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L. Albera(1,2,3), S. Kitić(3), N. Bertin(4), G. Puy(3), Rémi Gribonval(3)

(1) Inserm, UMR 642, Rennes, F-35000, France (2) LTSI, University of Rennes 1, Rennes, F-35000, France
(3) Inria, Centre Inria Rennes - Bretagne Atlantique, Rennes, F-35000, France

(4) IRISA, CNRS UMR 6074, Rennes, F-35000, France.

ABSTRACT

Localizing several potentially synchronous brain activities

with low signal-to-noise ratio from ElectroEncephaloGraphic

(EEG) recordings is a challenging problem. In this paper we

propose a novel source localization method, named CoRE,

which uses a Cosparse Representation of EEG signals. The

underlying analysis operator is derived from physical laws

satisfied by EEG signals, and more particularly from Pois-

son’s equation. In addition, we show how physiological

constraints on sources, leading to a given space support and

fixed orientations for current dipoles, can be taken into ac-

count in the optimization scheme. Computer results, aiming

at showing the feasability of the CoRE technique, illustrate its

superiority in terms of estimation accuracy over dictionary-

based sparse methods and subspace approaches.

Index Terms— Brain source localization, EEG, cospar-

sity, synchronous current activities.

1. INTRODUCTION

Electrical potentials produced by neuronal activity can be

measured at the surface of the head using ElectroEncephaloG-

raphy (EEG). The sources of this neuronal activity (during

either cognitive or pathological processes) can be localized

provided that a model of sources and a model of volume

conductor are defined. Most source localization algorithms

use one of the two following source models: the point source

model, which explains the data with a small number of equiv-

alent current dipoles and the distributed source model, which

uses thousands of dipoles. Whereas the latter allows for an es-

timation of the spatial extent of the source, it requires to make

assumptions about the spatial source distribution, which may

lead to blurred (or even distorded) solutions [1]. On the other

hand, the former often gives helpful first approximations and

superior performance in environments where there are few

sources which are clustered [1]. Regarding head models,
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they aim at representing geometrical and electrical proper-

ties of the different tissues composing the volume conductor.

Various models were proposed going from concentric homo-

geneous spheres with isotropic conductivities to realistically

shaped models with refined tissue conductivity values [2].

Numerous methods were developed to localize equivalent

current dipoles from EEG recordings. Among them, beam-

forming techniques [3], subspace approaches such as MU-

SIC (MUltiple-SIgnal Classification) [4] and sparse methods

[5] are the most popular. One can mention the RapMUSIC

(Recursively applied MUSIC) [6] and FO-D-MUSIC (Fourth

Order Deflationary MUSIC) [7] algorithms, which are se-

quential versions of MUSIC based on Second Order (SO)

and Fourth Order (FO) statistics, respectively. Regarding the

dictionary-based sparse techniques, the most famous is MCE

(Minimum Current Estimate) [5], which computes minimum

ℓ1-norm estimates. Note that cosparse approaches were re-

cently proposed applying for instance a discrete Gabor trans-

form [8] as analysis operator [9] to the current source activi-

ties.

In this paper, we show how to derive an analysis oper-

ator derived from physical laws satisfied by EEG signals,

and more particularly from Poisson’s equation. As a result,

we propose a new dipole localization method, named CoRE

(physics-driven structured Cosparse Representation of EEG

signals), taking into account physiological constraints on

sources leading to a given space support and fixed orienta-

tions. Computer simulations demonstrate the feasability and

the performance of the CoRE approach in comparison to

the MCE technique especially for low Signal-to-Noise Ra-

tio (SNR) values. We also illustrate the ability of CoRE in

dealing with synchronous brain sources and overcoming the

RapMUSIC and FO-D-MUSIC algorithms in such a practical

context.

2. ASSUMPTIONS AND PROBLEM FORMULATION

It is commonly admitted that the electrical potential v(r)
recorded at location r of the head mostly reflects the activity

of pyramidal cells located in the gray matter and oriented

perpendicularly to the cortical surface. This activity is gen-



erally modeled by current dipoles. Given the geometry and

the scalar field {σ(r)} of electrical conductivities within the

head, Poisson’s equation [10] allows us to establish a link be-

tween the electrical potential v(r) and the electrical activity

of the current dipoles:

divr(σ(r)∇rv(r)) =∑

ρ∈S

s(ρ)(δ(r − ρ−)− δ(r − ρ+))/d (1)

where ρ− and ρ+ denote the positions of the two monopoles

representing the current sink and source, respectively, d
stands for the distance between the two monopoles, s(ρ)
is the electrical activity of the dipole located at position ρ and

S denotes the gray matter. The location parameter ρ of the

considered dipole is typically chosen half way between the

two monopoles.

