
HAL Id: hal-01026159
https://hal.inria.fr/hal-01026159

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Shortest Path Algorithm for Voronoi Diagrams
with Generalized Distance Functions
Julio Toss, João Luiz Dihl Comba, Bruno Raffin

To cite this version:
Julio Toss, João Luiz Dihl Comba, Bruno Raffin. Parallel Shortest Path Algorithm for Voronoi
Diagrams with Generalized Distance Functions. XXVII SIBGRAPI, Conference on Graphics Patterns
and Images, Aug 2014, Rio de Janerio, Brazil. �hal-01026159�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49609357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01026159
https://hal.archives-ouvertes.fr

Parallel Shortest Path Algorithm for Voronoi

Diagrams with Generalized Distance Functions

Julio Toss, João Comba

Institute of Informatics

Federal University of Rio Grande do Sul, UFRGS

Porto Alegre - RS, Brazil

Email: {jtoss,comba}@inf.ufrgs.br

Bruno Raffin

Inria, CNRS

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

Email: Bruno.Raffin@inria.fr

(a) Stiffness gradient from soft (blue) to stiff (red) (b) Compliance distance: far (blue) to close (red) (c) Voronoi diagram

Fig. 1. Computing the Voronoi diagram with generalized distance functions on a voxel grid with dimensions 100x40x20 for 20 seeds: The distance function
is defined on a non-Euclidean space which depends on specific material properties, in this example a gradient that encodes material stiffness (a). The resulting
distance map (b) is obtained after computing the shortest path on the voxel grid from each Voronoi seed (c). The GPU grid-based parallel shortest path
algorithm we propose was 27 times faster than the reference sequential CPU implementation.

Abstract—Voronoi diagrams are fundamental data structures
in computational geometry with applications on different areas.
Recent soft object simulation algorithms for real time physics
engines require the computation of Voronoi diagrams over 3D
images with non-Euclidean distances. In this case, the computa-
tion must be performed over a graph, where the edges encode the
required distance information. But excessive computation time
of Voronoi diagrams prevent more sophisticated deformations
that require interactive topological changes, such as cutting
or stitching used in virtual surgery simulations. The major
bottleneck in the Voronoi computation in this case is a shortest-
path algorithm that must be computed multiple times during the
deformation.

In this paper, we tackle this problem by proposing a GPU
algorithm of the shortest-path algorithm from multiple sources
using generalized distance functions. Our algorithm was designed
to leverage the grid-based nature of the underlying graph used
in the simulation. Experimental results report speed-ups up to
65x over a current reference sequential method.

Keywords-Voronoi Diagram; GPGPU; Parallel Programming;
Physics Based Simulation.

I. INTRODUCTION

The Voronoi diagram is a classical subdivision of space that

is suitable for answering proximity problems, such as finding

the nearest site, facility location, motion planning, coverage

in sensor networks, etc. There are many variations of Voronoi

diagrams, which are often associated to the underlying distance

measure used. In this work we are particularly interested

in the computation of Voronoi diagrams for non-Euclidean

spaces, where a generalized distance function is used. This

motivation came from the area of physics-based simulation,

where Voronoi diagrams were used by Faure et at. [1] to sim-

ulate meshless deformable objects with heterogeneous material

properties and complex geometries. Their proposal relies on

a novel method which uses material-aware shape functions to

describe the composition of simulated bodies, which can be

composed of both soft and stiff materials.

The computation of Voronoi diagrams plays a central role

in their proposal. To have accurate and realistic deformations,

the underlying deformation space is discretized into a grid,

and the material stiffness is defined for each vertex of the

grid (material map). The deformation algorithm considers grid

vertices as simulation nodes, with an associated Voronoi kernel

function that limits the region of influence of the node. Since

the distance function is not computed in a standard Euclidean

plane, it must be scaled according to compliance values in the

material map. Therefore, points connected by similar materials

(i.e. inside the same Voronoi cell) will deform in a similar way.

