an adaptive Interacting

Multiple Models filter coupled with an Multiple Hypothesis

tracker.
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