
HAL Id: hal-01023864
https://hal.inria.fr/hal-01023864

Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating Variability Model Inference for
Component-Based Language Implementations

Edoardo Vacchi, Walter Cazzola, Benoit Combemale, Mathieu Acher

To cite this version:
Edoardo Vacchi, Walter Cazzola, Benoit Combemale, Mathieu Acher. Automating Variability Model
Inference for Component-Based Language Implementations. SPLC’14 - 18th International Software
Product Line Conference, Sep 2014, Florence, Italy. �hal-01023864�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49611353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01023864
https://hal.archives-ouvertes.fr

Automating Variability Model Inference for
Component-Based Language Implementations

Edoardo Vacchi, Walter Cazzola
Computer Science Department

Università degli Studi di Milano, Italy

lastname@di.unimi.it

Benoit Combemale, Mathieu Acher
University of Rennes 1
IRISA / Inria, France

firstname.lastname@irisa.fr

ABSTRACT

Recently, domain-specific language development has become
again a topic of interest, as a means to help designing solu-
tions to domain-specific problems. Componentized language
frameworks, coupled with variability modeling, have the po-
tential to bring language development to the masses, by
simplifying the configuration of a new language from an
existing set of reusable components. However, designing
variability models for this purpose requires not only a good
understanding of these frameworks and the way components
interact, but also an adequate familiarity with the problem
domain.
In this paper we propose an approach to automatically

infer a relevant variability model from a collection of already
implemented language components, given a structured, but
general representation of the domain. We describe techniques
to assist users in achieving a better understanding of the
relationships between language components, and find out
which languages can be derived from them with respect to
the given domain.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software; D.3.3
[Programming Languages]: Language Constructs and
Features—Frameworks; D.3.4 [Programming Languages]:
Processors—Compilers,Interpreters

Keywords

Variability Models, SW Product Lines, DSL Implementation.

1. INTRODUCTION
Domain-specific languages (DSLs) are programming lan-

guages that target specific problem areas using terms and
concepts that pertain to those domains. DSLs enable the
domain experts to express solutions to their problems by
using concepts related to their expertise.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC’14 September 15-19, 2014, Florence, Italy.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In the last few years, the practice of developing problem-
tailored languages has been rediscovered [19], as a means
to develop domain-specific solutions in an easier way. It is
widely recognized [20, 23] that DSLs provide a better way
to solve a domain specific problem (where better is in term
of time-to-market, readability and maintainability). In this
perspective, several small languages have been developed but
this practice is not diffuse as expected since DSL develop-
ment is an activity that requires time (often the development
must be done from scratch) and skills about language en-
gineering not always within everyone reach. Many modern
language development frameworks are improving reuse and
sharing language components among different implementa-
tions (e.g., [24, 7, 28]) to foster DSL development. Earlier
work [32, 30] has shown that it is possible to construct a
family of languages, i.e., a set of languages that can be built
from different configurations of the same set of components.
Still, even though many language frameworks support

component reuse and sharing, they often do not account for
variability and dependency management. Variation points
(features), dependencies between them and their mapping
onto concrete artifacts are not made explicit or documented.
A manual identification of variation points —and constraints
among them— by the developer runs the risk of over - or
under -estimating the capabilities of the DSL. It is easy for
a developer to forget a technical constraint or to add an
unnecessary variation point. On the one hand, an over-
estimation leads to unsafe variants of a DSL, i.e., some
variants rely on missing foundations. On the other hand,
an under-approximation does not exploit the full range of
features offered by a DSL.
In this work we describe an automated approach that

applies variability management to componentized language
development given a representation of the domain. We show
how to discover and present the relations that occur in a given
set of language components in an explicit, understandable,
accurate way: a feature model that end users may use to
perform choices and derive automatically a safe conforming
language implementation. Developers of a DSL can also
benefit from having a central and explicit feature model.
The contributions of this work are i) an approach to au-

tomatically derive a tree structure out of the language com-
ponents using domain concepts found in a semantic network
and hierarchical clustering algorithms; ii) techniques to au-
tomatically and interactively refine the feature model for
enhancing its readability and enforcing its configuration set;
iii) an evaluation of the proposal on two DSLs. We report
on our experience and show that a substantial part of the

feature model (including feature hierarchy and constraints)
necessitates domain knowledge.
The rest of this paper is structured as follows. In Sect. 2

we provide some background with respect to modular lan-
guage implementation and variability modeling; in Sect. 3 we
give an overview of the approach. In Sect. 4 we describe the
approach in detail using a running example (a family of state
machine languages). In Sect. 5 we evaluate the approach on
two case studies, the first based on the running example, the
other represents a family of programming languages imple-
menting the Linda [15] coordination model. In Sect. 6 and 7
we describe some related work and draw our conclusions.

2. BACKGROUND AND MOTIVATION
In this section we give an overview of the background that

is required to understand the following of this paper.

2.1 Component-based Language Framework
A component-based language framework is a language

implementation framework that emphasizes the separation
of the concepts of a language as pluggable and composable
units. Each unit usually represents a syntactic feature of
the language (a keyword, or a construct) along with the
implementation of its semantics. Many component-based
language frameworks have been proposed over the years
(e.g., [21, 34, 24]).

In this work we employed Neverlang [7, 8, 33]. In Never-
lang, a reusable language component is called a slice. Each
slice includes a syntax definition, that is a portion of a gram-
mar of the language in BNF and a definition of several roles,
that is, the implementation of a compilation phase, with
respect to that part of the syntax. All the roles together
represent the semantics of the construct. A language can
be therefore seen as the result of the composition of several
slices. Grammar portions are sets of production rules (or, in
short, productions) of the form � → �, where � is called a
nonterminal and � is a string of terminals and nonterminals.
A terminal can be roughly equated to a keyword or a literal
of the language.
Language Components and Dependency Graph. When

generating a language, the union of all the sets of produc-
tions contained in the slices should produce a “meaningful”
grammar, that is, its generated language should not be empty.
In concrete terms, consider a slice �, defining the produc-
tion � → �. Then there must be some slice �A that refers
nonterminal � in the right part of one of its productions
(e.g. � → �), and that, ultimately, there is a chain of
references that leads to the starting symbol of the gram-
mar. Similarly, we expect another slice �B to include some
rule of the form � → � such that finally � ⇒* �, with �

being a syntactically-correct program. From these simple
observations, it has been shown in a previous work [32] that
production rules contained in a language component can be
used to infer a set of required nonterminal definitions (the
require-set) and a set of provided nonterminal definitions
(the provide-set). Required nonterminals are all those that
occur in the right-hand part of a production, while provided
nonterminals are all those that occur in the left-hand part.
Then, given slice � with production � → �, we can say that
� is providing a rule for nonterminal �, but it requires �;
that is, another slice in the language should provide �.
Now, let us have a set of slices � = {�0, �1, . . . , �n}; we

define for each � ∈ � two sets �s ⊂ � , the require set and

�s ⊂ � , the provide set, with � being the alphabet of all
the nonterminals in the grammars of all the slices in �. A
dependency is a pair (�,�), where � ∈ � and � ∈ �s. We
can say that the dependency (�,�) is satisfied if there is at
least one slice �′ ∈ � such that � ∈ �s′ , and then that �′

satisfies �. A dependency graph for a set of slices can be then
defined as a tuple � = ⟨�,�⟩, with � being the set of slices
and � = {(�, �′) | �′ satisfies �}, with a function ℓ(�) = �

for each � = (�, �′) ∈ �, such that (�,�) is a dependency
satisfied by �′ (for an example, see Fig. 6).

