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❆❜str❛❝t✿ ❚❤✐s ♣❛♣❡r ❞❡s❝r✐❜❡s ❛♥ ❛❧❣♦r✐t❤♠ t❤❛t t❛❦❡s ❛ tr❛❝❡ ♦❢ ❛ ❞✐str✐❜✉t❡❞ ♣r♦❣r❛♠ ❛♥❞
❜✉✐❧❞s ❛ ♠♦❞❡❧ ♦❢ ❛❧❧ ❝♦♠♠✉♥✐❝❛t✐♦♥s ♦❢ t❤❡ ♣r♦❣r❛♠✳ ❚❤❡ ♠♦❞❡❧ ✐s ❛ s❡t ♦❢ ♥❡st❡❞ ❧♦♦♣s r❡♣r❡s❡♥t✐♥❣
r❡♣❡❛t❡❞ ♣❛tt❡r♥s✳ ▲♦♦♣ ❜♦❞✐❡s ❝♦❧❧❡❝t ❡✈❡♥ts r❡♣r❡s❡♥t✐♥❣ ❝♦♠♠✉♥✐❝❛t✐♦♥ ❛❝t✐♦♥s ♣❡r❢♦r♠❡❞ ❜②
t❤❡ ✈❛r✐♦✉s ♣r♦❝❡ss❡s✱ ❧✐❦❡ s❡♥❞✐♥❣ ♦r r❡❝❡✐✈✐♥❣ ♠❡ss❛❣❡s✱ ❛♥❞ ♣❛rt✐❝✐♣❛t✐♥❣ ✐♥ ❝♦❧❧❡❝t✐✈❡ ♦♣❡r❛t✐♦♥s✳
❚❤❡ ♠♦❞❡❧ ❝❛♥ ❜❡ ✉s❡❞ ❢♦r ❝♦♠♣❛❝t ✈✐s✉❛❧✐③❛t✐♦♥ ♦❢ ❢✉❧❧ ❡①❡❝✉t✐♦♥s✱ ❢♦r ♣r♦❣r❛♠ ✉♥❞❡rst❛♥❞✐♥❣
❛♥❞ ❞❡❜✉❣❣✐♥❣✱ ❛♥❞ ❛❧s♦ ❢♦r ❜✉✐❧❞✐♥❣ st❛t✐st✐❝❛❧ ❛♥❛❧②③❡s ♦❢ ✈❛r✐♦✉s q✉❛♥t✐t❛t✐✈❡ ❛s♣❡❝ts ♦❢ t❤❡
♣r♦❣r❛♠✬s ❜❡❤❛✈✐♦r✳
❚❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ t❤❡ ❝♦♠♠✉♥✐❝❛t✐♦♥ ♠♦❞❡❧ ✐s ♣❡r❢♦r♠❡❞ ✐♥ t✇♦ ♣❤❛s❡s✳ ❋✐rst✱ ❛ ❧♦❝❛❧ ♠♦❞❡❧
✐s ❜✉✐❧t ❢♦r ❡❛❝❤ ♣r♦❝❡ss✱ ❝❛♣t✉r✐♥❣ ❧♦❝❛❧ r❡❣✉❧❛r✐t✐❡s❀ t❤✐s ♣❤❛s❡ ✐s ✐♥❝r❡♠❡♥t❛❧ ❛♥❞ ❢❛st✱ ❛♥❞ ❝❛♥
❜❡ ❞♦♥❡ ♦♥✲❧✐♥❡✱ ❞✉r✐♥❣ t❤❡ ❡①❡❝✉t✐♦♥✳ ❚❤❡ s❡❝♦♥❞ ♣❤❛s❡ ✐s ❛ r❡❞✉❝t✐♦♥ ♣r♦❝❡ss t❤❛t ❝♦❧❧❡❝ts✱
❛❧✐❣♥s✱ ❛♥❞ ✜♥❛❧❧② ♠❡r❣❡s ❛❧❧ ❧♦❝❛❧ ♠♦❞❡❧s ✐♥t♦ ❛ ❣❧♦❜❛❧✱ s②st❡♠✲✇✐❞❡ ♠♦❞❡❧✳ ❚❤✐s ❣❧♦❜❛❧ ♠♦❞❡❧ ✐s
❛ ❝♦♠♣❛❝t r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛❧❧ ❝♦♠♠✉♥✐❝❛t✐♦♥s ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ♣r♦❣r❛♠✱ ❝❛♣t✉r✐♥❣ ♣❛tt❡r♥s ❛❝r♦ss
❣r♦✉♣s ♦❢ ♣r♦❝❡ss❡s✳ ■t ❝❛♥ ❜❡ ✈✐s✉❛❧✐③❡❞ ❞✐r❡❝t❧② ❛♥❞✱ ❜❡❝❛✉s❡ ✐t t❛❦❡s t❤❡ ❢♦r♠ ♦❢ ❛ s❡q✉❡♥❝❡ ♦❢
❧♦♦♣ ♥❡sts✱ ❝❛♥ ❜❡ ✉s❡❞ t♦ r❡♣❧❛② t❤❡ ♦r✐❣✐♥❛❧ ♣r♦❣r❛♠✬s ❝♦♠♠✉♥✐❝❛t✐♦♥ ❛❝t✐♦♥s✳
❇❡❝❛✉s❡ t❤❡ ♠♦❞❡❧ ✐s ❜❛s❡❞ ♦♥ ❝♦♠♠✉♥✐❝❛t✐♦♥ ❡✈❡♥ts ♦♥❧②✱ ✐t ❝♦♠♣❧❡t❡❧② ✐❣♥♦r❡s ♦t❤❡r q✉❛♥t✐✲
t❛t✐✈❡ ❛s♣❡❝ts ❧✐❦❡ t✐♠❡st❛♠♣s ♦r ♠❡ss❛❣❡s s✐③❡s✳ ■♥❝❧✉❞✐♥❣ s✉❝❤ ❞❛t❛ ✇♦✉❧❞ ✐♥ ♠♦st ❝❛s❡ ❜r❡❛❦
r❡❣✉❧❛r✐t✐❡s✱ r❡❞✉❝✐♥❣ t❤❡ ✉s❡❢✉❧♥❡ss ♦❢ tr❛❝❡✲❜❛s❡❞ ♠♦❞❡❧✐♥❣✳ ■♥st❡❛❞✱ t❤❡ ♣❛♣❡r s❤♦✇s ❤♦✇ ♦♥❡
❝❛♥ ❡✣❝✐❡♥t❧② ❛❝❝❡ss q✉❛♥t✐t❛t✐✈❡ ❞❛t❛ ❦❡♣t ✐♥ t❤❡ ♦r✐❣✐♥❛❧ tr❛❝❡✭s✮✱ ❜② ❛♥♥♦t❛t✐♥❣ t❤❡ ♠♦❞❡❧ ❛♥❞
❝♦♠♣✐❧✐♥❣ ❞❛t❛ s❝❛♥♥❡rs ❛✉t♦♠❛t✐❝❛❧❧②✳

