
HAL Id: hal-01024166
https://hal.inria.fr/hal-01024166

Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Systems Engineering Meets Software Language
Engineering

Jean-Marc Jézéquel, David Mendez, Thomas Degueule, Benoit Combemale,
Olivier Barais

To cite this version:
Jean-Marc Jézéquel, David Mendez, Thomas Degueule, Benoit Combemale, Olivier Barais. When
Systems Engineering Meets Software Language Engineering. CSD&M’14 - Complex Systems Design
& Management, Nov 2014, Paris, France. �hal-01024166�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49611092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01024166
https://hal.archives-ouvertes.fr


When Systems Engineering Meets

Software Language Engineering

Jean-Marc Jézéquel1, David Méndez-Acuña1, Thomas Degueule1, Benoit
Combemale1,2, and Olivier Barais1

Abstract. The engineering of systems involves many different stake-
holders, each with their own domain of expertise. Hence more and more
organizations are adopting Domain Specific Languages (DSLs) to allow
domain experts to express solutions directly in terms of relevant domain
concepts. This new trend raises new challenges about designing DSLs,
evolving a set of DSLs and coordinating the use of multiple DSLs for
both DSL designers and DSL users. This paper explores various dimen-
sions of these challenges, and outlines a possible research roadmap for
addressing them. The message of this paper is also to claim that if lan-
guage engineering techniques to design any single (disposable) language
are mature, the language engineering community needs to fundamentally
change its view on software language design. We need to take the next
step and adopt the perspective that a software language is, fundamen-
tally, software too and thus the result of a composition of design deci-
sions. These design decisions should be represented as first-class entities
in the software languages workbench and it should be possible, during
the language lifecycle, to add, remove and change language design de-
cisions with limited effort to go from continuous design to continuous
meta-design.

1 A Language-Oriented Vision for Systems Engineering

The engineering of complex software intensive systems involves many different
stakeholders, each with their own domain of expertise. It is particularly true
in the context of systems engineering in which rather than having everybody
working with code/model defined in general-purpose (modeling/programming)
languages, more and more organizations are turning to the use of Domain Spe-
cific Languages (DSLs). DSLs allow domain experts to express solutions directly
in terms of relevant domain concepts, and use generative mechanisms to trans-
form DSL specifications into software artifacts (e.g., code, configuration files or
documentation), thus abstracting away from the complexity of the rest of the
system and the intricacies of its implementation.

The adoption of DSLs has major consequences on the industrial development
processes. This approach, a.k.a. Language-Oriented Programming [19], break-
downs the development process into two complementary stages (see Figure 1):
the development, adaptation or evolution by language designers of one or several
DSLs, each capitalizing the knowledge of a given domain, and the use of such

1 IRISA, University of Rennes 1, France
2 Inria, France



Systems

engineers

A

B

C

language

engineering

process

Experts

Language

Designers

Application

Final users

system

engineering

process

Experts

Language

Users
Application

Final

system

Tools & Methods

Engineers

DSL

DSL Tools

Leverage on domain 

specific experience

Development of a 

system in the context 

of a given domain

Fig. 1: Language engineering stakeholders

DSLs by language users to develop the different system concerns. Each stage
has specific objectives and requires special skills. Figure 1 depicts the two inter-
dependent processes that continuously drive each other’s. The main objective of
the language engineering process is to produce a DSL which tackles a specific
concern encountered by engineers in the development of a complex system, to-
gether with its tooling. Once an appropriate DSL is made available to systems
engineers, it is used to express the solution to this specific concern in the final
system. However, by definition, DSLs are bounded to evolve with the domain
they abstract. Consequently, systems engineers need to be well aware of end
users’ expectations in order to report their new requirements to the language
designers. A new evolved DSL is then produced by the language designers, which
is in turn used by systems engineers and so on and so forth. It is worthwhile
to note that, although this is unlikely in large companies, these roles can be
alternatively played by the same people in smaller organizations.