2.2 Problem Statement
Given a set of components languages (slices), we can auto-

matically derive a dependency graph. Yet we are far from
obtaining a comprehensive feature model:

∙ Features do not necessarily correspond to assets (com-
ponents languages): the mapping between ”slices” and
features is not necessarily one-to-one. Typically ab-
stract features can be added to reinforce the structure
of the model.

∙ The dependency graph is not a tree: a node in the
graph may have many possible parents whereas only
one parent should be chosen.

∙ More dependencies —beyond implication constraints
expressed in the dependency graph— are likely to oc-
cur such as excludes, disjunction, or bi-implications
constraints. The dependencies can be reified directly
in the feature diagram (e.g., with alternative groups)
or as cross-tree constraints.

Overall automated support is needed to help (1) structuring
the model and (2) enforcing its configuration set.
Notice that, in the rest of the paper we will assume a

feature model to be a tree-like structure that represents
relationships between features. Figure 9 represents a feature
model for a family of state machine languages: relationships
between a parent feature and its child features can be optional
(represented with an empty circle, e.g. Trigger), mandatory
(black-filled circle, e.g. TransitionOption), or (filled triangle
e.g. Guard or Effect) and alternative (empty triangle, e.g.,
SingleTriggerFork vs MultiTriggerFork).

3. OVERVIEW OF THE APPROACH
Our goal is to synthesize a feature model from a set of

components languages (slices). The basic idea is that to build
the most relevant feature model for a given domain, from a
set of language components such as slices, we can exploit part
of the information that we find in these components, coupled
with an encoding of the domain knowledge in the form of
a semantic network. All the slices provide nonterminals,
which are themselves words. We put a meaning to words
and establish relations with other words that belong to the
same domain, thus mapping a slice to a set of words.
It is then possible to apply an agglomerative hierarchical

clustering algorithm to the slices associated to each set of
words; by making an appropriate choice for the similarity
measure, the dendogram (a binary tree) that is obtained as
a result of the clustering procedure can be used as a first,
rough approximation of the feature model. Additional kinds
of relationships are used to further organize the features and
a series of edits refine the intermediate result so that we can
obtain a final feature model. The process is as follows:

Tag

Generation
Slices

Semantic

Network

Collection of

sets of “tags”

Hierarchical

Clustering

Tree Structure

Refinement

Procedure

DG Extractor

Dependency

Graph

Refactoring
Provisional

Feature Model
Feature Model

Synonyms
+

Hypernyms

Meronyms
+

Antonyms

❶

❷

❸

❹

❺

Fig. 1: Overview of the approach

1. At the first step, we extract the dependency graph from
the set of slices (see Sect. 2);

2. At the second step, domain concepts from a semantic
network (developed by a domain expert) are attached
to the dependency graph with the aim to provide some
semantic information that will be exploited to further
structure the graph.

3. We feed the decorated dependency graph to a hierarchi-
cal clustering algorithm with an appropriate distance
metric: the result is a tree structure which will serve
as the basis for the feature model;

4. The tree structure is refined using:
∙ An heuristic to infer (1) implications over a dis-
junction of features, and (2) alternative choices
from the implemented components;

∙ The antonym relation of the semantic network
that can be used to find other alternative choices
in the variability model;

∙ The meronym relation describes mandatory rela-
tions between components.

5. In case, synthesis techniques can be applied to the
provisional model to get a final feature model.

The result is a feature model that represents the family of
languages that can be implemented in the given domain. The
approach benefits from the skills of language and domain ex-
perts individually without forcing any of them to acquire the
skills of the other. Moreover, the semantic network is indepen-
dent of the language implementation and therefore reusable
in different contexts (e.g., in case of multiple-domains) or
different component language frameworks.

4. SUPPORTING THE APPROACH
In this section we detail and illustrate the automated

techniques that support the approach on a running example:
the family of state machine languages.
State machines represent the behavior of a system, de-

scribed as a collection of a finite number of states. Several
forms of state machines exist, Crane et al. [11] provide a
categorization of the different variants. The full list of the
language components that have been implemented with their

statechart Example :

State: SW initial;

State: SA;

State: SB;

State: SF final;

ForkState: FS {

Fork: Transition { tf };

LeftState: SA RightState: SB

};

JoinState: JS {

Join: Transition { tj };

LeftState: SA RightState: SB

}

Transition(SW,FS);Transition(JS,SF);

Listing 1: An example state machine written using one of
the languages in the family.

Fig. 2: The state machine described by Listing 1

description can be found in Sect. 5.1.
Listing 1 shows a program written using a language of the

family and Fig. 2 shows the graphical representation of the
same state machine.

4.1 Tag Generation
We already have logical information (implies constraints)

between slices, coming from the dependency graph. The im-
plications can be exploited to organize slices into a hierarchy,
but are not sufficient: slices are merely symbols. Intuitively
user intervention is needed to further refine the meaning of
each slice and to hierarchically organize slices. The semantics
is what is still missing, i.e., the relations that occur between
the domain concept that each slice represents.
For establishing relationships, domain experts elaborate

a domain-specific semantic network with synonym (syn),
antonym (ant), hypernym1 (hyper) and meronym2 (mero)
relations. Slices are lexically mapped onto domain concepts:
each slice is associated to a set of terms, or tags that describe
what it represents conceptually. These sets of tags are auto-
matically generated from an initial set of words. Let be �

a set of words. Then, if slice � ∈ � (where � is an arbitrary
set of slices), provides nonterminal �, we can define the
initial set �0(�) = {�X , �s} to the slice, where �X ∈ � is
that word �X ≡ �, and �s ∈ � is the name of the slice.
For instance, consider slice OuterCompositeStates in Fig. 6;
because the slice provides nonterminal StateDef, as we can
see from the labeled inbound edge, the initial set of tags for
this slice will be:

�0(OuterCompositeStates) = {StateDef, OuterCompositeStates}

Starting from the collection �0(�), we can find a superset
� (�) ⊇ �0(�) of related words, by the help of a semantic
network � = ⟨�,�⟩, where � is the set of binary relations
between words in � : � = {syn, ant, hyper,mero}.
For each slice, we want to find the set � (�) of words

that describe that slice, therefore we can consider all the
relations in �′ ∖ {ant}3. We drop ant because for every pair
(�,�′) ∈ �k, with �k ∈ �′, �′ describes in some sense what
the concept � is whereas the relation ant describes what the
concept � is not . Then for each slice � there is a maximal

1(�,�) ∈ hyper if every � is a kind of �; e.g., animal is a
hypernym of dog.
2(�,�) ∈ mero if every � is a part of �; e.g., page is a
meronym of book.
3Antonyms will be used later in the process (Sect. 4.5).