❑❡②✲✇♦r❞s✿ ▲♦♦♣✲❜❛s❡❞ ♠♦❞❡❧✐♥❣✱ ♣❛r❛❧❧❡❧ tr❛❝❡s✱ ▼P■ ❝♦♠♠✉♥✐❝❛t✐♦♥



▼♦❞é❧✐s❛t✐♦♥ à ❜❛s❡ ❞❡ ❜♦✉❝❧❡s ❞❡s tr❛❝❡s ❞❡

❝♦♠♠✉♥✐❝❛t✐♦♥ ♣❛r❛❧❧è❧❡s

❘és✉♠é ✿ ❈❡ r❛♣♣♦rt ❞❡ r❡❝❤❡r❝❤❡ ❞é❝r✐t ✉♥ ❛❧❣♦r✐t❤♠❡ q✉✐ ♣r❡♥❞ ❡♥ ❡♥tré❡ ❧❛ tr❛❝❡ ❞✬✉♥
♣r♦❣r❛♠♠❡ ❞✐str✐❜✉é✱ ❡t ❝♦♥str✉✐t ✉♥ ♠♦❞è❧❡ ❞❡ ❧✬❡♥s❡♠❜❧❡ ❞❡s ❝♦♠♠✉♥✐❝❛t✐♦♥s ❞✉ ♣r♦❣r❛♠♠❡✳
▲❡ ♠♦❞è❧❡ ♣r❡♥❞ ❧❛ ❢♦r♠❡ ❞✬✉♥ ❡♥s❡♠❜❧❡ ❞❡ ❜♦✉❝❧❡s ✐♠❜r✐q✉é❡s r❡♣rés❡♥t❛♥t ❧❛ ré♣ét✐t✐♦♥ ❞❡
♠♦t✐❢s ❞❡ ❝♦♠♠✉♥✐❝❛t✐♦♥✳ ▲❡ ❝♦r♣s ❞❡s ❜♦✉❝❧❡s r❡❣r♦✉♣❡ ❞❡s é✈é♥❡♠❡♥ts r❡♣rés❡♥t❛♥t ❧❡s ❛❝t✐♦♥s
❞❡ ❝♦♠♠✉♥✐❝❛t✐♦♥ ré❛❧✐sé❡s ♣❛r ❧❡s ❞✐✛ér❡♥ts ♣r♦❝❡ss✉s ✐♠♣❧✐q✉és✱ t❡❧s q✉❡ ❧✬❡♥✈♦✐ ❡t ❧❛ ré❝❡♣t✐♦♥
❞❡ ♠❡ss❛❣❡s✱ ♦✉ ❡♥❝♦r❡ ❧❛ ♣❛rt✐❝✐♣❛t✐♦♥ à ❞❡s ♦♣ér❛t✐♦♥s ❝♦❧❧❡❝t✐✈❡s✳ ▲❡ ♠♦❞è❧❡ ♣❡✉t s❡r✈✐r
à ❧❛ ✈✐s✉❛❧✐s❛t✐♦♥ ❝♦♠♣❛❝t ❞✬❡①é❝✉t✐♦♥s ❝♦♠♣❧èt❡s✱ à ❧❛ ❝♦♠♣ré❤❡♥s✐♦♥ ❞❡ ♣r♦❣r❛♠♠❡ ❡t ❛✉
❞❡❜✉❣❣✐♥❣✱ ♠❛✐s é❣❛❧❡♠❡♥t à ❧❛ ❝♦♥str✉❝t✐♦♥ ❞✬❛♥❛❧②s❡s st❛t✐st✐q✉❡s ❞❡ ❞✐✈❡rs ❛s♣❡❝ts q✉❛♥t✐t❛t✐❢s
❞✉ ❝♦♠♣♦rt❡♠❡♥t ❞✉ ♣r♦❣r❛♠♠❡✳

