Optimization of running strategies based on anaerobic energy and variations of velocity

J. Frederic Bonnans

To cite this version:

J. Frederic Bonnans. Optimization of running strategies based on anaerobic energy and variations of velocity. NETCO 2014, Jun 2014, Tours, France. hal-01024231

HAL Id: hal-01024231
 https://hal.inria.fr/hal-01024231

Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ÉCOLE

Optimization of running strategies based on anaerobic energy and variations of velocity

J. Frédéric Bonnans
Inria-Saclay and CMAP, Ecole Polytechnique, France
Netco2014 Conf., Tours, June 23-27, 2014

Outline

1 Keller's model

2 Variable energy recreation

3 Bounding the derivative of f

Sources

- Talk based on the joint work [1] with Amandine Aftalion, Lab. Math. Versailles, UVSQ.

■ Pioneering reference: J.B. Keller [2].
[1] A. Aftalion and J.F. Bonnans, Optimization of running strategies based on anaerobic energy and variations of velocity. SIAM J. Applied Math., to appear (HAL preprint).
[2] Keller, J.B., Optimal velocity in a race, Amer. Math. Monthly 81 (1974), 474-480.

1 Keller's model

2 Variable energy recreation

3 Bounding the derivative of f

Keller's model: dynamics

Consider the following state equation:
(1.1) $\quad \dot{v}(t)=f(t)-\phi(v(t)) ; \quad \dot{e}(t)=\bar{\sigma}-f(t) v(t)$,

- Cost function: $-\int_{0}^{T} v(t) \mathrm{d} t$.

■ energy recreation: $\bar{\sigma}>0$
■ drag function $\phi(v)=v / \tau$, with $\tau>0$.
■ Generalized drag function: ϕC^{2} on $(0, \infty) ; \phi(0)=0$; ϕ^{\prime} positive; $v \phi^{\prime}(v)$ increasing
Example: $\phi(v)=a v^{\beta}, a>0, \beta \geq 1$.

Keller's model: constraints

- Control constraint: $0 \leq f(t) \leq f_{M}$.

■ Energy constraint: $e(t) \geq 0$.
■ Maximal force strategy: optimal for short horizons $T \leq T_{c}$.
■ In the sequel $T>T_{c}$.

Keller's model: discussion

■ Maximal speed (never reached): $0=f_{M}-v_{M} / \tau$, i.e.

$$
v_{M}=\tau f_{M}
$$

■ Constant energy speed: $f=v / \tau, \sigma=f v$, and so:

$$
v_{E}=\sqrt{\tau \sigma} .
$$

■ Energy variation when constant speed:

$$
e(t) \downarrow \text { if } v>v_{E} \text {, and } e(t) \uparrow \text { otherwise. }
$$

Keller's model: Keller's conjecture

■ Optimal strategy has three arcs
■ First arc: maximal force $f=f_{M}$.
$■$ Second arc: constant speed $v>v_{E}$.

- Last arc: zero energy $e=0$.

■ Negative jump of force at junction times
■ Unclear proofs in the literature for $\phi(v)=v / \tau$.

Keller's model: numerical resultsl

■ Mechanical parameters: $f_{\max }=9.6 \mathrm{~m} \mathrm{~s}^{-2}, \tau=0.67 \mathrm{~s}$
■ Energy parameters: $e_{a n}^{0}=1400 m^{2} s^{-3}, \bar{\sigma}=49 m^{2} s^{-3}$.
■ $d=1500$ m.
■ 2000 discretization steps, i.e. time step close to 0.12s.
■ Free software www.bocop.org.
■ Optimal time is 248.21 s

Keller's model: numerical results with bocop.org

Velocity

Force

Reverse energy

Zoom on end of race: zero energy arc

Final force

Final reverse energy

Keller's model: main result

So the numerical results agree with Keller's conjecture, and indeed:

Theorem

Keller's conjecture holds, even with the generalized drag function.

We next present the proof of this result.

Keller's model: Hamiltonian and costate

Hamiltonian function:

$$
H:=-v+p_{v}(f-\phi(v))+p_{e}(\bar{\sigma}-f v)
$$

Costate equation:

$$
\begin{cases}-\dot{p}_{v} & =-1-p_{v} \phi^{\prime}(v)-p_{e} f \\ -\mathrm{d} p_{e} & =-\mathrm{d} \mu,\end{cases}
$$

Final conditions $p_{v}(T)=p_{e}(T)=0$, and so: $p_{e}=\mu$. Multiplier to the state constraint: say $\mu(T)=0$ and

$$
\mathrm{d} \mu \geq 0 ; \quad \operatorname{supp}(\mathrm{d} \mu) \subset\{t ; e(t)=0\} .
$$

Therefore $p_{e}=\mu \leq 0$.