StateDefList

StateMachine,

StateChart,

StateMachineLanguage

meronym

State,

StateDef

meronym

meronymPseudoState

hypernym

CompositeState

hypernym

SimpleState

hypernym

Transition,

TransitionDef

meronymTransitionDefList

meronym

TransitionOption

hypernym

meronym

Trigger
meronym

Join

SynchronizationPseudoStates

meronym

Fork
meronym

SingleTriggerFork,

SingleTriggerForkDef

MultiTriggerFork,

MultiTriggerForkDef

antonym

ForkTrigger

hypernym

antonym

hypernym

ForkLeftTransition
meronym

ForkRightTransition
meronym

ForkTransition
meronym

meronymhypernym

StartState

hypernym

FinalState

hypernym

Effect

hypernym

Guard

hypernym

InnerCompositeStates

hypernym

OuterCompositeStates

hypernym

Fig. 3: A possible semantic network for state machines.

set � (�) ⊆ � s.t.:

1. �0(�) ⊆ � (�)
2. � ∈ � (�) =⇒ ∃� ∈ �′, ∃�′ ∈ � (�) : (�,�′) ∈ �

For instance, � (OuterCompositeStates), using the semantic
network in Fig. 3, would be:

� (OuterCompositeStates) =
{StateDef, OuterCompositeStates, CompositeState, . . . }

4.2 Hierarchical Clustering
Once tags have been generated for each language compo-

nent (slice), a relevant tree structure —that will serve as the
basis for the feature model— should be derived. The idea is
to clusterize our language components (the slices) by apply-
ing an agglomerative hierarchical clustering algorithm [31].
The algorithm generates a binary tree (called dendogram).

Specifically we reasoned by analogy with documental col-
lections where each document can be seen as a set of words.
Each word is associated with a frequency f , i.e., the number
of occurrences of the word in the document. Our set of words
� (�) for slice � can be seen as a document where each word
only occurs once. The clustering algorithm works by compar-
ing clusters using a similarity measure. A reasonable measure
for similarity between slices is the Jaccard similarity [31]:

�(�1, �2) =
|� (�1) ∩ � (�2)|

|� (�1) ∪ � (�2)|
(1)

For instance the Jaccard similarity between � = InnerCompo-

siteStates and �′ = OuterCompositeStates with � (�) = {Inner-
CompositeStates, CompositeState, StateDef, StateMachineLangua-
ge} and � (�′) = {OuterCompositeStates, CompositeState, State-
Def, StateMachineLanguage} would be �(�, �′) = .6, and the
distance can be defined as �(�, �′) = 1− �(�, �′) = 0.4, that
is the complement of the similarity measure. Within this
framework, we can recursively define a cluster as:

1. the singleton set {� (�)}, with � being a slice
2. the set {�1, �2} where �1 and �2 are clusters
The output of this process is a dendogram where all the

leaves are clusters on one element of the form {� (�)}, that are
therefore easily mapped to single slices. Each cluster contains
the slices that are closer to each other, with respect to the
Jaccard similarity measure. In some sense, then, each cluster
contains the slices that are closer to each other semantically :
in fact, the more two sets � (�), � (�′) overlap, the closer
the measure will be to 1. Figure 4 shows the result of the
hierarchical clustering on a small subset of slices for the state
machine language example.

4.3 Refinement Procedure
In this first approximation, the tree (Fig. 4) exhibits many

nodes labeled in the same way and it is poorly structured.
Now we describe how to merge nodes and compute labels.

StateMachineLanguage

StateDef

StateMachineLanguage

SimpleState

StateDef

StateMachineLanguage

CompositeState

StateDef

StateMachineLanguage

InnerCompositeStates

CompositeState

StateDef

StateMachineLanguage

OuterCompositeStates

CompositeState

StateDef

StateMachineLanguage

StateMachineLanguage

StateDefList

StateMachineLanguage
StateMachineLanguage

StateChartBody

StateMachineLanguage

StateChart

StateMachineLanguage

Legenda

inner nodes

leaves

nodes to merge

Fig. 4: (Part of) Dendogram for the State Machines.

Merging nodes. To reduce the number of choices, we
merge nodes according to the chosen distance measure �. If
the distance between a pair of nodes is zero, then they must
be merged. Once the nodes have been merged, they can be
labeled with the tags contained in the clusters. The result of
the clustering procedure is a binary tree � = ⟨�,�⟩, where �
is a set of clusters and the set of edges is � = {(�, �′) | �′ ∈ �}.
In particular, there is a subset �S ⊂ � that is the collection
of 1-element clusters, i.e., �S = {{� (�)} | � ∈ �}; �S is the
set of the tree leaves. For each cluster � we define:

�(�) =

︃

� (�) � ∈ �S

�(�1) ∩ �(�2) � = {�1, �2}
(2)

Intuitively, the � function flattens the word sets found in each
cluster, and computes their intersection. E.g., consider a clus-
ter �̄ = {{StateChart, StateMachineLanguage}, {StateChartBody,
StateMachineLanguage}}, then �(�̄) = {StateMachineLanguage}
(cf. Fig. 4). The � function and the Jaccard similarity are
used to find parent/child pairs that can be merged. For each
parent/child pair (�, �′) ∈ � we compute the similarity value:

�
︀

�(�), �(�′)
︀

where � is still the Jaccard similarity. When the similarity
value is 1 (the distance is 0), then parent and child can be
merged, i.e., children of �′ may become children of �, and
node �′ may be removed from the tree.

Labeling nodes. The result of the merging procedure is a
non-binary tree where nodes are still unlabeled. Using again
the � function we can now define a labeling strategy ℓ, i.e.,
the labeling where parent and child labels do not overlap:

ℓ(�) =

︃

ℓ(�) � is root

�(�) ∖ ℓ(�′) (�′, �) ∈ �.
(3)

The result of the entire procedure applied to Fig. 4 can be
seen in Fig. 5 (Red, dashed edges are implies constraints that
can be added by a user later on, see Sect. 4.5)

4.4 Heuristics for Mining Constraints

StateMachineLanguage

StateDef

SimpleState CompositeState

InnerCompositeStates OuterCompositeStates

StateDefList

Legenda

nodes

nodes with 1:1 map on slides

logical constraints

Fig. 5: Structure of the tree with respect to the fea-
tures that represent states.