▲❛ ❝♦♥str✉❝t✐♦♥ ❞✉ ♠♦❞è❧❡ ❞❡ ❝♦♠♠✉♥✐❝❛t✐♦♥ s✬❡✛❡❝t✉❡ ❡♥ ❞❡✉① ♣❤❛s❡s✳ Pr❡♠✐èr❡♠❡♥t✱ ✉♥
♠♦❞è❧❡ ❧♦❝❛❧ ❡st ❝♦♥str✉✐t ❛✉ s❡✐♥ ❞❡ ❝❤❛q✉❡ ♣r♦❝❡ss✉s✱ ❝❛♣t✉r❛♥t ❧❡s ré❣✉❧❛r✐tés ❧♦❝❛❧❡s ❀ ❝❡tt❡
♣❤❛s❡ ❡st ✐♥❝ré♠❡♥t❛❧❡ ❡t r❛♣✐❞❡✱ ❡t ♣❡✉t êtr❡ ré❛❧✐sé❡ ❛✉ ❝♦✉rs ❞❡ ❧✬❡①é❝✉t✐♦♥✳ ▲❛ s❡❝♦♥❞❡ ♣❤❛s❡
❡st ✉♥ ♣r♦❝❡ss✉s ❞❡ ré❞✉❝t✐♦♥ q✉✐ r❛ss❡♠❜❧❡✱ ❛❧✐❣♥❡✱ ❡t ✜♥❛❧❡♠❡♥t ❢✉s✐♦♥♥❡ t♦✉s ❧❡s ♠♦❞è❧❡s ❧♦❝❛✉①
❡♥ ✉♥ ♠♦❞è❧❡ ❣❧♦❜❛❧ ❞é❝r✐✈❛♥t ❧❛ t♦t❛❧✐té ❞✉ s②stè♠❡✳ ❈❡ ♠♦❞è❧❡ ❣❧♦❜❛❧ ❡st ✉♥❡ r❡♣rés❡♥t❛t✐♦♥
❝♦♠♣❛❝t❡ ❞❡ t♦✉t❡s ❧❡s ❝♦♠♠✉♥✐❝❛t✐♦♥s ❞✉ ♣r♦❣r❛♠♠❡ ♦r✐❣✐♥❛❧✱ r❡♣rés❡♥t❛♥t ❞❡s ♠♦t✐❢s ❞❡ ❝♦♠✲
♠✉♥✐❝❛t✐♦♥ ❡♥tr❡ ❣r♦✉♣❡s ❞❡ ♣r♦❝❡ss✉s✳ ■❧ ♣❡✉t êtr❡ ✈✐s✉❛❧✐sé ❞✐r❡❝t❡♠❡♥t ❡t✱ ♣✉✐sq✉✬✐❧ ♣r❡♥❞ ❧❛
❢♦r♠❡ ❞✬✉♥ ❡♥s❡♠❜❧❡ ❞❡ ♥✐❞s ❞❡ ❜♦✉❝❧❡s✱ ♣❡✉t s❡r✈✐r à r❡❥♦✉❡r ❧❡s ♦♣ér❛t✐♦♥s ❞❡ ❝♦♠♠✉♥✐❝❛t✐♦♥
❞✉ ♣r♦❣r❛♠♠❡ ✐♥✐t✐❛❧✳

P✉✐sq✉❡ ❧❡ ♠♦❞è❧❡ ❝♦♥str✉✐t s❡ ❜❛s❡ ✉♥✐q✉❡♠❡♥t s✉r ❧❡s ♦♣ér❛t✐♦♥s ❞❡ ❝♦♠♠✉♥✐❝❛t✐♦♥✱ ✐❧ ✐❣✲
♥♦r❡ ❝♦♠♣❧èt❡♠❡♥t ❞✬❛✉tr❡s ❞♦♥♥é❡s q✉❛♥t✐t❛t✐✈❡s✱ t❡❧❧❡s q✉❡ ❧❡s ✐♥❢♦r♠❛t✐♦♥s ❝❤r♦♥♦❧♦❣✐q✉❡s✱ ♦✉
❧❡s t❛✐❧❧❡s ❞❡ ♠❡ss❛❣❡s✳ ▲✬✐♥❝❧✉s✐♦♥ ❞❡ t❡❧❧❡s ❞♦♥♥é❡s ❜r✐s❡r❛✐t ❞❛♥s ❧❛ ♣❧✉♣❛rt ❞❡s ❝❛s ❧❡s ré❣✉✲
❧❛r✐tés t♦♣♦❧♦❣✐q✉❡s✱ ré❞✉✐s❛♥t ❧✬❡✣❝❛❝✐té ❞❡ ❧❛ ♠♦❞é❧✐s❛t✐♦♥ ♣❛r ❜♦✉❝❧❡s✳ ◆♦✉s ♣ré❢ér♦♥s✱ ❞❛♥s
❝❡ r❛♣♣♦rt✱ ♠♦♥tr❡r ❝♦♠♠❡♥t✱ ❣râ❝❡ ❛✉ ♠♦❞è❧❡ ❝♦♥str✉✐t✱ ✐❧ ❡st ♣♦ss✐❜❧❡ ❞✬❛❝❝é❞❡r ❡✣❝❛❝❡♠❡♥t
❛✉① ❞♦♥♥é❡s q✉❛♥t✐t❛t✐✈❡s s✐ ❝❡❧❧❡s✲❝✐ s♦♥t ❝♦♥s❡r✈é❡s ❞❛♥s ❧❡s tr❛❝❡s ✐♥❞✐✈✐❞✉❡❧❧❡s✱ ❡♥ ❛♥♥♦t❛♥t
❧❡ ♠♦❞è❧❡ ❡t ❡♥ ❧✬✉t✐❧✐s❛♥t ♣♦✉r ❝♦♠♣✐❧❡r ❛✉t♦♠❛t✐q✉❡♠❡♥t ❞❡s ♣r♦❣r❛♠♠❡s ❞✬❛❝❝ès ❛✉① ❞♦♥♥é❡s✳