The computation of the Voronoi kernel function and hence

the Voronoi diagram is done during the setup phase of the sim-

ulation and remains unchanged during the whole simulation,

as long as the topology of the object and material properties do

not change. This allows the subsequent simulation phase to be

performed in real-time, a necessary requirement for interactive

applications. However, to enable interactive changes in the

topology of the object (e.g. cutting or stitching), the Voronoi

diagram must be recomputed during the simulation. This is not

possible in their solution, since they report initialization times

ranging from less that 1 second for a grid of 100x40 voxels to

10 minutes for a 500x200 grid. However, their implementation

is strictly sequential leaving plenty of room for optimization

and parallelization.

Contributions: In this work we explore certain properties

of the deformation problem to speed up the computation

of shortest paths in graphs, which are used in the Voronoi

diagram computation. Our proposal describes a shortest path

algorithm using a parallel implementation that leverages the

processing power of Graphics Processing Units (GPUs). Cur-

rent GPU proposals for shortest path algorithms consider

the Single-Source-Shortest-Path (SSSP) problem [2], using

classic algorithms such as Dijkstra [3] or Bellmann-Ford.

Unlike these algorithms, our algorithm considers the Multiple-

Source-Shortest-Path (MSSP), since multiple shortest path

computations are triggered at each simulation node. Moreover,

we leverage the fact that our shortest-path algorithm can be

computed over a grid instead of general graphs (used in current

algorithms), which allows the algorithm to be more efficient.

We implemented our algorithm in CUDA and tested differ-

ent design decisions with a collection of simulation examples.

We prepared an experimental evaluation comparing our GPU

implementation against the sequential CPU reference method,

and obtained speed-ups ranging form 3x for small inputs up

to 65x for larger ones, both with synthetic and real datasets.

II. RELATED WORK

The Voronoi diagram is a data structure extensively studied

in the context of computational geometry for many different

applications. Originally it defines a region of proximity for a

set of k sites (seeds) in a plane where the distance between

points is defined by their Euclidean distance. Most works use

methods to efficiently compute them on a contiguous Eu-

clidean space [4], or to compute their discrete approximation

[5], [6].

Although most works in the literature compute Voronoi

diagrams on Euclidean spaces, there are generalizations in

the context of graphs [7], [8], sometimes called the Graph

Voronoi Diagram [7]. In this context, the distance metric

considered corresponds to the shortest path between nodes.

This formulation of Voronoi diagrams often arises in the field

of Facility Location, where clients and suppliers lie in an

interconnection network. Computing these Voronoi diagrams

basically consists in concurrently computing shortest paths

from multiple sources on a weighted graph.

A. Parallel Voronoi diagrams computation

Over the last decade, the advent of parallel processors

motivated the scientific community to put its effort in creating

parallel algorithms for classical problems. At the same time,

GPUs evolved to become general purpose massive parallel

processors attracting attention from other fields of computing.

Early study made by [5] used graphics hardware (pre-CUDA)

to compute an approximation of the Voronoi diagram. Most

works found in the literature rely on a discrete approximation,

usually either on 2D pixel-maps or on surfaces.

The many parallel approaches vary in the way the informa-

tion of proximity from the Voronoi centers is propagated to

each pixel. Jump Flooding Algorithm (JFA) is proposed by [4],

[6] as an algorithmic paradigm for GPGPU with application

on Voronoi diagram computation. In JFA, the seeds start

propagating their coordinates to neighbor pixels according to a

pattern that halves the offset at each step. Each pixel compares

the new information received with the current one and keeps

the coordinates of the closest seed. In this case, distances can

easily be computed on the Euclidean plane.

Weber et al. [9] introduces an interesting parallel algo-

rithm called parallel marching method (PMM) to compute

distances on surfaces with application on Voronoi diagrams.

This method is indeed an extension of the fast marching

method which is based on a priority-queue. However, this kind

of data structure is difficult to efficiently parallelize. Instead,

their method uses a specific traversing order of the grid, called

raster scan, which shows an efficient parallelization algorithm.