Let’s consider the following assumptions:

A1. N potential values v(rn) recorded at locations rn of

the scalp are available;

A2. Q current dipoles cover the gray matter S;

A3. each current dipole is represented by two monopoles

with opposite amplitudes;

A4. each current dipole is oriented orthogonally to the cor-

tical surface;

A5. only P (P ≤ N ) current dipoles of S have a non-

negligible amplitude.

Then, the brain source localization problem consists in

identifying the locations ρp of the P dominant current

dipoles belonging to S from the N -dimensional vector

x = [v(r1), . . . , v(rN )]T.

3. PHYSICS-DRIVEN STRUCTURED COSPARSE

REPRESENTATION OF EEG SIGNALS

Now let’s see how the brain source localization problem can

be reformulated as a cosparse analysis model fitting problem

based on a physics-driven structured cosparse representation

of EEG signals.

3.1. Discretization of Poisson’s equation

The CoRE approach described in section 4 requires an appro-

priate discretization of Poisson’s equation in order to derive

an equation of the form Ωv = z from (1) where Ω is a matrix

denoting the so-called linear analysis operator [9] and where

z is a sparse vector. The Finite Difference Method (FDM)

and Finite Element Method (FEM) can be used to perform

such a discretization. Note that these two methods allow us to

take realistic head models into account such as those obtained

from anatomical imaging modalities: Computed Tomography

(CT) and structural Magnetic Resonance Imaging (sMRI) for

instance.

As an example, and without loss of generality, we con-

sider the FDM in the following, and more particularly the

FDM implemented by Witwer et al. [11] applying Kirchhoffs

law at each node of the cubic grid. It is noteworthy that

Witwer et al. gave an easy way of taking into account the

skull-air boundary. The nodal points (voxels) exterior to the

insulated boundary are assigned a conductivity that is so small

that the flux leakage across the boundary can be made as small

as desired. Another main advantage of Witwer’s FDM is the

way it is treating the internal boundaries and inhomogeneities,

say by simply varying the conductivity values. Discretizing

the volume as a (L× L× L) uniform three-dimensional grid

with spacing h, and applying Witwer’s FDM to equation (1),

we can express the total current flow value at a given voxel

as a linear combination of the potentials measured in a close

neighbourhood of this voxel (see equation (17) of appendix).

3.2. Toward a cosparse analysis model

The link between the total current flow value and the poten-

tials derived from the discretization of Poisson’s equation can

be easily written in the matrix form Av = i where v and

i are two vectors containing the potential and total current

flow values, respectively, at the different nodes of the three-

dimensional grid. The (L3 × L3) matrix A is symmetric,

positive semidefinite, rank deficient by one and sparse with

only seven non-zero components in each row [10]. Generally,

instead of considering the singular linear system Av = i,

another possibility is to transform it into a regular one and

solve this instead. The regular system is chosen such that its

unique solution belongs to the set of solutions of the original

singular system. As described in [10], the easiest approach

is to fix the value of the potential to zero in one voxel. The

special structure of the matrix A then allows us to cancel the

corresponding row and column in A and also the respective

entry in the right-hand side vector i. This leads to a system

for which the (L3 − 1 × L3 − 1) resulting matrix is sym-

metric and positive definite. By slight abuse of notation we

continue to name this matrix A. The solution of this system

obviously solves the initial system with a zero potential value

in the respective voxel.