As a matter of fact, while DSLs have been found useful for structuring de-
velopment processes and providing abstractions to stakeholders [10], their ul-
timate value has been severely limited by their user-understanding ambiguity,
the cost of tooling and the tendency to create rigidity, immobility and paralysis
(the evolution of such languages is costly and error-prone). The development of
software languages is a challenging task also due to the specialized knowledge
it requires. A language designer must own not only quite solid modeling skills
but also the technical expertise for conducting the definition of specific artifacts
such as grammars, metamodels, compilers, and interpreters. “Software languages
are software too” [7] and, consequently, languages development inherits all the
complexity of general software development; concerns such as maintainability, re-
usability, evolution, user experience are recurring requirements in the daily work
of software language engineers. As a result, there is room for application of soft-
ware engineering techniques that facilitate the DSL construction process. This



fact permitted the emergence of what we know as Software Language Engineer-

ing that is defined as the application of systematic, disciplined, and measurable
approaches to the development, use, deployment, and maintenance of software
languages [11].

The message of this paper is twofold. First, we claim that language engineer-
ing techniques for designing disposable DSLs are close to maturity. However,
as we will see, some challenges such as composition, modularity or evolution
still need to be addressed. Hopefully, decades of research in software engineer-
ing already paved the way and software language engineering should leverage
these facilities in order to tackle these challenges. Second, we claim that the
common view on software language design should fundamentally evolve. Rather
than abstract syntax trees, metamodels, type checkers, parsers, code generators,
compilers, etc., we need to model and represent a software language as the com-
position of a set of language design decisions, concerning, among others, the
existing language-units solutions, variation points, features and usage scenar-
ios that are needed to satisfy the requirements. Once we are able to represent
software languages, in several phases of the lifecycle, in terms of the aforemen-
tioned concepts, changing and evolving software languages will be considerably
simplified.

The remainder of this paper is organized as follows. We investigate the under-
lying challenges of the adoption of DSLs in the development of complex software
intensive systems firstly from the points of view of the language designer (Sec-
tion 2) and secondly from the language user point of view (Section 3). Finally,
Section 4 draws some perspectives and concludes.

2 Challenges for SLE from Language Designers’ Point of

View

From a language designer point of view, the development of new DSLs as well as
the evolution of existing ones becomes daily activities. Evolving a DSL usually
requires the co-evolution of all its tooling (parsers, textual syntax and graphical
syntax editors, compilers, code generators, . . . ). Besides, language users gen-
erally require backward compatibility or tooling for supporting the migration.
Consequently, each evolution is costly and error-prone and the software language
engineering community still needs to come up with new solutions. To enable this
vision that the language design decisions should be represented as first-class
entities in the software languages workbench and the it should, during the lan-
guage lifecycle, be possible to add, remove and change language design decisions
against limited effort, his section explores some required software engineering
techniques that have been used in the context of software languages engineering
for improving i) the reuse, ii) the variability management and iii) the verification
and validation. Specifically, we highlight the main challenges that remain to be
addressed in each case.

2.1 Reuse

Reusability of software artifacts is a central notion that has been thoroughly
studied and used by both academics and industrials since the early days of soft-



ware construction. Essentially, designing reusable artifacts allows the construc-
tion of large systems from smaller parts that have been separately developed
and validated, thus reducing the development costs by capitalizing on previous
engineering efforts.

It is however still hardly possible for language designers to design typical
language artifacts (e.g. language constructs, grammars, editors or compilers) in
a reusable way. The current state of the practice most of the time prevents
the reusability of language artifacts from one language to another, or from one
system to another, consequently hindering the emergence of real engineering
techniques around software languages.

Conversely, concepts and mechanisms that enable artifacts reusability abound
in the software engineering community. In this section, we present the time-
honored concepts of substitutability, inheritance and components, show their
relevance for language designers and draw some perspectives and challenges for
their inclusion in software language engineering.