More recently, [10] proposed a substantially different

method from the previous ones. It uses a combinatorial ap-

proach to compute, in parallel, the exact polygons that form

each cell of the Voronoi diagram. This work however is

mainly theoretical, showing formal proofs without bringing

experimental results.

All of these works consider distance computation on the

Euclidean space, none of them deals with Voronoi diagrams

on the graph space. This means that the shortest distances are

always straight lines, hence these methods cannot be directly

applied on graph problems. To the best of our knowledge there

are no algorithm addressing the parallelization of the Graph

Voronoi Diagram.

B. Parallel graph algorithms

Distance computation for the construction of the Voronoi

diagram defined over graphs require finding shortest paths

(with multiple sources plus concurrent search) [7]. The original

Dijkstra’s sequential algorithm for solving the Single-Source

Shortest-Path (SSSP) [3] has O(V 2) complexity on the number

of vertices, while the min-priority-queue based version has

complexity O(E+V logV) , where E is the number of edges.

Several parallel approaches to solve the SSSP problem

have been proposed on the literature. Crauser et Al. [11]

proposed a parallel PRAM algorithm of Dijkstra’s which

needs O(n1/3log n) time. However, Dijkstra is an inherently

sequential algorithm, with lots of synchronizations with no

efficient PRAM implementation [2]. Alternatively, other works

parallelize the SSSP based on Bellman-Ford’s algorithm which

is less efficient than Dijkstra on sequential implementations,

but has a higher degree of parallelism [12], [13].

Most of the existing parallel SSSP algorithms have to deal

with a trade-off between the amount of parallelism exposed

and the extra work generated. The parallel delta − stepping

method, proposed on [14], has a good compromise between

these two factors. They report an implementation exhibiting

30x speed-up on a CRAY MTA-2 shared memory architecture

with 40 processors.

1: procedure RELAX(u, v, w)

2: if v.d > u.d+ w(u, v) then

3: v.d← u.d+ w(u, v)
4: end if

5: end procedure

Fig. 2. Relaxation Algorithm

C. GPU implementation of SSSP algorithms

Several GPU implementations have been proposed over the

last years for different graph algorithms [2]. For the shortest

path problem specifically, Dijkstra-based parallelizations are

more frequently used [2], [14], [15]. Although, other ap-

proaches exist (e.g [12]), which proposes a modified Bellman-

Ford algorithm on GPU for dense graphs.

In general, Dijkstra based algorithms use a technique known

as edge relaxation. In this technique each vertex maintains

an estimate shortest-path with distance v.d. The process of

relaxation consist of trying to improve this estimate by going

from vertex u to v through an edge of weight w(u, v) (Fig. 2).

When done in parallel, each vertex u is assigned to a thread

which may update v.d concurrently, thus creating a critical

section. Consequently, lines 2 - 4, of algorithm in Fig. 2,

have to be protected in an atomic region. In modern CUDA

devices this atomic region can be efficiently implemented by

the single atomic instruction atomic min(addr, val) 1 .

III. PARALLEL GRAPH VORONOI ALGORITHM

As mentioned on the previous section, the Graph Voronoi

can be seen as an extension of the shortest path problem.

However its parallelization poses additional problems of con-

current access on shared variables. In the Voronoi diagram

problem, each voxel has to keep the distance estimate value to

the seed and an extra variable for its Voronoi cell index. These

variables would then be updated serially in the relaxation

procedure, which, if executed by two threads in parallel,

could lead to any combination of results in these variables.

On concurrent programming this is a classical case of race

condition. The straightforward solution for this problem would

be to enclose the whole critical section (Fig. 2) within mutex

locks. However, mutexes are expensive structures to implement

on GPUs. To deal with this problem, we choose to encode both

variables, Voronoi index and distance estimate, in a single

32-bit word (Fig. 3) which can then be atomically updated

in a single atomic min() instruction. Our encoding can be

adjusted to balance distance precision and maximum number

of Voronoi cells. In our implementation, we reserved 24 bits

for the distance and 8 bits for the Voronoi region index.