Switching function

The switching function is

$$
\Psi:=H_{u}=p_{v}-p_{e} v .
$$

By Pontryagin's principle, we have:

$$
f(t)= \begin{cases}f_{M} & \text { if } \Psi(t)>0 \\ 0 & \text { if } \Psi(t)<0\end{cases}
$$

p_{e} has negative values

Lemma

p_{e} has negative values.

Proof.

If $p_{e}(\tau)=0$ then over (τ, T) :
$p_{e}=0$, since it is nondecreasing and $p_{e}(T)=0$.
$\dot{p}_{v}=1+p_{v} \phi^{\prime}(v)$ (is >0 if $p_{v} \geq 0$) and $p_{v}(T)=0$
So $p_{v}<0 \Rightarrow \Psi=p_{v}<0 \Rightarrow f=f_{M}$
Contradiction by lemma 3.7 of paper.

p_{v} has negative values

Lemma

p_{v} has negative values.

Proof.

$p_{v} \geq 0 \Rightarrow \Psi>0 \Rightarrow f=0 \Rightarrow \dot{p}_{v}>0 ; \quad$ but $p_{v}(T)=0$.

Corollary

An optimal trajectory starts with a maximal force arc.

Derivative of switching function

When the state constraint is not active, p_{e} is constant and so:

$$
\begin{gathered}
\psi:=H_{u}=p_{v}-p_{e} v . \\
\dot{\psi}=\left(1+p_{v} \phi^{\prime}(v)+p_{e} f\right)-p_{e}(f-\phi(v)) \\
=1+p_{v} \phi^{\prime}(v)+p_{e} \phi(v)
\end{gathered}
$$

and so,

$$
\dot{\psi}-\Psi \phi^{\prime}(v)=1+p_{e}\left(\phi(v)+v \phi^{\prime}(v)\right) .
$$

Lemma

On a singular arc, v is constant.

No zero force arc

$$
\Delta:=\dot{\psi}-\Psi \phi^{\prime}(v)=1+p_{e}\left(\phi(v)+v \phi^{\prime}(v)\right) .
$$

Lemma

No zero force arc occurs.

- Let $\left(t_{a}, t_{b}\right)$ be such an arc; then $t_{a}>0$.
- If $t_{b}=T$ then $e(T)>0$: impossible.

■ $\Psi \geq 0$ over the arc; $\Psi\left(t_{a}\right)=\Psi\left(t_{b}\right)=0$.
■ We have therefore $\Delta\left(t_{a}\right) \geq 0 \geq \Delta\left(t_{b}\right)$.

- On this arc p_{e} is constant and v decreases, and so $\Delta(t)$ increases: contradiction.

No second maximal force arc

$$
\Delta:=\dot{\psi}-\Psi \phi^{\prime}(v)=1+p_{e}\left(\phi(v)+v \phi^{\prime}(v)\right) .
$$

Lemma

No second maximal force arc occurs.

- Let $\left(t_{a}, t_{b}\right)$ be such an arc; then $t_{a}>0$.

■ If $t_{b}<T$, "symmetric argument": v increases, Δ decreases, but $\Delta\left(t_{a}\right) \leq 0 \leq \Delta\left(t_{b}\right)$.
■ If $t_{b}=T, \mu$ should have a jump at time T, but then

$$
\lim _{t \uparrow T} \Psi(t)=-p_{e}\left(T_{-}\right) v(T)>0
$$

implying that $f=0$ at the end of the trajectory.

Keller's model: proof of main result

■ Let $t_{a} \in(0, T)$ be the exit point of the maximal force arc.

- We know that $\Psi=0$ over $\left(t_{a}, T\right)$.
$■$ Let $t_{b} \in(0, T)$ be the first time at which the energy vanishes (μ has no final jump).
$\square\left(t_{a}, t_{b}\right)$ is a singular arc.
- If the energy is not zero on $\left(t_{b}, T\right)$: there would exist t_{c}, t_{d} with $t_{b} \leq t_{c}<t_{d} \leq T$ such that $e\left(t_{c}\right)=e\left(t_{d}\right)=0$, and $e(t)>0$, for all $t \in\left(t_{c}, t_{d}\right)$.
- Then $\left(t_{c}, t_{d}\right)$ is a singular arc, over which $\dot{e}=\sigma-f_{v}$ is constant: contradiction.