SimpleState

StateChartDef

StateChartBodyStateChartBody

InnerCompositeStates

StateChartBody

OuterCompositeStates
StateChartBody

CompositeStates

StateChartBody

StateDefList

StateDef

StateDef

StateDef

Fig. 6: The dependency graph for a subset of the
state machine language family

The dependency graph � = ⟨�,�⟩ represents implication
relations that we can extract from the concrete artifacts.
Figure 6 shows the dependency graph for a subset of the
slices that we are considering for the state machine example.
There are two additional opportunities for mining other kinds
of constraints (beyond binary implications).
Implication and disjunctions. For each vertex � in the

dependency graph � there exist a pair (�, �′) ∈ � if and only
if there is an �′ that satisfies � (Sect. 2.1), where �, �′ ∈ � are
slices. In particular, as we saw previously, �′ satisfies � when
there is some production � → � in �′ and � contains some
production � → ���′. In this case, we say that �′ provides
� and that � requires �. The satisfies relation between slices
�, �′ can be therefore interpreted as the logic constraint:

� → �
′ (4)

However, consider the case when there are multiple slices
�′i satisfying �, for � = 0, 1, . . . , �. For instance, each slice
might contain a production of the form � → �i, where
�0 ̸= �1 ̸= · · · ̸= �n. Although one might then be tempted
to write the set of formulas:

� → �
′

0, � → �
′

1, . . . , � → �
′

n

this would be incorrect. In fact, in a grammar, rules of the
form � → �i represent choices between possible rewritings,
rather than constraints that shall hold at the same time.4

Consequently, in this case we can infer the constraint:

� → (�′0 ∨ �
′

1 ∨ · · · ∨ �
′

n) (5)

For instance, in Fig. 6, the collection of equally-labeled out-
bound edges can be expressed using the formula:

StateDefList → (6)
(SimpleState ∨ InnerCompositeStates ∨ OuterCompositeStates).

4Recall that each production expresses a rewriting of the
symbol on the left with all the symbols on the right; the logic
constraints above would mean that � must be rewritten to
every �i at the same time, which clearly does not make sense.

As a general rule, if there is one and only one slice �′ that
satisfies �, then the logic constraint in Eq. (4) encodes the
mandatory requirement that, when � is in the language, then
also �′ shall be included; otherwise, if there are � slices �′i
that satisfy �, then the logic constraint Eq. (5) encodes the
requirement that, when � is in the language, at least one
slice �′i shall be included. By reasoning in the same way for
each slice in set � and for each pair in set �, we obtain a
collection of crosscutting constraints that we can pair with
the tree that we have as a result of the clustering procedure.

Conflicting components. Another kind of constraints can
be inferred by looking at conflicts between components. So
far we did not consider logical exclusion between features;
we may say that two language features are in conflict if
introducing both of them leads to an incorrect language
implementation. In particular, two language components that
define different semantics for the same keyword cannot coexist
at the same time in the same language implementation; in
this case, the conflict can be detected at the level of the
language framework. In the case of Neverlang, we consider
that two slices are in conflict when they define the same
syntax with different semantics (in Sect. 5, we report on such
a conflict).

4.5 Further Refactorings
The leaves of the tree that we obtain from the previous

procedure represent the components that constitute our lan-
guage. However, so far each feature has to be considered
optional. In the following, we will show how to infer fur-
ther relations between nodes of the tree. Some relations will
be retrieved from the slices, using the dependency graph:
therefore, most of them will directly relate to the leaves of
the tree; but it is possible to promote these relations to the
internal nodes of the tree. Other relations will be inferred
from the semantic network.
Conflicting concepts. Another kind of logical exclusion

(or conflict) can arise between domain concepts. In this case
the conflict cannot be detected by the language framework,
because conflicts between concepts are domain-specific. Con-
flicting concepts, however, are antonyms in the semantic
network —as provided by a domain expert. In both cases we
can encode the conflict as a logic formula. Now, let be � and
�′ two features in conflict; then we can write:

� → ¬�′ (7)

which is effectively stating that when one feature is present
in our language, the other shall not be included at the same
time. An example of possible conflict between concepts is
between SingleTriggerFork and MultiTriggerFork, which are
antonyms to each other (see Fig. 4). In practice, some lan-
guages for state machine definition actually admit multiple
event trigger after a fork and some may not (e.g., UML vs.
Rhapsody [11]). Therefore it is left to the developer to de-
cide whether or not SingleTriggerFork and MultiTriggerFork

are antonyms and mutually exclusive. Since the names
SingleTriggerFork, MultiTriggerFork are trivially mapped onto
the slices with the same name, we can easily also add a cross-
cutting constraint similar to (9), encoding that it is not
possible to generate a meaningful state machine language
implementation that includes both features.

Other constraints. A meronym encodes the part of rela-
tion. For instance, we can say that wheel is a meronym of
car. In particular, in this work, we are assuming that when

CompositeState

InnerCompositeState OuterCompositeState

Fig. 7: InnerCompositeStates → ¬OuterCompositeState

StateMachineLanguage

StateDef StateDefList StateChartDef StateChartBody

SimpleState CompositeState

StateMachineLanguage

StateDef

SimpleState CompositeState

Fig. 8: Collapsing mandatory features.

(�,�′) ∈ mero, then � is part of �′, and concept � may exist
in our language if and only if �′ is also present. Therefore,
for all pairs (�,�′) ∈ mero we must add the constraint

� ↔ �
′ (8)

for all pairs (�, �′) such that � ∈ � (�) and �′ ∈ � (�′). For
instance, in our example, one such case is

StateChartDef ↔ StateMachineLanguage.

In fact, the StateChartDef slice defines the outer container
for a state machine program (see Listing 1). Therefore, it
is a part of a StateMachineLanguage and there cannot be a
StateMachineLanguage without the outer container of its body.
In other words, meronyms can be used to infer mandatory
features in the variability model (see for instance Fig. 8).
Synthesis of variability information. The result of the

previous phase is a provisional feature diagram: a tree with
a possibly large collection of logic formulas. The process is
likely to be incremental: a domain expert can refine the set
of cross-tree constraints. All of these formulas say something
about the relations between language components, and many
of these formulas will crosscut between different subtrees.
However, many formulas can be simplified, promoted to in-
ternal nodes of the tree and encoded directly in the structure
of the variability model using heuristics and simple rewriting
strategies. For instance, consider Fig. 5, and the logic con-
straint in Eq. (9). The synthesis process reconstructs (i.e.,
refactors) the feature diagram and does make visible the
variability information in the tree. As shown in Fig. 7 there
is now an Xor-group in the subtree rooted at CompositeState.
In fact, each time a constraint is added or revised, the new
variability information can be automatically synthesized in
the feature diagram. We apply state-of-the-art synthesis
techniques [4, 1] that guarantee the feature diagram is sound
and maximal at each step of the editing process.