▼♦ts✲❝❧és ✿ ▼♦❞é❧✐s❛t✐♦♥ ♣❛r ❜♦✉❝❧❡s✱ tr❛❝❡s ♣❛r❛❧❧è❧❡s✱ ❝♦♠♠✉♥✐❝❛t✐♦♥ ▼P■
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Abstract—This paper describes an algorithm that takes a
trace of a distributed program and builds a model of all
communications of the program. The model is a set of nested
loops representing repeated patterns. Loop bodies collect events
representing communication actions performed by the various
processes, like sending or receiving messages, and participating
in collective operations. The model can be used for compact
visualization of full executions, for program understanding and
debugging, and also for building statistical analyzes of various
quantitative aspects of the program’s behavior.

The construction of the communication model is performed
in two phases. First, a local model is built for each process,
capturing local regularities; this phase is incremental and fast,
and can be done on-line, during the execution. The second phase
is a reduction process that collects, aligns, and finally merges
all local models into a global, system-wide model. This global
model is a compact representation of all communications of the
original program, capturing patterns across groups of processes.
It can be visualized directly and, because it takes the form of
a sequence of loop nests, can be used to replay the original
program’s communication actions.

Because the model is based on communication events only, it
completely ignores other quantitative aspects like timestamps or
messages sizes. Including such data would in most case break
regularities, reducing the usefulness of trace-based modeling. In-
stead, the paper shows how one can efficiently access quantitative
data kept in the original trace(s), by annotating the model and
compiling data scanners automatically.

I. INTRODUCTION

The ever-growing scale and complexity of parallel systems,

that will commonly have thousands to hundreds of thousands

of cores will enable to run more and more massively par-

allel applications. In order to design, develop and tune such

applications, a large variety of tools is required. The code

tuning phase requires tools to monitor and analyze the program

behavior on an actual execution platform. We can distinguish

between two complementary approaches for this task: profiling

and tracing. Profiling aims to record aggregated data that

reflects specific aspects of the program behavior. It is generally

designed to have the lowest possible intrusiveness in order to

collect accurate measurements. In contrast, tracing addresses

the need to record all communication events to understand

how the concurrent processes interact all along the program

execution. Tracing is challenging because it involves huge

amounts of records.

Post-mortem examination of those records reveals how each

process behaved, and shows the causes of a potential loss of

performance. In this paper, we focus on how the numerous

time-based events contained in communication traces can be

translated to some higher-level information which summarizes

the communication scheme of an application. This approach

has also been tried through profiling. For example [1] use

clustering on data collected by processor performance coun-

ters to identify groups of processes with similar behavior,

or computation phases with similar characteristics. However,

communication traces are central to the analysis and un-

derstanding of message-passing parallel programs. The need

to understand the program at different levels of details is

witnessed by the compelling usage of visualization tools like

Jumpshot [2]. Unfortunately, the exhaustive log of events

displayed by visualization tools often yields complicated and

varied communication patterns, which obfuscates the essential

logic of the program.

The work presented here has three main motivations. The

first is to adopt a strictly logical (or topological) point of view

for trace analysis. The goal is to obtain a high-level view of

the trace, in terms of communication patterns, rather than a

detailed, timing based graphical listing of individual events.

This entails some trade-offs, favoring regularity and simplicity

against precision and completeness, which we do not ignore

but try to solve with complementary techniques. Our pri-

mary goal is to help understanding (and maybe debugging)

distributed programs by abstracting away low-level details,

and rather focus on obtaining an overview of the general

architecture of the application, from which further analysis

can be planned.

Our second motivation is our will to define a formal model

of the communication behavior of a distributed program, that

goes beyond the compact archiving of traces, or the ability to

replay the program. A long term goal of this work is to use

the results of trace analysis for program transformations, for

instance to suggest new communication architectures, or new

data distributions. We are still far from that, but this motivation

explains our choice of explicit loop nests to represent regular

communication patterns. This model and general approach has

been successful in compiler optimizations [3], and we have the

intuition that it can be useful also for large distributed program

optimization.

Our third motivation is the conviction that a compact,

formally analyzable model of a trace is of great help for

further, detailed studies of the behavior of the program. We do



not think than focusing on high-level communication patterns

is orthogonal to detailed performance analysis. Actually, we

are convinced that a global view can help a lot in focusing

specific measurements, and drive the analyst in detecting

performance bugs and locate optimization opportunities.