1 atomic min(addr, val) reads word old located at the address addr,
computes the minimum of old and val, and stores the result back to memory
at the same address. These three operations are performed in one atomic
transaction [16].

Distance estimate Voronoi Index

32-bit word

d bits k bits

Fig. 3. Encoding information of distance and Voronoi index in a single word.
Values d and k can be changed to adjust precision.

Fig. 4. Scatter updates: each active thread propagates its current information
about distance and Voronoi index to its neighbors.

A. Data structure

Our data representation in memory substantially differs from

the classical graph data structures. Instead of using adjacency

matrices or lists for the shortest path computation, like in

[2], we are dealing directly with images which are 3D node

matrices. Each node keeps its compliance value, Voronoi cell

index, and distance to a Voronoi source. The connectivity

between nodes is given by their natural neighbors in the 3D

volume (26 neighbors). The weight of each edge is given

by some generalized distance function, dist(Cv, Cu), relating

adjacent neighboring nodes. In this work specifically, we

employ the compliance scaled distance function used by Faure

et Al. [1]. In this case, the distance between two adjacent nodes

is a function of the measure of compliance of the material at

each node.

B. Base algorithm

Our algorithm uses four internal arrays, C0, C1, Vor and

Mask , stored on the GPU global memory and with same size

of the input volume (Fig. 5). The cost arrays C0 and C1

are used to keep the shortest-path estimates of each voxel.

They are initialized with 0 at the seeds and ∞ (maximum

unsigned integer value) everywhere else. The Voronoi diagram,

stored on array Vor , is initially empty on every voxel, except

for those corresponding to the seed’s coordinate which are

initialized with a unique Voronoi cell index. Finally, the

boolean array Mask is used as activity mask to mark which

voxels have an updated cost estimate indicating that it will be

relaxed on the next step.

We assign one thread to every voxel . The execution then

follows a scatter approach (Fig. 4) where each active thread,

marked on Mask , will relax the cost estimate of its neighbors

and set their correct Voronoi index.

The algorithm is divided in two parallel phases: relaxation

1: procedure VORONOI(Seeds ,Vor ,Mat)

2: for all v ∈ Mat do

3: C0[v]←∞;C1[v]←∞
4: end for

5: for all s ∈ Seeds do

6: C0[s]← 0;C1[s]← 0
7: Mask [s]← true

8: Vor [s]← idx++
9: end for

10: repeat

11: RELAXKERNEL(Mask ,C0,C1,Mat)

12: TERM ← true

13: UPDATEKERNEL(Mask ,C0,C1)

14: until TERM

15: end procedure

Fig. 5. Host Code

1: procedure RELAXKERNEL

2: tid← getThreadIndex()
3: if Mask [tid] then

4: for all neighbors nid of tid do

5: dnew ← C0[tid] + localDist(tid, nid,Mat)
6: AtomicMin((C1[nid]|Vor [nid]),
7: (dnew|Vor [tid]))
8: end for

9: Mask [tid]← false

10: end if

11: end procedure

Fig. 6. Relaxation Kernel: updates the current shortest path estimates and
the closest Voronoi seed.

and update. The host code (Fig. 5) initializes the data structures

and then iteratively calls the GPU kernels RELAXKERNEL

(Fig. 6), add UPDATEKERNEL (Fig. 7), until the termination

condition is satisfied. The distance function, at line 5 in

RELAXKERNEL, computes the local distance between two

neighbor voxels based on their compliance values in the mate-

rial map [1]. At each iteration, C1 maintains the intermediate

values computed during the relaxation. In the UPDATEKER-

NEL procedure, the values from C1 are copied back to C0

and the activity mask is updated. The duplication of these

cost matrices is needed to avoid read-after-write hazards when

writing to global memory. The algorithm finishes when the

diagram reaches a fixed point, where no more voxels are

updated.