5. CASE STUDIES
We evaluated our approach using two case studies. The

first is an extended version of the running example (a fam-
ily of state machine languages). The second case study is
a family of simple, imperative, general purpose languages
mixed with the Linda coordination model [15]. In both cases
we automatically extracted the dependency graph from the
slices, we transformed it to a feature model by using the
semantic network, and inferred some further constraint to
improve the final result. At the end, the obtained feature
model permits to select which language belonging out of
those pertaining to the described families we desire to get

StateChartDef Outer container of the state machine body

StateChartBody Body of the state machine

StateDefList List of states

SimpleState Syntax for simple state

StartState Syntax for pseudostate start

FinalState Syntax for pseudostate final

InnerCompositeStates Specific definitions for Inner semantics

OuterCompositeStates Specific definitions for Outer semantics

MultiTriggerForkDef Syntax for Fork with Multi Trigger

SingleTriggerForkDef Syntax for Fork with Single Trigger

Transition Definition of a transition

TransitionDefList List of transitions

TransitionAction Body of a transition

Trigger Trigger of a transition

Guard Guard of a transition

Effect Effect of a transition

Join Join pseudostate implementation

Fork Fork pseudostate implementation

ForkTransition Fork Transition in the Single Trigger case

ForkLeftTransition Left Transition in the Multi Trigger case

ForkRightTransition Right Transition in the Multi Trigger case

Table 1: Slices for the SM language family

and its implementation is automatically achieved via Nev-
erlang and the composition of the selected slices. The goal
of this section is twofold. First, we report on our practical
experience and further illustrate our approach (see Sect. 5.1
and 5.2). Second, we aim to assess which parts of a variabil-
ity model can be automatically extracted and which parts
require domain knowledge —see Sect. 5.3.

5.1 Family of State Machines
In the previous sections, the family of state machine (SM)

languages has been used as our running example, focusing
on a smaller subset of the cases to ease the explanations.
The case study implements all of the slices found in Table 1.
We will now complete the description of this case study. In
Fig. 9) we show the full variability model; gray nodes are
directly mapped onto the slices (Table 1), while white nodes
either mapped are onto multiple slices or have no direct
correspondence to a slice.
In Fig. 9, SimpleState is a mandatory child of StateDef,

because in our semantic network (Fig. 3) SimpleState is a
meronym for StateDef. From the dependency graph (a portion
not shown here for lack of space) the slices TransitionBody,
Transition, and TransitionDefList are all dependent on each
other; in particular, we can infer the following constraints:

TransitionDefList → Transition

Transition → TransitionBody

TransitionDef and TransitionDefList aremeronyms of State-
MachineLanguage and Transition is a synonym of TransitionDef:
therefore Transition and TransitionDefList are mandatory.
As seen in Sect. 4.5, the nodes can be folded into their parent
TransitionDef (cf. Fig. 8). A similar pattern can be detected
in the subtree rooted in MultiTriggerFork: all of its children
can be folded inside this node: in fact, ForkLeftTransition

and ForkRightTransition are meronyms for MultiTriggerFork

that it is a synonym of MultiTriggerForkDef.The following
constraints from the dependency graph:

SingleTriggerFork → ForkTransition

MultiTriggerFork → ForkTransition

can be promoted to the parent (Sect. 4.5) as

ForkTrigger → ForkTransition.

and being ForkTransition and ForkTrigger meronyms for Fork:

StateMachineLanguage

StateDefTransitionDef

PseudoStateSimpleState CompositeState

StartState SynchronizationPseudoStatesFinalState

ForkJoin

ForkTransition ForkTrigger

SingleTriggerFork MultiTriggerFork

InnerCompositeStates OuterCompositeStates

Trigger TransitionOption

Guard Effect

Optional

Mandatory

Or

Alternative

Fig. 9: Final generated variability model. In grey, features that are mapped 1:1 to a slice.

ForkTransition ↔ Fork, ForkTrigger ↔ Fork.

All of these fork-related nodes are children of the same par-
ent Fork; it follows that ForkTransition and ForkTrigger are
mandatory, and that whenever ForkTrigger is chosen, one of
its children should be chosen as well; so SingleTriggerFork

and MultiTriggerFork are in an alternative relation (they are
in conflict: see Sect. 4.5). Finally, another constraint can be
found in the dependency graph:

CompositeState → StateChartBody.

However, since StateChartBody has been already folded into
the root StateMachineLanguage, this formula is redundant, and
it can be removed. It follows that in this particular case we
could remove all of the constraints and encode them directly
in the structure of the tree.

Two components implement the behavior of the compiler
in correspondence with the same keyword. It is the case of
InnerCompositeStates and OuterCompositeStates. As it is not
possible to include both components in the same language
implementation, they are in conflict. Such situations can be
automatically inferred and the constraint can be added:

InnerCompositeState → ¬OuterCompositeState (9)

5.2 Imperative Languages with Linda
Gelernter et al. [15] introduced Linda, a coordination

model that implemented inter-process communication us-
ing a shared memory concept called tuple space. This model
implements a very limited set of concepts (only six primitives:
in, inp, out, rd, rdp and eval) that can be embedded in a host
programming language. We further validate our approach
by applying the same process used for the state machine
language family to the union of a collection of slices for a
simple imperative language and a set of slices that imple-
ment the Linda primitives (see Table 2 for the implemented
slices). Linda primitives have been implemented as pairs
of slices with a threaded backend (local execution) or an
RMI backend (distributed execution): in this case, since only
their semantics change, a language that includes the slices
for Linda may be executed either locally or in a distributed
context, without requiring a rewrite.
For instance, Listing 2 shows a program written in a lan-

guage of the family represented by the variability model
in Fig. 10. The language includes the features Expression,
VariableDeclaration, PrintStatement, Block, and then it is pos-
sible to choose a pair of slices between LindaRMI + RMIProcess

and LindaThread + ThreadProcess. Of course, it is not possible

process ProcessFoo {

var messageToBar = "hello from Process Foo!"; var intValue = 100;

out(messageToBar, intValue);

var messageFromBar = "";

in(?messageFromBar);

print "Foo> String: "+messageFromBar;

}

process ProcessBar {

var messageFromFoo = ""; var intFromFoo = -1;

in(?messageFromFoo, ?intFromFoo)

print "Bar> String: "+messageFromFoo+" and int: "+intFromFoo;

var messageToFoo = "hello from Process Bar!";

out(messageToFoo);

}

Listing 2: Processes in a language from the Linda family.