Along these lines, this paper makes the following contribu-

tions:

• define a formal model based on loop nests to represent

parallel communication traces;

• describe a modeling algorithm based on loop transforma-

tions that merges intra-node traces into a global, program-

wide trace model;

• explain how the formal, high-level model of a trace can

help drive quantitative, statistical analysis of trace data.

The next section reviews background material that is at the

foundation of our work. Section III goes into the details of our

modeling algorithm. Trace models produced by the algorithm

can be visualized directly: this is explained and illustrated

in Section IV. The models can also be used to help further,

time-based analysis of the raw trace: an example is given in

Section V. Related work is reviewed before the conclusion.

II. BACKGROUND

A. Modeling Architecture

The modeling architecture we have used is depicted on Fig-

ure 1, with references to the relevant sections of the text. Dur-

ing a distributed program execution, every process produces

an individual trace containing a stream of events. The trace

is analyzed locally to produce a local model made of loops

and atomic events. At the end of the execution, local models

are progressively merged to form a global model, which is

the final result of the analysis. We make no assumption on

whether local models are built on the execution nodes or not,

and on whether all local models are collected on a single node

before merging or merged during a distributed reduction. Such

an architecture is very common in tracing software [4]. In

practice we use the TAU tracing infrastructure [5] to obtain

individual traces.

Raw trace
(Sec. II-B)

...

◦
◦
•

◦
• •

Loops

◦
◦
•

◦
• •

•

...

Global model
(Sec. III-A)

Loop recog.

(Sec. II-C)
Merging

(Sec. III-B)

Fig. 1. The modeling architecture

B. Trace Format

Individual traces collect events representing all communi-

cation actions performed by the corresponding process. There

are four types of events:

• src send dst tag is the basic message sending

action: src and dst are the ranks of the source and

destination processes involved, and tag corresponds the

MPI-tags, designating a specific channel between the two

processes. Channels (defined by triplets including two

process identifiers and a tag) are assumed to respect a

FIFO discipline;

• src recv dst tag represents the sending of a mes-

sage (the order of source and destination process identi-

fiers may seem unexpected on first read, we have favored

consistency with send);

• proc sync name group indicates that process

proc takes part in a collective action named name

involving all processes in group (a list of process

identifiers, essentially corresponding to an MPI

communicator). All examples in this paper use a group

comprising all processes of the program, but any subset

could appear in a sync event.

• proc local desc... denotes an event that is

strictly local to process proc: it doesn’t involve any

kind of communication, and is here only to let one

include descriptive events in a trace (desc... can be

any sequence of strings and numbers).

A final assumption is that a collection of individual traces

actually represents a program execution: all messages sent are

received, all processes participating in a collective operation

emit the corresponding event, etc.

The notions of tag and process groups correspond to MPI’s

tags and communicators [6]. However, it is important to realize

that traces are abstract representations of actual events, not a

faithful representation of MPI program executions. In particu-

lar, send and recv events represent the actual processing of

a message by the program, independent on the MPI call(s) that

triggered them. Specific semantics, like those of asynchronous

operations in MPI, have no direct translation in the trace, and

must be represented explicitly with the help of local events.

For instance, here is an excerpt from the trace of process 0

in an execution of the BT program from the NAS Parallel

Benchmark suite (NP) [7]. program with four processes:

0 local call MPI_Isend

0 send 1 tag3000

0 local return MPI_Isend

0 local call MPI_Irecv

0 local return MPI_Irecv

0 local call MPI_Wait

0 local return MPI_Wait

0 local call MPI_Wait

1 recv 0 tag3003

0 local return MPI_Wait

Here local events represent entry into and exit from MPI calls,

but have absolutely no meaning for the algorithms that are

presented below: they will be kept throughout the modeling

phase, essentially as comments, and their interpretation is left

to the client application. Figure 2 shows a fragment of a

timeline displaying messages along with MPI calls (end of

calls are represented with a closing bracket). This requires

specific processing of local events. It is the only place in this
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Fig. 2. Displaying MPI calls and messages

paper where they are used with particular semantics.

C. Nested Loop Recognition

The NLR algorithm [8] detects repetitions in linear traces

of records. A record is a vector whose elements can be

numbers or symbols. NLR proceeds by looking for short, 3-

fold repetitions of arbitrary sequences of values, that it replaces

immediately with a loop of the form:

for i=1 to 3

<sequence>

done

It also searches for an occurrence of a loop followed a copy of

its body, in which case it increments the loop upper bound, and

removes the redundant sequence. Explicitly building syntactic

terms makes it easy for NLR to recognize repetition of

structured terms, and build loops nested to an arbitrary depth.

An example of NLR output appears in Figure 3: the input trace

is that of process 0 of NPB LU class C with 16 processes.

Output includes loops (for...done) and events (val).

...

0 sync MPI_Allreduce 0-15

0 send 1 tag2

1 recv 0 tag1

0 send 4 tag4

4 recv 0 tag3

0 sync MPI_Allreduce 0-15

0 sync MPI_Barrier 0-15

for i0 = 1 to 249

for i1 = 1 to 160

0 send 1 tag2

0 send 4 tag4

done

for i1 = 1 to 160

1 recv 0 tag1

4 recv 0 tag3

done

0 send 1 tag2

1 recv 0 tag1

0 send 4 tag4

4 recv 0 tag3

done

...