Let ℓ− and ℓ+ index the elements of i giving the ampli-

tude of the monopoles located at positions ρ− and ρ+, re-

spectively, of the grid. According to assumptions (A2), (A3)

and (A4), and knowing the geometry of the cortex, it is pos-

sible to build a set of Q different couples (ℓ−q , ℓ
+
q ) indexing

the Q dipoles of S . Indeed, by covering the surface of the

cortex with Q monopoles indexed by the integers ℓ−q , we can

deduce the Q corresponding integers ℓ+q using (A4). We can

thus factorize vector i as i = B z where B = (Bℓ1,ℓ2) is a



(L3 − 1× L3 − 1) sparse matrix defined by:

Bℓ1,ℓ2 =





1 if ℓ1 = ℓ2
−1 if ℓ1 = ℓ+q and ℓ2 = ℓ−q
0 otherwise

(2)

and where z is a (L3 − 1)-dimensional P -sparse vector with

L3−1−Q known zero elements: the ℓ-th element of z is zero

if ℓ 6= ℓ−q for q ∈ {1, . . . , Q}. Consequently, matrix B con-

veys our knowledge about the orientation of the Q dipoles of

S and the amplitude of the monopoles associated with these

dipoles. It is also an invertible matrix, since it is possible

to permute its rows and columns such that a lower triangu-

lar matrix with ones on the diagonal is obtained. Regard-

ing vector z, its non-zero elements represent the amplitude

of monopoles restricted to the cortical surface.

The brain source localization defined in section 2 can then

be reformulated as a cosparse analysis model fitting problem

given by:
{

Ωv = z

x = M v
(3)

where the analysis operator Ω is given by Ω = B−1 A and

the matrix M is a (N × L− 1) row-reduced identity matrix.

4. THE CoRE ALGORITHM

The purpose of this section is to show how the cosparse analy-

sis model fitting problem presented in section 3 can be solved,

giving birth to the CoRE algorithm. First, we reformulate the

cosparse analysis model fitting problem (3) as the following

convex problem:

minimize
v

||Ω1 v||1 + λ||Ω2 v||22 (4)

subject to M v = x.

where Ω1 is the (Q × L − 1) submatrix of Ω obtained by

extracting the rows of Ω corresponding to the support set S ,

whereas Ω2 corresponds to the rows indicated by the com-

plementary set S̄ . By choosing the appropriate weight λ, the

cosparse solution of the optimization problem (4) will fulfill

the assumptions (A1) to (A5). Namely, ||Ω1 v||1 will pro-

mote sparsity at the surface of the cortex, while λ||Ω2 v||22
will attenuate the signal in the other regions. The linear con-

straints M v = x assure that the model fits the electrode

measurements. Depending on the resolution of the cubic grid

tuned by L, the problem can reach considerably large scale.

Therefore, we propose an efficient first order method in or-

der to solve it, through the Alternating Directions Method of

Multiplier (ADMM) framework [12].

First, we reformulate the problem (4) as follows:

minimize
v,z1,z2

‖z1‖1 + λ‖z2‖22 + f(v) (5)

subject to

[
Ω1

Ω2

]
v =

[
z1

z2

]

where f denotes an indicator function of the set C = {v ∈
❘

L−1 | M v = x} given by f(v) = 0 for v ∈ C and

f(v) = +∞ otherwise. Then, the augmented Lagrangian

has the following form:

Lρ1,ρ2
(v, z1, z2,µ1,µ2) = ‖z1‖1 + λ‖z2‖22 + f(v)

+ µ1
T (Ω1v − z1) +

ρ1
2
‖Ω1v − z1‖22

+ µ2
T (Ω2v − z2) +

ρ2
2
‖Ω2v − z2‖22, (6)

or after substitution u1 = 1
ρ1
µ1 and u2 = 1

ρ2
µ2, the follow-

ing convenient scaled form:

Lρ1,ρ2
(v, z1, z2,u1,u2) = ‖z1‖1 + λ‖z2‖22 + f(v)

+
ρ1
2
‖Ω1v − z1 + u1‖22 −

ρ1
2
‖u1‖22

+
ρ2
2
‖Ω2v − z2 + u2‖22 −

ρ2
2
‖u2‖22. (7)

We now perform an iterative alternating minimization

with respect to each of the primal variables v, z1 and z2. The

minimization with respect to v requires to solve an equality

constrained least squares problem:

v(k+1) = argmin
v

Lρ1,ρ2
(v, z

(k)
1 , z

(k)
2 ,u

(k)
1 ,u

(k)
2 ) =

argmin
v

‖Hv −w‖22 subject to M v = x. (8)