Substitutability In its broadest sense, substitutability is the mechanism that
allows the replacement of one software artifact (e.g. code, object, module) with
another one under certain conditions. In the context of software language en-
gineering, the considered artifacts (languages, models, abstractions, tools, etc.)
are all candidates for substitutability mechanisms, allowing reusing them in dif-
ferent contexts. We propose the notion of types as interfaces that express the
constraints that different artifacts must verify in order to be substituted one
another.

The substitution principle has been thoroughly investigated in the object-
oriented programming community. It states whether given objects in a program
can safely be substituted to other objects based on the subtyping relation that
stands between their types [14]. Most object-oriented programming languages
feature a mechanism of subtype polymorphism that allows considering the same
object through different interfaces (i.e. types), provided they are subtypes one
another, enabling facilities such as code reuse or dynamic binding.

In the context of software language engineering, the definition of such types
and subtyping relations enables model (i.e. graph of objects) polymorphism,
namely the possibility to manipulate a model or program created using a spe-
cific language through different tools initially designed for similar yet different
languages [16]. Model polymorphism allows tackling a wide range of scenarios
that are commonly faced by system engineers. As a concrete example, consider
the management of evolution on complex languages such as UML. It is diffi-
cult for engineers to deal with this evolution, as all efforts concentrated around
a language are lost with subsequent versions; e.g. a transformation defined for
UML2.1 cannot be reused for models created using UML2.2 since these are, al-
though semantically close, different languages. Specifying the parameter of such
a transformation in terms of model interface allows reusing it for any model
that matches this interface: if a subtyping relation can be established between



the two versions, model polymorphism allows the reuse of all the tooling across
them, even benefiting from dynamic binding for prospective specialization.

However, the currently prevalent modeling frameworks do not provide such
type of substitutability mechanisms, and only a few recent research works ad-
dress them (e.g. [5,9,17]). Challenges such as complete language semantics sub-
stitutability or concrete syntax replacement still need to be addressed. More
generally, using interfaces for specifying the expected features and properties of
a language paves the way for language-agnostic, generic manipulation of models
and programs. This is particularly relevant in system engineering as engineers
need to deal with many different domains and stakeholders, each using his own
domain-specific, independently-evolving language.

Extension The need for language extension arises in many scenarios. DSLs are
initially designed and implemented for a restricted set of users with a finite set of
features that support their requirements but, most of the time, new requirements
will emerge once the language gets effectively used: they tend to grow with the
users’ needs. Moreover, DSLs are now more and more scattered among different
set of users that tackles the same domain, but with their own specificities. In this
case, language designers should be able to reuse an existing DSL that contains
the basic constructs and features for a particular domain, and extend it with
their own business distinctive features.

To support such scenarios where extensions are most of the time unforeseen,
DSLs must be designed in a way that facilitates their reuse and extensibility.
Conversely, a language designer that extends an existing language should be able
to concentrate on its business specificities, seamlessly reusing the base language
along with all its tooling. In this regard, real extensibility mechanisms should
support the introduction of new constructs, abstractions, or tools without having
to understand or recompile the base language source code.

Modularity and composability Modularization of software (i.e., components-
based software development) is considered an effective mechanism for achieving
software reuse and, consequently, reducing costs and time to market. The main
principle is to structure software applications as sets of interconnected build-
ing blocks that, in turn, are designed in such a way that allows later re-use in
other applications. In this context, three of the most important challenges are
(1) design and implement components with real potential re-use; (2) design the
interfaces that enable crosscutting collaboration among components in a system;
and (3) provide components models [12] that offer composition mechanisms for
integrating a set of components.