Fig. 3. Individual trace produced by NLR (NPB LU, class C, 16 processes,
process 0).

NLR has several interesting properties in the context of

trace modeling. First, it is a greedy algorithm, and as such

may produce a sub-optimal result, but it is very fast, catching

repetitive patterns quickly, and providing high quality results

on our benchmarks: some performance indicators appear in

Table I. NLR process 80,000 events per second in the worst

case, and often much more. The resulting trace takes a few

kilobytes in text format (as used in Figure 3) and less than

a kilobyte when compressed with gzip to remove syntactic

redundancies. Second, NLR is fully incremental: it keeps a

window of loops and values to which it appends incoming

values, and creates or updates loops in his window. Random

access to the trace is not required, and memory consumption is

negligible. Regarding our profiling task, NLR could reasonably

be integrated into the profiling infrastructure, saving I/O time

and disk space by performing on-line trace modeling.

There are two more features of NLR that we would like

to mention quickly. The first is that NLR not only recognizes

repetitions, but is also able to create them, by turning numbers

inside events and loop bounds into affine functions of the

enclosing loop indices. It has thus more expressive power than

usual pattern detection algorithms. Unfortunately, we have

found no use of this power in our benchmark program traces.

The second feature that may become of interest in a middle

term is NLR’s ability to combine modeling and prediction,

letting it emit predictions on forthcoming values at an arbitrary

distance. We plan to leverage this ability in future work. NLR

is fully described in [8].

III. MERGING INDIVIDUAL MODELS

At the end of execution of a distributed program, all

individual traces have been processed with NLR, and what

remains is a set of N individual models, made of sequences

of loop and events. The merging phase is basically a reduction

over this set of models, where the reduction operator somehow

combines two intermediate results. This combination relies

on a single idea: when two loops based on two distinct

sets of processes exchange messages, then, if the amount of

messages exchanged has certain properties, the two loops can

be replaced by a single loop. Here is the simplest possible

example of such a situation, with two process. Each individual

trace is modeled by a single loop:

// Process 0

for i = 1 to 10

0 send 1 t

done

// Process 1

for i = 1 to 10

0 recv 1 t

done

Here, these two models can be merged into a single loop,

covering both processes, and capturing the message pattern:

// Process 0 & 1

for i = 1 to 10

0 send 1 t

0 recv 1 t

done

What appears on this trivial example is the fact that we will

build loops that cover multiple processes (the body of the loop

contains events that originate in different processes). The rest

of this section explains the details of this merging process.



Program

[/Class]

/#Proc.

Events

per trace

(min[–max])

Processing

time (s)

(average)

Processing

rate (ev./s)

(average)

Trace size

as text (bytes)

(min-max)

Trace size

gzipped (bytes)

(min-max)

bt/C/16 9671 0.043502 224486 3197–3377 480–497
bt/C/64 19319 0.246827 79318 5953–6293 750–793
cg/C/16 27971 0.033502 842150 1961–2089 225–238
cg/C/32 39979 0.052253 769207 2449–2633 254–264
lu/C/16 161682–323338 0.332770 796646 1362–2245 248–313
lu/C/64 161682–323338 0.411963 714833 1362–2283 249–316
mg/C/16 6240–6744 0.026751 281726 3883–6181 325–384
mg/C/64 6324–6828 0.021314 323557 4236–6582 357–478
sp/C/16 19269 0.030502 636774 2105–2205 341–362
sp/C/64 38517 0.059628 650019 2125–2225 347–373
sweep3d/8 12835-19235 0.013000 1306352 937–1162 219–241
sweep3d/256 12835–25635 0.020892 1169937 945–1518 221–285

TABLE I
PERFORMANCE OF LOOP RECOGNITION ON INDIVIDUAL TRACES

A. Data Structures

Individual traces are modeled by sequences of loops and

events, and bodies of loops are simple sequences of events

and other loops. Introducing parallelism inside loops requires

more elaborate data structures. In the rest of this section, we

will use the term construct to designate either a loop or an

event. A model of a set of processes, hereafter called a system

will be a triple (V, T, C) where:

• V is a set of constructs;

• T ⊆ V × V is a set of (directed) topological links:

(v1, v2) ∈ T means that there is a process p such

that events belonging to p in v1 directly precede events

belonging to p in v2. Essentially, T represents the chrono-

logical order of constructs;

• C ⊆ V 2 is a set of (undirected) communications links:

(v1, v2) ∈ C means that v1 and v2 exchange messages.

Individual trace models are simple systems where V is the set

of constructs, T includes a pair (v1, v2) whenever v2 follows

v1 in the sequential execution order, and C is usually empty

(except when a process sends messages to itself). The body

of every loop is itself a system over the events and loops

appearing in it.

To characterize communication links, we need the notion

of a flow: a flow maps channels (two process identifiers and a

tag) to positive integers representing the number of messages

sent or received along this channel. Initially, every construct

has a potential flow, which gives the number of all messages

it exchanges per channel (essentially, “dangling” messages).