where H = [
√
ρ1 Ω1

T,
√
ρ2 Ω2

T]T and w = [
√
ρ1 (z

(k)
1 −

u
(k)
1 )T,

√
ρ2 (z

(k)
2 − u

(k)
2 )T]T. Here v(k), z

(k)
1 , z

(k)
2 , u

(k)
1

and u
(k)
2 stand for the estimates of the solutions minimiz-

ing (7), computed at iteration k. Solving the problem (8) is

straightforward when the solution is expressed as the follow-

ing sum [13, section 16.2]:

v(k+1) = vp +KvNull (9)

where vp is a particular solution of the underdetermined con-

straint system M v = x and vNull is the null space component

with K a null space basis of M . Due to the particular struc-

ture of M , which is a row-reduced identity matrix, the par-

ticular solution is simplified to vp = M T x and the columns

of K can be simply computed by transposing the rows of the

(L− 1× L− 1) identity matrix, which do not appear in M .

Then, by variable substitution in the objective, we obtain:

vNull = argmin
y

‖HK y +HM T x−w‖22. (10)

Updating the z
(k)
1 variable is equivalent to computing the

proximity operator for the ℓ1-norm [14]:

z
(k+1)
1 = argmin

ż

Lρ1,ρ2
(v(k+1), z1, z

(k)
2 ,u

(k)
1 ,u

(k)
2 )

= argmin
ż

‖z1‖1 +
ρ1
2
‖z1 −Ω1v

(k+1) − u
(k)
1 ‖22

z
(k+1)
1 = prox 1

ρ1
ℓ1

(
Ω1v

(k+1) + u
(k)
1

)
, (11)



which is an element-wise soft thresholding (see [12, section

4.4.3] for more details).

The third update concerns the minimization of a weighted

sum of two quadratic functionals:

z
(k+1)
2 = argmin

z2

Lρ1,ρ2
(v(k+1), z

(k+1)
1 , z2,u

(k)
1 ,u

(k)
2 )

= argmin
z2

λ‖z2‖22 +
ρ2
2
‖z2 −Ω2v

(k+1) − u
(k)
2 ‖22

z
(k+1)
2 =

ρ2
(2λ+ ρ2)

(
Ω2v

(k+1) + u
(k)
2

)
. (12)

The dual variables are updated in the final stage using the

following rules:

u
(k+1)
1 = u

(k)
1 +Ω1v

(k+1) − z
(k+1)
1

u
(k+1)
2 = u

(k)
2 +Ω2v

(k+1) − z
(k+1)
2 (13)

This is the standard way to compute the updates for the scaled

Lagrangian multipliers (check [12, section 3.1.1]).

The stopping criterion is based on the primal and dual

residuals:

r
(k+1)
pri =

[
Ω1

Ω2

]
v(k+1) −

[
z
(k+1)
1 − u

(k+1)
1

z
(k+1)
2 − u

(k+1)
2

]

r
(k+1)
dual =

[
ρ1Ω1

T

(
z
(k+1)
1 − z

(k)
1

)

ρ2Ω2
T

(
z
(k+1)
2 − z

(k)
2

)
]
, (14)

with appropriate thresholds:

ǫ
(k+1)
pri =

√
QǫA + ǫR max{‖Ωv(k+1)‖, ‖z(k+1)

1 ‖+ ‖z(k+1)
2 ‖}

ǫ
(k+1)
dual =
√
L− 1ǫA + ǫR(‖ρ1 Ω1

Tu
(k+1)
1 ‖2 + ‖ρ2 Ω2

Tu
(k+1)
2 ‖2).

(15)

where ǫA and ǫR denote the absolute and relative tolerances,

which we empirically set to 10−4 and 10−3, respectively.

The iterative procedure terminates when the inequalities

‖r(k+1)
pri ‖2 < ǫ

(k+1)
pri and ‖r(k+1)

dual ‖2 < ǫ
(k+1)
dual are satisfied.

Regarding the choice of the step sizes ρ1 and ρ2, even

though the ADMM theory ensures convergence for arbitrary

positive values, it is well known that the speed of convergence

will be influenced by this choice. Thus, we found a crude

heuristics (ρ1 = ‖Ω1‖2 and ρ2 =
√
λ‖Ω2‖2) under which

the computational time is well-balanced for the wide range of

weights λ. Note that the classical matrix norm ‖ · ‖2 subor-

dinate to the corresponding vector norm is usually estimated

and then it does not involve heavy computations.

In addition, one can argue that the most expensive step of

CoRE algorithm is solving the unconstrained problem (10).