All the aforementioned ideas apply also when the software under construction
is a software language; there are benefits in terms of the reduction of construction
effort [2]. Nevertheless, those general challenges gain some special connotations
analyzed below:
i) Components design (how to breakdown a language?): Decomposing a
language in several language modules (a.k.a., language units) is not only about



offering a languages benchmark that enables modular definition of metamodels,
grammars and semantics; it is just the technical part. The other important chal-
lenge is to understand how the language units should be defined so they can be
reused in other contexts. What is the correct level of granularity? What are the
“services” that a language unit should offer for being considered reusable? What
is the meaning of a “service” in the context of software languages? What is the
meaning of a “services composition” in the context of software languages?

ii)Languages interfaces (how language units are specified?): The con-
struction of a language unit is not only about implementing a subset of the
language but also about specifying its boundary (i.e., the set of services it offers
to other language units and the set of services it requires from other language
units). This fact refers to the classical idea of required and provided interfaces
introduced by components-based software engineering approaches. But... what
is the meaning of “provided and required services” in the context of software
languages? We argue that the answer to that question must consider at least
two facts: composability and (one more time) substitutability. In the case of
composability, required and provided interfaces should provide a mechanism for
exposing providing services so they can be consumed by the required services of
other language units. In other words, interfaces are a mechanism for interaction
between language units. By the other hand, substitutability refers to the possibil-
ity of implementing provided services in different language units so the provided
interface becomes also a set of constraints that ensure the safe replacement of
the given implementations.

iii) Language units composition (how two language units do inter-
act?): The nature of the interaction between two language units might be dif-
ferent depending on some architectural decisions; extending one language unit
with another one is a different situation from a required service of a language
unit consuming one or several provided services from other language units. In
the case of extension, the base language unit is usually independent of the exten-
sions whereas the extensions have little sense without the base language unit [6].
In the case of required and provided interactions, the requiring language unit
usually cannot work without the provided one. We argue that there is a need of
composition operators that explicitly define the role of each language unit in a
composition.

2.2 Variability management and language families

One of the main limitations of components-based software development –and of
course it is also true in the case of software languages modularization– is the
difficulty of designing components that can be actually re-used in other contexts.
Despite the design principles and patterns, reusing of software components is not
guaranteed. In fact, in many cases the effort of building modularized software is
not compensated with the re-usability opportunities.

One of the answers that the software community has found is the idea of
variability management. Variability management is a mechanism for explicitly



representing the commonalities and differences among a family of software prod-
ucts. A family of products is defined as a set of software applications that have
similar purposes and that share some functionality but that is specialized in a
particular type of users or situation. The idea is to effectively reuse the imple-
mentation of such common functionality and having a repository of ”common
assets” that implement product features. The process of creating a product by
using the family of products is called product derivation. To do so, it is necessary
to select the desired product features and to offer a mechanism of composition
for integrating the assets corresponding to each feature. This is the main prin-
ciple of what we know as Software Product Line Engineering (SPLE) that is a
software engineering approach that has demonstrated important benefits in the
general case of software development.

As demonstrated in [18], variability management –and the ideas behind SPLC
in general– can be applied in the context of software languages for increasing the
re-usability and then increasing the productivity of software language engineers.
In this context, a family of products actually is a family of languages where there
are some commonalities and some differences (consider as an example the family
of OCL variants presented in [20]).

Some of the challenges that should be considered are:

Alignment with the modularization approach: It is worth noting that
modularization is a prerequisite for addressing variability management. In fact,
at the implementation level software modularization and variability management
are strongly linked. Each concrete feature expressed in the variability model must
correspond to a software component in the architecture so a given configuration
can be derived in a concrete functional product. In the case of software languages
each feature should be mapped to one (or more) language units that offers the
corresponding services. Moreover, in [13] van der Linden et. al. present a set of
three variability realization techniques at the level of the software modulariza-
tion schema. Those techniques can be viewed as a set of requirements in terms
of modularization and composition of the architecture and they are quite related
with the concepts of extension, substitutability and adaptation, some of them
discussed in the previous section. How to conjugate all those concepts for ef-
fectively define an approach that allows the construction of families of software
languages?