The potential flow of a construct only counts messages for

which no correspondent is know yet. Communication links

are also labeled with a flow, describing the total volume of

messages actually exchanged along the link. When merging

two systems, some potential flow is turned into communication

links. When a system covers all processes of a program,

constructs have a potential of zero and all messages are

counted in communication links.

B. Merging Strategy

Starting with individual trace models, a reduction is per-

formed on the set of systems. We are now going to detail the

steps of the reduction operation. We assume in this section

that the operation applies to two systems, which are then

replaced by the results of merging, even though a single

merging operation can operate on any number of systems.

But because independent merging steps can be performed in

parallel, pairwise merging seems to be the most appropriate

strategy. We describe the operation as it applies on two systems

covering each an arbitrary number of processes.

Merging two systems S1 = (V1, T1, C1) and S2 =
(V2, T2, C2) proceeds in several steps. First, a new system

S = (V, T, C) is created, with V = V1 ∪V2, T = T1 ∪T2,and

C = C1 ∪ C2. The next three steps are the following:

1) new communications links between constructs from dis-

tinct systems are added to C;

2) existing loops are regularized, such that they have a

single correspondent per channel;

3) groups of loops are coalesced into a single loop when

appropriate.

The rest of this section examines these steps in detail.

1) Communication: When building a new system S from

two systems S1 and S2, some constructs find correspondents

for part of their potential flow. The goal of the communication

phase is to turn this potential flow into communication links.

Since all channels are FIFO, this is performed by iterating

over constructs in topological order, and keeping a list of

constructs that have yet unsatisfied communications (called

inflight constructs). When a construct is processed, its potential

flow is intersected with every inflight construct, and links are

created accordingly. A simplified algorithm is:

inflight = []

for every construct v of S in topological order

for every construct f in inflight

if potential(v) ∩ potential(f ) is not empty

add (v, f) to C, and update potentials

append v to inflight



There are various heuristics to keep the inflight list short.

A system knows which processes it covers, and constructs

can be eliminated from the list as soon as they have no

more messages to exchange with other constructs. Also, the

topological order used for the outer loop can be chosen so as

to minimize the time spent by a construct in the inflight list.

All these techniques are fairly straightforward, and will not be

detailed further. At the end of this phase, the communication

links contain all exchanges between constructs of the system.

Topological links are unchanged.

2) Regularization: The goal of the regularization phase is to

prepare loops for coalescing. Two loops can be coalesced (and

their body merged) if and only if each of them is the exclusive

correspondent of the other. That is: for all channels of the

flow of the communication link between the two loops, the

volume exchanged must be the total amount of communication

of the loops along these channels. We have seen an positive

example at the beginning of this section. Here is a negative

example, where a loop communicates only part of its flow on

the (0,1,t) channel to its correspondent (which means it

has another correspondent, not shown). Communication links

are drawn as dotted lines:

for i = 1 to 20

0 send 1 t

done

for i = 1 to 10

0 recv 1 t

done

...

We say that a loop is regular if and only if, for each of

its communication links, the volume on every channel is

the total volume of communication sent or received along

this channel. We say that a communication link is regular if

both endpoints are regular. Note that the use of tags makes

this definition slightly more complex than expected. In the

following example, the loop on the left is regular:

for i = 1 to 10

0 send 1 t1

0 send 1 t2

done

for i = 1 to 10

0 recv 1 t1

done

for i = 1 to 10

0 recv 1 t2

done

Here the loop has two correspondents, but it is regular:

the link to the first correspondent transmits all its messages

along (0,1,t1), while the link to the second correspondent

transmits all messages along (0,1,t2).

When a loop is not regular, it means that it has at least one

link that consumes fewer messages than the loop produces.

In that case, the regularization phase will break the loop into

two parts, one that is adjusted to the link, and a remaining

part whose flow will be distributed to other correspondents.

Assume loop L communicates with construct C with flow f .

Note n the number of iterations of L, and b the total flow

of its body. Testing whether L is regular amounts to testing

whether:

∃h ∈ f such that f [h] < n · b[h]

where f [h] denotes the number of messages on channel h in

flow f . If such a channel exists, the loop is split into two

copies, the first one performing

k = min
h∈f

(⌊

f [h]

b[h]

⌋)

iterations, and the second one performing n − k iterations,

unless n − k = 1, in which case the loop is unwrapped

and replaced by a copy of its body. The communication links

incident to C are then removed, and the corresponding flow

is re-distributed.

A special case of loop splitting occurs when the flow along

a communication corresponds to less than one iteration, as in

the following example:

for i = 1 to 10

0 send 1 t

...

0 send 1 t

...

done

0 recv 1 t

...

In that case, the regularization phase tries to “pump” out of

the body of the loop just enough flow for the link, preserving

the iteration count if possible. This is called shifting the loop.

The regularization phase will process every loop, in topo-

logical order, splitting and shifting loops when necessary, and

updating topological and communication links in the system.

Regularization ends when all communication links are regular.

Simple events (sends, receives, and collective operations)

either have a single correspondent, or none (meaning the

corresponding process is not yet covered). Loops may have

several correspondents, however the sets of channels of its

various communication links are disjoint.

3) Coalescing: The role of regularization is to prepare the

way to loop coalescing, where two (or more) loops are turned

into a single loop, and their communication links are turned

into links between elements of their merged bodies. Basically,

a global flow of messages between loops is turned into a per-

iteration flow between loop bodies. There are two difficulties

to consider.