RMIProcess Outer container for a process (RMI-based)

ThreadProcess Outer container for a process (Thread-based)

Block List of statements between curly braces {}

IfStatement Branch construct if

ForStatement Loop construct for

WhileStatement Loop construct while

DoWhileStatement Loop construct do-while

VariableDeclaration Syntax for variable declaration

Expression Expressions, numeric and string type defs

LindaRMI RMI-based Linda primitives

LindaThread Thread-based Linda primitives

Table 2: Slices for the Linda language family

to mix and match those, because of the constraints shown in
the variability model.
This example might be seen as not domain-specific, as it

defines parts of a general-purpose imperative language, but
it couples them with primitives from the Linda language,
and it can therefore be considered to some extent a family
of DSLs. In this context, reasoning on the componentization
of a general-purpose imperative language is interesting since
many components result optional (see Fig. 10). This is really
not surprising, given the generality of the involved constructs,
and it makes perfect sense: for instance, a simple imperative
language may be restricted to a non-turing complete subset
(e.g., no looping constructs, as in the provided example),
and still serve some purpose. As you can see in the result-
ing variability model, most of the components are in fact
optional or in an or relation. For lack of space, we have
chosen not to show the semantic network used to generate
the variability model but we will discuss how we obtained
the result. For this example it was necessary to take a simple
semantic network that put in relation general concepts for
programming languages (e.g., loops, branches, control flow,

LindaLanguage

Statement Process

ThreadProcessRMIProcessExpressionCompoundStatement

ControlFlowBlock

IfStatement LoopStatement

PrintStatementVariableDeclaration LindaPrimitives

WhileStatementForStatement DoWhileStatement

LindaRMILindaThread

Optional

Mandatory

Logic implication

Or

Alternative

Fig. 10: Linda variability model. Logic implications are in red. In gray, features that map to one slice.

etc.) and enriching it with concepts that are related to the
coordination domain whose Linda belongs.
In Fig. 11 we show a detail of the provisional variability

model that we obtained after applying the clustering algo-
rithm, and merging the nodes. At this point, all of the child of
SimpleStatement are optional, and therefore, in an or relation.
Expression is a child of SimpleStatement. The edges of the
dependency graph have been superimposed in the figure in
red or are spelled out as logic formulas: as you can see, there
are many interdependencies between Expression and other
components. In the final variability model (Fig. 10) we could
fold Expression into its parent SimpleStatement. In general,
this is not necessarily possible: for instance, ControlFlow’s
sibling Block depends on SimpleStatement and not necessarily
on Expression, and a language might include a statement
that performs some kind of action that does not require
an expression (e.g., printing a newline). However, because
in this case every sibling of Expression depends on it, and
because there are no other siblings that do not depend on
it, it makes sense to fold Expression into its parent. In
fact, since ControlFlow depends on Expression, then the de-
pendency would be promoted to SimpleStatement. However,
ControlFlow’s sibling Block depends on SimpleStatement and
not necessarily on Expression, because, in general, there might
be a statement that performs some kind of action that does
not require an expression. Still, because in this case every
sibling of Expression depends on it, and because there are
no other siblings that do not depend on it, even including
Block would transitively cause Expression to be included (as
a dependency of another child of SimpleStatement); therefore,
it makes sense to fold Expression into the parent.

Although one might be tempted to try and perform other
refactorings, the model shown in Fig. 10 cannot be simplified
further. For instance, because of the 1:1 mapping between
the LindaRMI slice, which implements the primitives in the
RMI case, and RMIProcess (and the same for the thread-based
implementation of the primitives and of the process defini-
tion), one might be tempted to fold them into one feature.
However, this would not be correct, since the implication is
only one-sided: it is possible, and it makes sense to define
a language where processes are executed in a thread or dis-
tributed using RMI and do not include the Linda primitives
in this language (for instance, one might use other libraries
to perform message passing). This means that even language
that do not include Linda constructs belong to this family.

SimpleStatement

ExpressionVariableDeclaration LindaPrimitives PrintStatement

ControlFlow → Expression

CompoundStatement → SimpleStatement

Block → SimpleStatement

Fig. 11: A detail of the VM for SimpleStatement.

5.3 Automation and Domain Knowledge
Table 3 summarizes the results for the two case studies.

For each case study (SM and Linda), we first report on the
number of antonyms, synonyms, meronyms, and hypernyms.
The information is included in the semantic work and speci-
fied by a domain expert. We also report on the number of
nodes and edges in the dependency graph —the inference of
the dependency graph is fully automated. 1:1 ft/slice is the
number of features that correspond to an actual component
language (slice). Such features have been depicted in gray
throughout the paper. The other features represent abstract
concepts and they have been automatically inferred from the
semantic network. Finally we reported on the total number
of exclude relationships (being represented as cross-tree con-
straints or alternative groups), mandatory relationships, and
or-groups in the final feature model of each case study.

The results show that the dependency graph of the existing
language components need to be refined with the expertize
from the domain expert (i.e., by using the semantic network)
to get a feasible feature model. First additional features
should be added to structure the feature models. Abstract
features, not originally present in the dependency graph,
represent 43% (resp. 37%) of the final feature model in SM
(resp. Linda). Second, heuristics for mining configuration
constraints (or-groups and excludes) supplement the fea-
ture models. Third, additional logical relationships (e.g.,
exclusion, mandatory relations) have been inferred from the
semantic network.

6. RELATED WORK
Many authors have addressed the problem of recovering a

feature model from various kinds of artifacts. She et al. [30]
showed how to reverse engineer a feature model starting
from feature descriptions (written in natural language) and

SM Linda

#antonyms 1 2

#synonyms 0 2

#meronyms 13 10

#hypernyms 13 14

#DG’s nodes 18 13

#DG’s edges 21 32

#1:1 ft/slice 12 (out of 21) 12 (out of 19)

#excludes 2 2

#mandatory 8 3

#Or-groups 2 4

Table 3: Results of the case studies

static analysis of source code. Davril et al. [12] presented a
fully automated approach for constructing feature models
from publicly available product descriptions (e.g., as found
in SoftPedia and CNET). Alves et al. [3] and Niu et al. [26]
use clustering techniques to infer a tree structure. Ferrari et
al. [13] considered natural language documents. Weston et
al. [35] extract feature models from the requirements descrip-
tion in natural language.
A key difference with our work is the presence of textual

artifacts to mine and organize features. In our context, we
can only rely on slice names —there is no feature description—
and on the natural dependencies between language compo-
nents —the dependency graph. It explains why we need
domain knowledge in the form of a semantic network, provid-
ing extra information to refine the provisional feature model
that can be inferred from the language components.

FAMILIAR [1] provides an environment to synthesize fea-
ture models from a propositional formulas. An interactive
support (through ranking lists, clusters, and logical heuris-
tics) for choosing a sound and meaningful hierarchy is part of
the environment [5, 6]. Generic ontologies (like WordNet or
Wikipedia) are exploited as well as synthesis techniques [4].
In our context, there are three notable differences: (1) the
dependency graph is a rough over-approximation of the con-
figuration set (2) the complete list of features is not a priori
known (3) feature names are quite technical and specific.
Therefore the application of synthesis techniques [4, 1, 5] is
not immediate and requires some user effort.