Multi-stage orthogonal variability modeling: Typically, a software lan-
guage specification is intended to define the abstract syntax, the concrete syntax
and the semantics of a language. As a result, language units have to contribute
to each of those dimensions. In other words, each language unit specification
includes a partial definition of the abstract syntax, the concrete syntax, and
the semantics. The whole language specification is obtained by putting all the
language units together. In [8] the authors observed that there exists some vari-
ability between each of those dimensions. Thereby, one language construct (i.e.,
a concept in the abstract syntax) may be represented in several ways (i.e., sev-
eral possible concrete syntaxes) and/or may have different meanings (several
possible semantics). This analysis remains the same for both the whole language



specification and each segment defined in language units. Consequently, we have
at least three different dimensions of variability each of them regarding one field
of the tuple:

– Abstract syntax variability or “functional variability”: This variabil-
ity refers to the capability of selecting the desired language constructs for
a particular product as long as the dependencies are respected. Consider
for example a family of languages for state machines where concepts such
as timed transitions, composite states, or history pseudo-states are optional
and are only included if the user of the language needs them. This variability
dimension is quite similar to the classical concept of functional variability of
SPLC where each feature represents a piece of functionality that may be or
not included depending on the specific requirements of a user.

– Concrete syntax variability or “representation variability”: This
variability refers to the capability of offering different representations for the
same concept. Consider for example a language for state machines that can
have textual or graphical representations. Note that this type of variability is
especially relevant in the context of metamorphics DSLs that we will explain
later in this paper.

– Semantics variability or “interpretation variability”: This variabil-
ity refers to capability of offering the different interpretations to the same
concept. Consider for example the semantics differences that exist between
state machines languages explored in [4]. In that work, we can see how, for
example, the priorities between conflicting transitions in a state machine are
resolved with different criteria. If we are able to manage such variability, the
reuse opportunities are drastically increased since we are able to reuse the
entire language infrastructure (e.g., editors, abstract syntax trees) for the
implementation of different languages that are interpreted according to the
needs of specific users.

Note that both representation variability and interpretation variability de-
pend on the functional variability. It makes no sense to select a representation
(or interpretation) for a language construct that has not been included as part of
the language product. In other words, the configuration of representation and in-
terpretation must be performed only for the construct selected in the functional
variability resolution.

2.3 Verification & Validation

Just as any complex software artifact, software languages need to be thoroughly
verified and validated. Their complex nature, the different aspects that compose
them makes it particularly difficult: is a language really suited for the problems
it tries to tackle? Can all programs relevant for a specific domain be expressed
in a precise and concise manner? Are all valid programs correctly handled by
the interpreter? Does the compiler always generate valid code?

Different techniques have been developed for the V&V of traditional software
and are good candidates for adaptation to software languages: among them, we



focus on design-by-contract and software testing, and the challenges they need
to address for the engineering of software languages.

Design-by-contract [15] advocates the definition of precise interfaces for soft-
ware components, e.g. using preconditions, postconditions, invariants or types.
Contracts can then be checked at different levels to assess the correct interaction
of components. In the context of software languages, contracts may be defined on
the abstract syntax (e.g. using invariants), on the semantics (e.g. using precondi-
tions and postconditions), etc [17]. Design-by-contract is especially relevant for
system engineering as it raises the level of abstraction in which the interaction
between the different domains and languages is considered, and makes explicit
some of the original requirements on the language. An integrated design-by-
contract process for software languages engineering is expected to bring the
same benefits as in traditional software development: precise – structural and
behavioral – interfaces, improved error handling, specification-driven definition
of artifacts, etc.

Software testing, on the other side, is the most prevalent V&V technique in
software engineering. Testing software languages is a challenging activity since
all their aspects must be checked: abstract syntax, grammar, semantics, tool-
ing, etc. Furthermore, in this context, test data (i.e. models or programs) are
themselves complex artifacts, thus complicating the coverage of representative
inputs and the definition of oracles functions [1]. The extensive use of generative
programming techniques also raises additional problems due to the gap between
generation time and testing time; i.e. the to-be-tested generated artifacts are
not known yet when the tests are written. Workarounds on this issue include
the automatic generation of test cases together with generated artifacts, which
in turns increases the testing activity complexity. Finally, the inherent nature
of multi-languages engineering requires not only the different languages to be
tested, but also their combination and interaction. Such integration tests should
be dedicated to the verification and validation of the composition, reusing the
testing effort spent on each of its part.