C. Algorithm with stream compression

As an enhancement to our base algorithm, we tried to reduce

the number of idle threads by applying stream compression

[2], [17]. Fig. 8 shows how the computation propagates to

neighbors in a form similar to a wave. The black front

indicates, at each step, which threads have True in the activity

mask at the beginning of the relaxation kernel (at line 3 of

algorithm in Fig. 6). Over the execution of the algorithm, we

note that the number of active threads is much lower than the

1: procedure UPDATEKERNEL

2: tid← getThreadIndex()
3: if C0[tid] > C1[tid] then

4: C0[tid]← C1[tid]
5: Mask [tid]← true

6: TERM ← false

7: end if

8: end procedure

Fig. 7. Update kernel: verifies the termination condition and updates the
activity mask.

(a) step 3 (b) step 17 (c) step 42

Fig. 8. At each step the thread activity mask is updated. This process triggers
propagation waves leaving from each Voronoi seed. As the distances are not
linear some pixels will be recomputed causing the effect of “thicker waves”
(b).

grid size and also varies considerably along time (Fig. 12).

This causes our thread blocks to be very inefficient as most

of the threads will actually evaluate the conditional to False,

without computing anything (line 3, Fig. 6) .

Compact blocks solve this problem by grouping all the

active thread in fewer blocks, thus reducing branch divergence,

as well as the runtime overhead of scheduling idle threads.

Implementation: Stream compression is performed by a

Scan operation over the activity mask followed by a Scatter.

These operations can be easily implemented in CUDA using

the Thrust template library [18]. The result of the compression

is an array mapping thread indexes to pixel coordinates, that

are used in Kernel1 to retrieve the correct data.

This process adds a non-negligible overhead which some-

times can actually supersede the gains of performance. To be

able to balance the trade-off between performance gains of

compression and time spent by the scan+scatter process, we

implemented a variable grain compression.

Variable grain compression: This method defines a

coarser subdivision over the activity mask as show in Fig. 10.

The coarser mask is parametrized by its grain size, which is set

by their x, y and z dimensions. The algorithm then scans the

coarser mask, identifying which grains contain active threads

and launches only this amount of threads. We will use the

notation dimx×dimy×dimz to refer to different grains used.

IV. EXPERIMENTS

Several benchmarks were performed to evaluate the per-

formance of our algorithm. In the following sections we

describe our test environment and input instances used for

the experiments.

(a) T-bone Steak (b) Stiffness (c) Compliance-scaled distances (d) Voronoi Partitions

Fig. 9. Use case example: The T-bone steak (a) contains a mixture of flexible meat, softer grease and a rigid bone. As input we take the voxelized
material map of stiffness values (b) and the coordinates of the simulation nodes. Our method computes the Voronoi diagram (d) rooted at each node using a
compliance-scaled distance metric (c).

(a) Activity Mask subdivision (b) Coarser Mask

Fig. 10. Stream compression with variable grain size.

A. Testing environment

The platform used for the CPU benchmarks was an Intel

CoreTM i7 CPU model 930 with 4 cores running at 2.89Ghz

and 12 GB memory. Despite the multi-core architecture, the

CPU implementation is strictly sequential. The results of our

GPU algorithm were obtained on an NVIDIA GPU GTX480

with 1.5 GBytes of global memory and 15 Multiprocessors

with 32 cores each, totaling 480 CUDA cores. The CPU codes

were compiled with GCC 4.8 using -O2 optimization flags.

The CUDA driver is version 6 while the run-time is version

5.5.