However, exact solution of this subproblem is not necessary

to obtain the final estimate, hence this step can be efficiently

executed by several runs of some appropriate iterative solver

(e.g. conjugate gradient). Moreover, these can usually be

warm-started, which is exactly the way we implemented the

minimization (using vNull computed in the previous iteration

as a starting point). It is also important to note that all ma-

trix operators involved are extremely sparse with respect to

their dimensions (the numerical density grows only linearly

with the dimensions), which is an important advantage of the

cosparse approach applied in this context [15].

5. SIMULATIONS

In this section, the numerical performance of the CoRE al-

gorithm is studied on simulated epileptic interictal data and

compared with that of the MCE [5], RapMUSIC [6] and 4-D-

MUSIC techniques [7].

5.1. Experiments and performance criterion

Two scenarios were considered for this comparison of perfor-

mance. The first one aimed at studying the influence of the

SNR for N = 128 electrodes while the second one allowed

us to analyse the influence of the number of electrodes for an

SNR value of −6 dB.

For both scenarios, P = 3 synchronous epileptic dipoles

were arranged in S: P = 3 monopoles were placed at

θ−
1 = [1.84, 0.92, 6.44]T, θ−

2 = [−1.84,−1.84, 6.44]T and

θ−
3 = [1.84, 5.52, 3.68]T, respectively, while the associ-

ated monopoles were placed at θ+
1 = [0.92, 0.92, 4.6]T,

θ+
2 = [−1.84,−1.84, 4.6]T and θ+

3 = [1.84, 4.6, 2.76]T, re-

spectively (locations are given in centimeters). Note that the

origin (O) of the head model was defined as the intersection

of the O-Cz axis (z-axis), the O-T4 axis (x-axis) and the O-

Fpz axis (y-axis). A physiologically-relevant model [16] was

used to generate the epileptic activity. It is noteworthy that

this activity was the same for the three epileptic dipoles, lead-

ing to synchronous epileptic sources. On the other hand, the

background activity, i.e. the activity of non-epileptic dipoles

of S , was generated as Gaussian and as temporally and spa-

tially white. Its power was controlled by a multiplicative

coefficient in order to get different SNR values.

As far as the head model is concerned, we used three

nested concentric spheres with radius (cm) equal to 7, 8, 9.2
and conductivities (siemens/cm) equal to 1, 0.0667, 1, 10−10.

One hundred twenty eight electrodes were placed on the scalp

sphere using the 10-5 system [17]. The 10-5 system1 is a log-

ical extension of the 10-20 and 10-10 systems, enabling the

use of up to 345 electrodes locations. In addition, in order

to apply the FDM and compute the analysis operator A, we

created a cubic grid with a 0.92 cm spacing (L3 = 9261).

Consequently, the size of A and the number Q of dipoles of

S were (4168× 4168) and 626, respectively.

1It is called the 5% system or the 10-5 system because it uses proportional

distances of 5% of the total length along contours between skull landmarks,

compared to the 20 and 10% distances used in the the 10-20 and 10-10
systems, respectively.



Fig. 1. Behavior of CoRE, MCE, RapMUSIC and 4-D-

MUSIC as a function of the SNR for P = 3 epileptic dipoles

and N = 128 electrodes.

The quality of the source localization was quantified for

each method by means of the average Root Mean Square Er-

ror (RMSE), which is defined by:

RMSE =
1

PR

P∑

p=1

R∑

r=1

(
min

1≤j≤P

{∥∥∥θ(−)
p − θ̂j(r)

∥∥∥
})

(16)

where R is the number of realizations fixed to 100, where

θp (r) = [θ(−)
p (r),θ(+)

p (r)] is the position of the p-th epileptic

dipole and where θ̂j(r) = [θ̂
(−)

j (r), θ̂
(+)

j (r)] is the j-th dipole

location estimated during the r-th Monte Carlo realization. It

is noteworthy that from one realization to another, the tempo-

ral dynamics of the Q dipoles of S were changed while the

location of the three epileptic dipoles stayed unchanged.

5.2. Computer results

Figure 1 shows the RMSE criterion at the output of the four

algorithms as a function of the SNR. It appears that the CoRE

method is more robust with respect to the presence of noise

than MCE. CoRE succeeds in localizing perfectly the three

epileptic dipoles beyond −17.5 dB while the synthesis-based

method does not manage to do it below 0 dB. In such a context

of synchronous sources, both MUSIC-like approaches do not

succeed in localizing the three epileptic dipoles whatever the

SNR value is.