3 Challenges for SLE From the Language Users’ Point of

View

From the perspective of the users the emergence of several software languages
is also challenging. Despite the overall purpose of constructing DSLs is to facili-
tate the daily work of systems engineers, dealing with several languages implies
not only learning new syntaxes but also interacting with an increasing number
of tools: editors, compilers, and code generators among others. The remainder
of this section is dedicated to explore some of those challenges that must be
addressed to serve this vision that the language design decisions must be repre-
sented as first-class entities in the software languages workbench.

3.1 Language viewpoint

Domain-Specific Languages (DSLs) are plain languages, in the sense that many
difficult design decisions must be taken during their development and mainte-



nance, and that they can take different shapes: plain-old to more fluent APIs;
internal or embedded DSLs written inside an existing host language; external
DSLs with their own syntax and domain-specific tooling. All forms of DSLs have
strengths and weaknesses – whether you are a developer or a user of a DSL. The
basic trade-offs between internal and external DSLs have already been identified
and are subject to extensive discussions and research for several years. A new
trend though is observed. DSLs are now so widespread that very different users
with separate roles and varied objectives use them. Depending on the kinds of
users, roles or objectives, the same form of DSL (external or internal) might not
be the best for everybody. Beyond the unification of the different approaches, it
is worthwhile for DSLs to support the ability to be self-adaptable to the most
appropriate form (including the corresponding IDE) according to a particular
usage or task: we call such a DSL a metamorphic DSL.

From the same language description and different interface specifications, we
envision the ability to derive various IDEs that can be used accordingly. This
vision raises many challenges: systematic methods to evaluate when a form of a
DSL meets the expected properties (e.g., learnability); artefact modularization;
information sharing, while being able to visualize and manipulate an artefact in
a particular representation and in a particular IDE; global mechanism to ensure
consistency of the artefacts between these heterogeneous IDEs.

3.2 Language evolution

By definition, DSLs are bbounded to evolve with the domain they abstract.
Consequently, DSLs users need to learn and understand the newly-created ab-
stractions, syntaxes and tools. This raises new challenges in terms of change man-
agement and learnability of languages. In order to facilitate the transition, the
migration of models from one version of a language to another, aka co-evolution,
must be fully supported by the workbench: automatic migration when possible,
diff computation with explicit user refinement when required, etc. The same
situation arises when an older language is replaced with a completely new one,
defined independently, but abstracting the same domain.

3.3 Language integration

The development of modern complex software-intensive systems often involves
the use of multiple DSLs that capture different system aspects. In addition, mod-
els of the system aspects are seldom manipulated independently of each other.
System engineers are thus faced with the difficult task of relating information
presented in different models. For example, a system engineer may need to ana-
lyze a system property that requires information scattered in models expressed
in different DSLs. Current DSL development workbenches provide good support
for developing independent DSMLs, but provide little or no support for inte-
grated use of multiple DSLs. The lack of support for explicitly relating concepts
expressed in different DSMLs makes it very difficult for developers to reason
about information spread across different models.



Supporting coordinated use of DSLs leads to what we call the globalization of
modeling languages [3], that is, the use of multiple modeling languages to support
coordinated development of diverse aspects of a system. The term “globalization”
is used to highlight the desire that DSLs developed in an independent manner
to meet the specific needs of domain experts, should also have an associated
framework that regulates interactions needed to support collaboration and work
coordination across different system domains.

Globalized DSLs aim to support the following critical aspects of developing
complex systems: communication across teams working on different aspects, co-
ordination of work across the teams, and control of the teams to ensure product
quality.

4 Conclusion and Perspectives

This paper claims that research conducted in SLE for systems engineering should
consider that:

– The first phase of research and development in SLE has matured the technol-
ogy to a level where industry adoption is wide-spread and few fundamental
issues remain for efficiently designing any single (disposable) DSL.