B. Input instances

The input data set used differs on 3 different parameters:

volume size, material map topology and number of Voronoi

seeds. For the material map topologies we considered both

synthetic and real-application data. The synthetic topologies

represents a cube volume with (a) an uniform constant stiffness

and (b) a gradient stiffness varying uniformly from left to

right (called Gradient-Fig. 1a). In these topologies, we variate

the volume from 323 to 2563 voxels, which are the common

discretization sizes used for physics simulation in [1]. The

seeds are randomly distributed on each map. We note that,

due to the compliance-scaled distance function employed, the

same set of seeds actually generate very different Voronoi

Fig. 11. Comparison of Voronoi diagrams generated with the same set of
seeds on two different material maps. Left: with an uniform stiffness. Right:
with a stiffness gradient.

diagrams, depending on the topology of the material map used

(see Fig. 11).

The real-application data-set is the discretized material map

of the T-bone steak (Fig. 9) from paper [1]. The map of the

steak has a volume of size 64x64x15 voxels and exhibits non-

uniform stiffness distribution. The data of the steak is freely

available for download with the SOFA framework [19], [20].

V. RESULTS AND DISCUSSION

This section presents the results obtained on several test

cases. For a proper analysis, we divide our experimental results

in three parts presented bellow.

A. Base algorithm speed-up

We start by comparing our parallel algorithm with its

sequential reference implementation on CPU. The results are

shown in the form of parallel speed-ups on Fig. 13. Each bar

represents a different input instance where labels cube32310s,

cube64310s, cube128310s and cube256310s denote a cube

with gradient topology with dimensions 32, 64, 128 and 256

respectively, each with 10 seeds. The plate 100x40x10 20s

input is a plate of stiffness gradient with 20 seeds (shown

in Fig. 1). Both steak instances have a bounding volume of

64x64x15 voxels.

0

20

40

60

80

100

120

 0 20 40 60 80 100 120 140

(a) Gradient - 1283 - 10 seeds

0

1

2

3

4

5

6

7

8

9

10

 0 5 10 15 20 25

(b) Gradient - 100x40x20 - 20 seeds

0

0.5

1

1.5

2

2.5

3

 0 5 10 15 20 25 30 35 40

(c) Steak - 64x64x15 - 10 seeds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 0 5 10 15 20 25 30 35 40 45

(d) Steak - 64x64x15 - 3 seeds

Fig. 12. Thousands of active threads at each iteration of RELAXKERNEL.

In this benchmark the speedup achieved varies from 3.8x

for small volumes (Steak) up to almost 40x for bigger ones.

These results show that our algorithm benefits from bigger

input sizes, because they expose more parallelism. This is also

confirmed in Fig. 12, where we note that the maximum amount

of active parallel threads is higher for bigger volumes. We

summarize the execution times obtained with this benchmark

in Table I .

B. Voronoi seeds

On a second scenario, we investigated the impact of the

number of seeds in the performance. We used a volume size of

1283 and same gradient topology. For each quantity of seeds,

we randomly generated 10 different seed sets. Each result

shown on Fig. 14 is the average speed-up obtained with these

10 instances. These results suggest that for larger amounts

of seeds the speedup increases. Indeed, having more Voronoi

seeds has the effect of allowing more active threads at the first

iteration. Moreover, the number of iterations of the algorithm

tends to reduce as more Voronoi cells expand concurrently.

C. Stream compression

Our last set of experiments evaluates the stream compres-

sion optimization described in section III-C. This optimization

can be parametrized by setting the grain dimensions used for

the subdivision of the coarser mask like shown on Fig. 10. We

used the CUDA profiling tools to analyze the trade-off between

overhead of stream compression and gained performance at

several grains. We summarized the most representative results

in the stacked histogram of Fig. 15. The figure presents results

for a volume size of 1283 with gradient topology and a set

of 10 fixed seeds. The bars are sorted by total execution time

and each grain size is indicated on the x axis, where ”static”

refers to the base algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Cube
32

3

10s

Cube
64

3

10s

Cube
128

3

10s

Cube
256

3

10s

Plate
100x40x20

20s

Steak
64x64x15

3s

Steak
64x64x15

10s

S
p

e
e

d
-u

p
 C

P
U

/G
P

U

Gradient
Constant

Fig. 13. Speed-up for different input sizes. Gradient and constant topologies
are presented for synthetic benchmarks only. Steak’s topology corresponds to
the real data-set of Fig. 9

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128 256

S
p

e
e

d
-u

p
 C

P
U

/G
P

U

Number of seeds of the voronoi diagram

Fig. 14. Average speed-up when increasing the number of seeds of the
Voronoi diagram. Standard deviations are shown on top of each bar.