Another related subject is constraint mining. In [2], archi-
tectural and expert knowledge as well as plugins dependen-
cies are combined to obtain an exploitable and maintainable
feature model. Ryssel et al. [29] developed methods based
on formal concept analysis and analyzed incidence matrices
containing matching relations. Nadi et al. [25] developed a
comprehensive infrastructure to automatically extract con-
figuration constraints from C code. Their empirical study
showed that many of the constraints require expert knowl-
edge or more specific analysis. Our experience in a very
different context concurs with the findings. A substantial
amount of constraints cannot be inferred only from the anal-
ysis of languages components, despite the development of
specific heuristics for mining constraints (see Sect. 4.4).
Many formalisms were proposed in the past decade for

variability modeling. For an exhaustive overview, we refer
the readers to the literature reviews that gathered variability
modeling approaches [27, 18, 10]. The support for identifying
constraints and organizing features is likely to be relevant as
well for other variability formalisms,

Some work has applied variability management to lan-
guage implementation. Although we used Neverlang [8, 7],
other modular language implementation frameworks can be

employed to implement a similar kind of approach (e.g., [34,
17]). Cengarle et al. [9] use MontiCore [21] to describe varia-
tions of a base language. Haugen et al. [16] have used CVL
to model possible DSL variations. White et al. [36] use fea-
ture modeling to improve reusability of features among a
language family. In Liebig et al. [22] a family of languages is
decomposed in terms of their features. The authors do not
start from a set of pre-defined components, but rather they
componentize an already existing language and develop the
variability model to support it. Therefore, relations between
language components are imposed by the developers as they
implement them. In our approach we discover the relations
between the components using information that we extract
directly from the implemented language components. Our
objectives are thus quite different: we want to help a user
finding implicit or explicit relations between existing compo-
nents. The result makes it possible for end-users to configure
their own DSL.

7. CONCLUSIONS
We presented an approach to automatically infer a vari-

ability model from a set of language components, given a
description of a domain as a semantic network. The resulting
variability model represents a family of languages that can
be implemented using those components, with respect to
the given domain description. We evaluated our approach
against two case studies: the state machine and the impera-
tive+linda family of languages. Such an evaluation showed
that (1) the automatic extraction of constraints out of lan-
guage components is feasible but it is only a starting point of
the inference of a variability model; (2) the initial variability
model can be automatically refined by using some domain
knowledge (expressed as a semantic network).

We developed tools and automated techniques to support
the process. Semantic network (as a description of a domain)
as well as clustering techniques are used to hierarchically
organize features of the variability model. The variability
model has the merit of being readable, well-structured, and
consistent with the technical and the domain constraints.
The resulting variability model can be exploited to configure
a family of languages and automatically generate a language
implementation.

We implemented a prototype that uses the Neverlang [8, 7,
33] framework for the implementation of the language com-
ponents and the common variability language (CVL) [14],
as the domain-independent language for specifying and re-
solving variability. Given a desired combination of features,
we are able to generate a language implementation as the
composition of the set of Neverlang slices. The automating
support developed in this paper now allows developers and
users of DSLs to shift to a variability approach. As future
work, we plan to investigate how inferred variability models
can be maintained in parallel with the evolution of the DSL.

Acknowledgements. This work has been partially sup-
ported by the MIUR project CINA: Compositionality, Inter-
action, Negotiation, Autonomicity for the future ICT society,
by the ANR INS Project GEMOC (ANR-12-INSE-0011),
and the bilateral collaboration VaryMDE between INRIA
and Thales Research & Technology.

8. REFERENCES

[1] M. Acher, B. Baudry, P. Heymans, A. Cleve, and J.-L.

Hainaut. Support for Reverse Engineering and Main-
taining Feature Models. In P. Collet and K. Schmid,
editors, Proceedings of the 7th International Workshop
on Variability Modelling of Software-Intensive Systems
(VaMoS’13), Pisa, Italy, Jan. 2013. ACM.

[2] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and
P. Lahire. Extraction and Evolution of Architectural
Variability Models in Plugin-based Systems. Software
and Systems Modeling, July 2013.

[3] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
Exploratory Study of Information Retrieval Techniques
in Domain Analysis. In K. Pohl and B. Geppert, editors,
Proceedings of the 12th International Software Product
Line Conference (SPLC’08), pages 67–76, Limerick, Ire-
land, Sept. 2008. IEEE.

[4] N. Andersen, K. Czarnecki, S. She, and A. Wasowski.
Efficient Synthesis of Feature Models. In C. Scwanninger
and D. Benavides, editors, Proceedings of the 16th Inter-
national Software Product Line Conference (SPLC’12),
pages 97–106, Salvador, Brazil, Sept. 2012.

[5] G. Bécan, M. Acher, B. Baudry, and S. Ben Nasr. Breath-
ing Ontological Knowledge Into Feature Model Manage-
ment. Technical report, INRIA, Rennes, France, Oct.
2013.

[6] G. Bécan, S. Ben Nasr, M. Acher, and B. Baudry.
WebFML: Synthesizing Feature Models Everywhere.
In P. Heymans and J. Rubin, editors, Proceedings of
18th International Software Product Line Conference
(SPLC’14), Florence, Italy, Sept. 2014.

[7] W. Cazzola. Domain-Specific Languages in Few Steps:
The Neverlang Approach. In T. Gschwind, F. De Paoli,
V. Gruhn, and M. Book, editors, Proceedings of the
11th International Conference on Software Composition
(SC’12), Lecture Notes in Computer Science 7306, pages
162–177, Prague, Czech Republic, 31st of May-1st of
June 2012. Springer.

[8] W. Cazzola and E. Vacchi. Neverlang 2: Componentised
Language Development for the JVM. In W. Binder,
E. Bodden, and W. Löwe, editors, Proceedings of the
12th International Conference on Software Composition
(SC’13), Lecture Notes in Computer Science 8088, pages
17–32, Budapest, Hungary, 19th of June 2013. Springer.

[9] M. V. Cengarle, H. Grönniger, and B. Rumpe. Variabil-
ity within Modeling Language Definitions. In A. Schürr
and B. Selic, editors, Proceedings of the 12th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS’09), LNCS 5795, pages
670–684, Denver, CO, USA, Oct. 2009. Springer.

[10] L. Chen and M. A. Babar. A Systematic Review of
Evaluation of Variability Management Approaches in
Software Product Lines. Journal of Information and
Software Technology, 53(4):344–362, Apr. 2011.

[11] M. L. Crane and J. Dingel. UML vs. Classical vs. Rhap-
sody Statecharts: Not All Models Are Created Equal.
In L. Briand and C. Williams, editors, Proceedings of
the 8th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’05), LNCS
3713, pages 97–112. Springer, 2005.

[12] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-
Huang, and P. Heymans. Feature Model Extraction from
Large Collections of Informal Product Descriptions. In

L. Baresi and M. Mezini, editors, Proceedings of the
9th Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE’13), pages 290–300, Saint Petersburg,
Russia, Aug. 2013. ACM.

[13] A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta. Mining
Commonalities and Variabilities from Natural Language
Documents. In Proceedings of the 17th International
Software Product Line Conference (SPLC’13), pages
116–120, Tokyo, Japan, Sept. 2013. ACM.