Figure 2 displays the RMSE criterion at the output of the

four algorithms as a function of the number N of electrodes

for an SNR value of −6 dB. CoRE requires at least 64 elec-

trodes to achieve a perfect result for such an SNR value while

the other algorithms do not manage to perfectly localize the

three synchronous epileptic dipoles whatever the number of

electrodes is.

Fig. 2. Behavior of CoRE, MCE, RapMUSIC and 4-D-

MUSIC as a function of the number of electrodes for P = 3
epileptic dipole and an SNR value of −6 dB.

6. CONCLUSION

We proposed a brain source localization method, named

CoRE, which uses a physics-driven structured cosparse rep-

resentation of EEG signals. Our computer results on epileptic

interictal data generated using a spherical head model and a

physiologically-relevant source model showed the feasability

of CoRE approach and its ability to deal with synchronous

dipole activities, overcoming RapMUSIC and 4-D-MUSIC

in such a context. We also illustrated the better behavior of

CoRE for low SNR values compared to the synthesis-based

MCE technique. Forthcoming work will include an evalua-

tion of our method on data simulated using a realistic head

model but also on real data. Moreover, we will test other

optimization strategies to take into account the physiological

constraints on current sources.

Appendix

Using Witwer’s FDM [11], the total current flow value,

I [k]
ℓ1,ℓ2,ℓ3

, at voxel (ℓ1, ℓ2, ℓ3) and at time kTe, where Te

the sample period, is given by:

I [k]
ℓ1,ℓ2,ℓ3

= Bℓ1,ℓ2,ℓ3V
[k]
ℓ1,ℓ2,ℓ3

−

A(1,0,0)
ℓ1,ℓ2,ℓ3

V [k]
ℓ1+1,ℓ2,ℓ3

−A(−1,0,0)
ℓ1,ℓ2,ℓ3

V [k]
ℓ1−1,ℓ2,ℓ3

−

A(0,1,0)
ℓ1,ℓ2,ℓ3

V [k]
ℓ1,ℓ2+1,ℓ3

−A(0,−1,0)
ℓ1,ℓ2,ℓ3

V [k]
ℓ1,ℓ2−1,ℓ3

−

A(0,0,1)
ℓ1,ℓ2,ℓ3

V [k]
ℓ1,ℓ2,ℓ3+1 −A(0,0,−1)

ℓ1,ℓ2,ℓ3
V [k]
ℓ1,ℓ2,ℓ3−1 (17)

with:

A(m1,m2,m3)
ℓ1,ℓ2,ℓ3

=

2hσ(h[ℓ1, ℓ2, ℓ3]
T)σ(h[ℓ1+m1, ℓ2+m2, ℓ3+m3]

T)

σ(h[ℓ1, ℓ2, ℓ3]T) + σ(h[ℓ1+m1, ℓ2+m2, ℓ3+m3]T)



Bℓ1,ℓ2,ℓ3 = A(1,0,0)
ℓ1,ℓ2,ℓ3

+A(−1,0,0)
ℓ1,ℓ2,ℓ3

+A(0,1,0)
ℓ1,ℓ2,ℓ3

+

A(0,−1,0)
ℓ1,ℓ2,ℓ3

+A(0,0,1)
ℓ1,ℓ2,ℓ3

+A(0,0,−1)
ℓ1,ℓ2,ℓ3

I [k]
ℓ1,ℓ2,ℓ3

=





s(ρ,kTe)
d

if ρ− = h [ℓ1, ℓ2, ℓ3]
T

−s(ρ,kTe)
d

if ρ+ = h [ℓ1, ℓ2, ℓ3]
T

0 otherwise

where V [k]
ℓ1,ℓ2,ℓ3

stands for v(h[ℓ1, ℓ2, ℓ3]
T, kTe). Note that

considering V = (V [k]
ℓ1,ℓ2,ℓ3

) as a fourth order array, A =

(A(m1,m2,m3)
ℓ1,ℓ2,ℓ3

) and B = (Bℓ1,ℓ2,ℓ3) as third order arrays, and

the Hadamard product between multi-way arrays, it is easy

to implement the left hand side of equation (17) using matrix

programming languages such as Matlab.
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