 0

 20

 40

 60

 80

 100

 120

 140

 160

16x08x04 04x01x01 static 04x08x16 01x01x04 01x01x01

T
o

ta
l
e

x
e

c
tu

ti
o

n
 t

im
e

 (
m

s
)

Grain dimensions for stream compaction

RelaxKernel UpdateKernel Mem Copy Overhead

Fig. 15. Profiling of stream compression

TABLE I
BENCHMARK RESULTS WITH EXECUTION TIMES AND SPEED-UP OBTAINED WITH THE BASE GPU ALGORITHM.

CPU GPU

Topology Volume #Seeds Iterations Time (ms) Iterations Time(ms) Speed-up

Gradient

323 10 32768 32.24 30 1.96 16.46

643 10 262144 296.77 70 12.13 24.46

1283 10 2097152 3863.54 126 105.91 36.48

2563 10 16777216 38756.80 195 985.80 39.31

100× 40× 20 20 80000 77.04 21 2.51 30.68

Constant

323 10 32768 21.37 20 1.27 16.80

643 10 262144 190.81 52 9.20 20.73

1283 10 2097152 1957.65 79 61.85 31.65

2563 10 16777216 22103.64 159 812.03 27.22

100× 40× 20 20 80000 52.31 22 2.47 21.15

Steak
64× 64× 15 3 12276 10.80 38 2.16 5.01

64× 64× 15 10 12276 10.39 45 2.72 3.82

Finner grains generate larger masks, therefore add more

overhead for generating the map of active threads. A finner

grain, however, provides better compression, which reduces

the amount of idle threads and of useless thread-blocks. This

positively impacts the time spent on the RELAXKERNEL

procedure. See column 1× 1× 1 in Fig. 15.

On the other-hand, more compact thread-blocks will also

increase the number of threads accessing non-coalesced mem-

ory locations. In our application the volume is stored linearly

in memory, which means that neighbour voxels on the x

dimension are stored contiguously in memory. Favoring a

larger x grain-dimension increases the number of threads

accessing the same memory segment, thus achieving a better

memory throughput. This fact can be observed comparing

grains of same sizes, but different shapes like 4 × 1 × 1 and

1× 1× 4.

Experiments with smaller volume sizes, like 323 and 643,

showed worse total execution time than the base algorithm.

Nevertheless, for the 1283 volume, the technique of stream

compression led to a 23.29 % performance gain over the base

implementation.

VI. CONCLUSION AND FUTURE WORK

In this work we presented a GPU algorithm for computing

the Voronoi diagram with generalized distance functions. Our

method adapts a graph algorithm, for the SSSP problem,

to compute the Voronoi diagram on a 3D grid of voxels.

We have shown through experimental evaluation that our

base parallel implementation significantly speeds-up Voronoi

computation. Additionally, we applied an optimization strategy

called Stream compression that allows to increase utilization

of the GPU on large volumes.

Regarding our implementation, there is still room for op-

timization on the data representation in memory. Its current

linear representation cannot benefit from the locality present

in the neighborhood computation. A better memory layout,

like Z-curves, could further enhance the performance.

Our algorithm has a direct application on physics-based

simulation algorithms. As a next step towards this direction,

we plan to address the dynamic scenario simulating cuts in

deformable objects. In this case, local updates of the Voronoi

diagram would be needed to handle dynamic changes in

topology.

ACKNOWLEDGMENT

We would like to thank Françcois Faure from INRIA-

Grenoble for its insightful help and discussion about the

method of material-aware distance function. We also thanks

CAPES and CNPq (process 476685/2012-5 and 309483/2011-

5) for the financial support.