1 Keller's model

2 Variable energy recreation

3 Bounding the derivative of f

Variable energy recreation

■ Less recreation when energy close to its extreme values, and additional recreation when deceleration:

$$
\dot{e}=\sigma(e)+\eta(a)-f v
$$

where a is the acceleration: $a=\dot{v}=f-\phi(v)$, and η convex:

$$
\eta(a) \geq 0, \quad \eta(a)=0 \text { iff } a \geq 0 .
$$

- Function $\sigma(e)$ regularization of a piecewise affine and continuous function, value 0 at extreme values, otherwise constant.

Numerical results with variable $\sigma(e)$ and $\eta(a)=0$

Velocity

Force

$\sigma(e)$

Hamiltonian and costate with variable $\sigma(e)$

Hamiltonian function:

$$
H:=-v+p_{v}(f-\phi(v))+p_{e}(\sigma(e)+\eta(f-\phi(v))-f v) .
$$

Costate equation:

$$
\begin{cases}-\dot{p}_{v} & =-1-p_{v} \phi^{\prime}(v)-p_{e} f-p_{e} \eta^{\prime}(a) \phi^{\prime}(v) \\ -\mathrm{d} p_{e} & =p_{e} \sigma^{\prime}(e)-\mathrm{d} \mu,\end{cases}
$$

Final conditions $p_{v}(T)=p_{e}(T)=0$. $\mu(T)=0, \mathrm{~d} \mu \geq 0, \operatorname{supp}(\mathrm{~d} \mu) \subset\{t ; e(t)=0\}$.

Minimization of Hamiltonian with variable $\sigma(e)$

■ Hamiltonian function:

$$
H:=\left(p_{v}-p_{e} v\right) f+p_{e} \eta(f-\phi(v))+\text { indep. of } f
$$

■ Concave function of the control f
■ Minimum attained at extreme values 0 or f_{M}.
■ Need of relaxed formulation; expectation of force:

$$
f=0 \times(1-\theta)+\theta f_{M}
$$

- We may as well take f as parameter and then $\theta=f / f_{M}$.

Relaxed formulation

■ Recreation due to deceleration at zero speed:

$$
R(v):=\eta(-\phi(v)
$$

- State equation

$$
\begin{aligned}
\dot{v} & =f-\phi(v) \\
\dot{e} & =\sigma(e)-f v+\left(1-f / f_{M}\right) R(v)
\end{aligned}
$$

- Hamiltonian

$$
H=p_{v}(f-\phi(v))+p_{e}\left(\sigma(e)-f v+\left(1-f / f_{M}\right) R(v)\right) .
$$

Relaxed formulation: theoretical analysis

- Assume $\sigma(e)=\bar{\sigma}$ and $\eta(a)=\varepsilon \eta^{\prime}(a)$
- For $\varepsilon>0$ small enough

■ Same optimal structure as for Keller'model: maximal force, constant speed, zero energy.

1 Keller's model

2 Variable energy recreation

3 Bounding the derivative of f

Numerical results when bounding \dot{f}

Velocity

Force

Numerical results: zoom with variable $\sigma(e)$ and $\eta(a) \neq 0$

Zoom on velocity

Zoom on force

Periodic problem

- Maximize average speed: $(1 / T) \int_{0}^{T} v(t) \mathrm{d} t$.

■ Periodic speed and force, loss of energy $e(0)=e(T)+T e_{d}$.

- State equation and constraints

$$
\left\{\begin{array}{l}
v(0)=v(T) ; \quad f(0)=f(T) . \\
e(0)=e(T)+T e_{d} ; \\
\dot{v}=f-v \tau ; \\
\dot{e}=\sigma+\eta(a)-f v ; \\
0 \leq f \leq f_{M} ;|\dot{f}| \leq 1, \quad \text { for a.e. } t \in(0, T) .
\end{array}\right.
$$

Zoom vs periodic: velocity

Periodic velocity

Zoom vs periodic: force

Zoom on force

Periodic force

Related work

[1] S. Aronna, J.F. Bonnans and B.S. Goh, Second order necessary conditions for control-affine problems with state constraints. Research report, to appear (HAL preprint).

Open questions

- Asymptotic analysis $\eta(a)=\varepsilon \eta^{\prime}(a)$.

■ Shape of oscillations ?

- Expansion of cost function

THE END!