[14] F. Fleurey, Ø. Haugen, B. Møller-Pedersen, A. Svendsen,
and X. Zhang. Standardizing Variability — Challenges
and Solutions. In I. Ober and I. Ober, editors, Proceed-
ings of the 15th International Conference on Interating
System and Software Modeling (SDL’11), LNCS 7083,
pages 233–246, Tolouse, France, 2011. Springer.

[15] D. Gelernter. Generative Communication in Linda. ACM
Trans. Prog. Lang. Syst., 7(1):80–112, Jan. 1985.

[16] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen,
and A. Svendsen. Adding Standardized Variability to
Domain Specific Languages. In K. Pohl and B. Geppert,
editors, Proceedings of the 12th International Software
Product Line Conference (SPLC’08), pages 139–148,
Limerick, Ireland, Sept. 2008. IEEE.

[17] P. R. Henriques, M. J. Varanda Pereira, M. Mernik,
M. Lenič, J. Gray, and H. Wu. Automatic Generation
of Language-Based Tools Using the LISA System. IEE
Proceedings — Software, 152(2):54–69, Apr. 2005.

[18] A. Hubaux, A. Classen, M. Mendonça, and P. Heymans.
A Preliminary Review on the Application of Feature
Diagrams in Practice. In D. Benavides, D. S. Batory,
and P. Grünbacher, editors, Proceedings of the 4th Inter-
national Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’10), pages 53–59, Linz, Aus-
tria, Jan. 2010.

[19] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical Assessment of MDE in Indus-
try. In H. Gall and N. Medvidović, editors, Proceedings
of the 33rd International Conference on Software Engi-
neering (ICSE’11), pages 471–480, Waikiki, Honolulu,
Hawaii, May 2011. IEEE.

[20] G. Kövesdán, M. Asztalos, and L. Lengyel. A Classifica-
tion of Domain-Specific Language Intents. International
Journal of Modeling and Optimization, 4(1):67–73, Feb.
2014.

[21] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: A
Framework for Compositional Development of Domain
Specific Languages. International Journal on Software
Tools for Technology Transfer, 12(5):353–372, Sept. 2010.

[22] J. Liebig, R. Daniel, and S. Apel. Feature-Oriented
Language Families: A Case Study. In P. Collet and
K. Schmid, editors, Proceedings of the 7th International
Workshop on Variability Modelling of Software-intensive
Systems (VaMoS’13), Pisa, Italy, Jan. 2013. ACM.

[23] M. Mernik, J. Heering, and A. M. Sloane. When and How
to Develop Domain Specific Languages. ACM Comput.
Surv., 37(4):316–344, Dec. 2005.

[24] M. Mernik and V. Z̆umer. Incremental Programming
Language Development. Computer Languages, Systems
and Structures, 31(1):1–16, Apr. 2005.

[25] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Min-
ing Configuration Constraints: Static Analysis and Em-
pirical Results. In L. Briand and A. van der Hoek, edi-

tors, Proceedings of the 36th International Conference
on Software Engineering (ICSE’14), pages 140–151, Hy-
derabad, India, May 2014. IEEE.

[26] N. Niu and S. Easterbrook. On-Demand Cluster Analysis
for Product Line Functional Requirements. In K. Pohl
and B. Geppert, editors, Proceedings of the 12th Inter-
national Software Product Line Conference (SPLC’08),
pages 87–96, Limerick, Ireland, Sept. 2008. IEEE.

[27] K. Pohl and A. Metzger. Variability Management in
Software Product Line Engineering. In L. J. Osterwell,
H. D. Rombach, and M. L. Soffa, editors, Proceedings
of the 28th International Conference on Software Engi-
neering (ICSE’06), pages 1049–1050, Shanghai, China,
May 2006. ACM.

[28] T. Rompf and M. Odersky. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and
Compiled DSLs. In Proceedings of the 9th International
Conference on Generative Programming and Component
Engineering (GPCE’10), pages 127–136, Eindhoven, The
Netherlands, Oct. 2010. ACM Press.

[29] U. Ryssel, J. Ploennings, and K. Kabitzsch. Extraction
of Feature Models from Formal Contexts. In F. Hei-
denreich and M. Resenmüller, editors, Proceedings of
the 3rd Wirkshop on Feature-Oriented Software Devel-
opment (FOSD’11), pages 1–8, Münich, Germany, Aug.
2011.

[30] S. She, R. Lotufo, T. Berger, A. Wa˓sowski, and
K. Czarnecki. Reverse Engineering Feature Models. In
H. Gall and N. Medvidović, editors, Proceedings of the
33rd International Conference on Software Engineering
(ICSE’11), pages 461–470, Waikiki, Honolulu, Hawaii,
May 2011. IEEE.

[31] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, Reading, MA, USA,
Mar. 2006.

[32] E. Vacchi, W. Cazzola, S. Pillay, and B. Combemale.
Variability Support in Domain-Specific Language De-
vevlopment. In M. Erwig, R. F. Paige, and E. van Wyk,
editors, Proceedings of 6th International Conference on
Software Language Engineering (SLE’13), Lecture Notes
on Computer Science 8225, pages 76–95, Indianapolis,
USA, 27th-28th of Oct. 2013. Springer.

[33] E. Vacchi, D. M. Olivares, A. Shaqiri, and W. Cazzola.
Neverlang 2: A Framework for Modular Language Im-
plementation. In Proceedings of the 13th International
Conference on Modularity (Modularity’14), pages 23–26,
Lugano, Switzerland, 22nd-25th of Apr. 2014. ACM.

[34] E. Van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in Attribute Grammars
for Modular Language Design. In R. N. Horspool, ed-
itor, Proceedings of the 11th International Conference
on Compiler Construction (CC’02), LNCS 2304, pages
128–142, Grenoble, France, Apr. 2002. Springer.

[35] N. Weston, R. Chitchyan, and A. Rashid. A Frame-
work for Constructing Semantically Composable Fea-
ture Models from Natural Language Requirements. In
J. mc Gregor and D. Muthig, editors, Proceedings of the
13th International Software Product Line Conference
(SPLC’09), pages 211–220, San Francisco, CA, USA,
Aug. 2009. ACM.

[36] J. White, J. H. Hill, J. Gray, S. Tambe, A. Gokhale, and
D. C. Schmidt. Improving Domain-specific Language

Reuse with Software Product-line Configuration Tech-
niques. IEEE Software, 26(4):47–53, July-Aug. 2009.

	1 Introduction
	2 Background and Motivation
	2.1 Component-based Language Framework
	2.2 Problem Statement

	3 Overview of the Approach
	4 Supporting the Approach
	4.1 Tag Generation
	4.2 Hierarchical Clustering
	4.3 Refinement Procedure
	4.4 Heuristics for Mining Constraints
	4.5 Further Refactorings

	5 Case Studies
	5.1 Family of State Machines
	5.2 Imperative Languages with Linda
	5.3 Automation and Domain Knowledge

	6 Related Work
	7 Conclusions
	8 References