– The traditional view on SLE suffers from a number of key problems that can-
not be solved without changing our perspective on the notion of language,
and especially of DSL. These problems include i) the lack of first-class repre-
sentation of design decisions in DSL: since design decisions are cross-cutting
and intertwined, they are easy to forget and hard to change, leading to high
maintenance costs; ii) the lack of support for explicitly relating different
DSLs that makes it very difficult for systems engineers to use multiple DSLs
while enabling a coordinated development of the diverse system aspects, and
to reason about information spread across artifacts built with different DSLs.

– As a community, we need to take the next step and adopt the perspective
that a software language is, fundamentally, software too, that is, the result
of a composition of design decisions. These design decisions should be rep-
resented as first-class entities in the software language workbench and it
should, during the language lifecycle, be possible to add, remove and change
language design decisions with limited effort to go from continuous design
to continuous meta-design.

5 Acknowledgments

This work is partially supported by the ANR INS Project GEMOC (ANR-12-
INSE-0011), the bilateral collaboration between INRIA and Thales Research &
Technology VaryMDE, and the ITEA2 European project MERgE.



References

1. B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J-M. Mottu. Bar-
riers to systematic model transformation testing. Communications of the ACM,
53(6):139–143, 2010.

2. T. Cleenewerck. Component-based dsl development. In Generative Programming
and Component Engineering, volume 2830 of LNCS, pages 245–264. Springer, 2003.

3. B. Combemale, J. DeAntoni, B. Baudry, R. B. France, J-M. Jezequel, and J. Gray.
Globalizing modeling languages. Computer, 47(6):68–71, 2014.

4. M. Crane and J. Dingel. Uml vs. classical vs. rhapsody statecharts: not all models
are created equal. Software & Systems Modeling, 6(4):415–435, 2007.

5. J. De Lara and E. Guerra. Generic meta-modelling with concepts, templates and
mixin layers. In Model Driven Engineering Languages and Systems, pages 16–30.
Springer, 2010.

6. S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled.
In Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications, LDTA ’12, pages 7:1–7:8. ACM, 2012.

7. J-M. Favre, D. Gasevic, R. Lämmel, and E. Pek. Empirical language analysis in
software linguistics. In Software Language Engineering, volume 6563 of LNCS,
pages 316–326. Springer, 2011.

8. H. Grönniger and B. Rumpe. Modeling language variability. In Foundations of
Computer Software. Modeling, Development, and Verification of Adaptive Systems,
volume 6662 of LNCS, pages 17–32. Springer, 2011.

9. C. Guy, B. Combemale, S. Derrien, J. Steel, and J-M. Jézéquel. On model subtyp-
ing. In Modelling Foundations and Applications, pages 400–415. Springer, 2012.

10. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-
ment of mde in industry. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 471–480. ACM, 2011.

11. A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

12. K-K. Lau and Z. Wang. Software component models. Transactions on Software
Engineering, 33(10):709–724, Oct 2007.

13. F. J. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, 2007.

14. B. H Liskov and J. M Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

15. B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992.
16. J. Steel and J-M. Jézéquel. On model typing. Software & Systems Modeling,

6(4):401–413, 2007.
17. W. Sun, B. Combemale, S. Derrien, and R. France. Using model types to support

contract-aware model substitutability. In Modelling Foundations and Applications,
pages 118–133. Springer, 2013.

18. E. Vacchi, W. Cazzola, S. Pillay, and B. Combemale. Variability support in domain-
specific language development. In Software Language Engineering, volume 8225 of
LNCS, pages 76–95. Springer, 2013.

19. M. P Ward. Language-oriented programming. Software-Concepts and Tools,
15(4):147–161, 1994.

20. C. Wende, N. Thieme, and S. Zschaler. A role-based approach towards modular
language engineering. In Software Language Engineering, volume 5969 of LNCS,
pages 254–273. Springer, 2010.


	When Systems Engineering Meets Software Language Engineering