REFERENCES

[1] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai, “Sparse meshless
models of complex deformable solids,” ACM SIGGRAPH 2011 papers

on - SIGGRAPH ’11, p. 1, 2011.

[2] P. Harish, V. Vineet, and P. J. Narayanan, “Large Graph Algorithms
for Massively Multithreaded Architectures,” International Institute of
Information Technology Hyderabad, Tech. Rep. IIIT/TR/2009/74, 2009.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[4] G. Rong, Y. Liu, W. Wang, and X. Yin, “GPU-assisted computation
of centroidal Voronoi tessellation,” IEEE Transactions on Visualization

and Computer Graphics, vol. 17, no. 3, pp. 345–356, 2011.

[5] K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Fast
computation of generalized Voronoi diagrams using graphics hardware,”
Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, pp. 277–286, 1999.

[6] G. Rong and T. Tan, “Jump flooding in GPU with applications to
Voronoi diagram and distance transform,” Proceedings of the 2006

symposium on Interactive 3D graphics and games, p. 109, 2006.

[7] M. Erwig, “The graph Voronoi diagram with applications,” Networks,
vol. 36, no. 3, pp. 156–163, 2000.

[8] F. Hurtado, R. Klein, E. Langetepe, and V. Sacristán, “The weighted
farthest color Voronoi diagram on trees and graphs,” Computational

Geometry, vol. 27, no. 1, pp. 13–26, Jan. 2004.

[9] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and
R. Kimmel, “Parallel algorithms for approximation of distance maps on
parametric surfaces,” ACM Transactions on Graphics, vol. 27, no. 4,
pp. 1–16, Oct. 2008.

[10] D. Reem, “On the possibility of simple parallel computing of Voronoi
diagrams and Delaunay graphs,” CoRR, vol. abs/1212.1, pp. 1–31,
2012.

[11] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization
of Dijkstra’s shortest path algorithm,” Mathematical Foundations of

Computer Science 1998, pp. 722–731, 1998.
[12] S. Kumar, A. Misra, and R. S. R. Tomar, “A modified parallel approach

to Single Source Shortest Path Problem for massively dense graphs
using CUDA,” 2011 2nd International Conference on Computer and

Communication Technology (ICCCT-2011), pp. 635–639, Sep. 2011.
[13] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free irregular

computations on GPUs,” Proceedings of the 6th Workshop on General

Purpose Processor Using Graphics Processing Units - GPGPU-6, pp.
96–107, 2013.

[14] K. Madduri, D. Bader, J. Berry, and J. Crobak, “Parallel shortest
path algorithms for solving large-scale instances,” in 9th DIMACS

Implementation Challenge – The Shortest Path Problem, DIMACS
Center, Rutgers University, Piscataway, NJ, 2006, pp. 1–39.

[15] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano,
“A new GPU-based approach to the shortest path problem,” High

Performance Computing and Simulation (HPCS), 2013 International

Conference on, pp. 505–511, Jul. 2013.
[16] NVIDIA, “Cuda c programing guide,” ”http://docs.nvidia.com/cuda/

cuda-c-programming-guide/”, 2014, [accessed on 23-Apr-2014].
[17] J. Hoberock, V. Lu, Y. Jia, and J. Hart, “Stream compaction for

deferred shading,” Proceedings of the Conference on High Performance

Graphics, vol. 1, no. 212, pp. 173–180, 2009.
[18] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for

cuda,” GPU Computing Gems, vol. 7, 2011.
[19] P. SOFA, “Simulation open framework architecture,” ”http://www.

sofa-framework.org/”, 2014, [accessed on 23-Apr-2014].
[20] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,

H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin,
“SOFA: A Multi-Model Framework for Interactive Physical Simulation,”
in Soft Tissue Biomechanical Modeling for Computer Assisted Surgery,
Y. Payan, Ed. Springer, Jun. 2012.