The first difficulty is arithmetic. Two loops may have a

regular communication link between them but have different

iteration counts. Here is an example:

for i = 1 to 10

0 send 1 t

...

0 send 1 t

...

done

for i = 1 to 20

0 recv 1 t

In such cases, loops have to be “unrolled”, or “blocked” before

coalescing. With iteration counts n1 and n2, the blocking

factor is g = gcd(n1, n2). If g = 1, both loops are completely

unrolled. Otherwise, if g is less than the iteration count for

any one loop, the following transformation applies:

for i = 1 to n
...

→ for i = 1 to g
for i’=1 to n/g
...



The second difficulty is topological. Carelessly coalescing

loops may introduce cycles in the graph (V, T ). The simplest

pathological example is:

for i = 1 to 10

0 send 1 t

done

for i = 1 to 10

1 recv 0 t

done

for i = 1 to 10

1 send 0 t

done

for i = 1 to 10

0 recv 1 t

done

Coalescing loops around communication links would lead to

a graph with two loops, with each loop being topologically

before and after the other. Another example where coalescing

cannot be performed naively is the following:

for i = 1 to 10

0 send 1 t1

0 send 1 t2

done

for i = 1 to 10

0 recv 1 t1

done

for i = 1 to 10

0 recv 1 t2

done

Here we have a loop communicating with two other loops that

need to be kept sequentially ordered. There is no reason to

favor coalescing along one link compared to the other. In this

case, we have decided not to perform an arbitrary coalescing,

and keep all loops as is.

Even though troublesome cases like the ones just shown

are unlikely in real code, the coalescing phase needs to take

a principled approach. First, coalescing is only performed

on sets of loops that communicate. Second, the effect of

coalescing on the topology of the resulting graph may prevent

coalescing, to avoid nonsensical systems. Here is the algorithm

we use: starting with a system (V, T, C) where all links in C

are regular:

• compute V ′ = {V ′

1
, . . . , V ′

N} the set of connected com-

ponents of (V,C), i.e., groups of loops that communicate;

• build the graph G′ = (V ′, T ′), with (v′
1
, v′

2
) ∈ T ′ if and

only if ∃v1 ∈ v′
1
, v2 ∈ v′

2
such that (v1, v2) ∈ T , i.e., the

condensation of graph (V, T );
• compute the strongly connected components (SCCs) of

G′, i.e., sets of groups of loops that constitute topological

cycles;

• coalesce loops in trivial SCCs that have no self loop.

A trivial SCC contains a group of loops that does not topo-

logically conflict with any other SCC. If it does not conflict

with itself, the set of loops it represents can be coalesced

after all iteration counts have been made equal (as explained

above). Coalescing a set of loops removes these loops and their

communication links, and inserts a new loop whose body is

the recursive merging of the bodies of the original loops.

An important property of this merging process is that loops

are coalesced only if they communicate. Merging does not

simply align constructs between systems and “factor” out

loops. Instead it builds loops that span several processes

only when these processes actually communicate, and leaves

concurrent loops separate. This will be apparent in some of

the example programs used in the next section.

...
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Fig. 4. Sweep3d, over 8 processes (full execution).



IV. VISUALIZATION

Visualizing a distributed system’s communications is fairly

easy, using timelines for processes, and arrows for messages.

There are however two major inconveniences. First, traces are

usually long, and it is difficult to have a high-level view of the

program behavior. Second, message exchanges need careful

positioning to make patterns appear. We think that building a

loop-based model of the trace the way we just described and

directly displaying this model helps on both aspects.

We have adopted a direct representation of our data-

structures, explicitly displaying loops and their process cover-

age. Graphs have a line per process as usual, but these lines

may change their vertical position to match loop coverage.

A Lamport clock is used to assign horizontal positions to

constructs: all positions are relative to the start of the current

system, including when the system represents a loop body.

Figure 5 shows four examples of model visualization, in

increasing order of complexity1. The first model (BT on 16

processes) is the simplest of all, since a very large part of

its execution is made of 200 iterations of a loop. Capturing

this repeating pattern simply shortens the display (by a factor

200 here). The second model (LU) is similar, except that the

trace shows a two-level pattern, with an outer loop whose body

contains two inner loops and several individual messages. In

this case, it would be very difficult to discern this pattern in an

complete, flat trace. Another example of multi-level patterns

is on Figure 4, displaying the model of a sweep3d running

with 8 processes, where the outer loop contains 8 loops and

two collective operations.

The next example on Figure 5 show interesting charac-

teristics of our model structures, namely the link between

the coalescing of loops along communications channels. The

third graph (CG) has an outer loop with a fairly large body,

including seven loops. Interestingly, four of these loops have a

restricted process coverage, designating a part of the execution

where four groups of processes have concurrent behavior

(in terms of communication). Our point is that this spatial

partitioning is explicit in the model, each of these loops being

represented by its own construct.

Finally, the last example (SP) adds an additional level of

abstraction, by moving away from the usual timeline frame,

where events from one process are to be found on a single

horizontal line. What happens here is that non-communicating

concurrent loops appear (as in the previous example), but these

loops cover non-consecutive ranges of processes. Rather than

spreading the loop across non-participating processes, thereby

blurring the dynamic grouping, we have chosen to keep loops

as a tight boxes and instead make process timelines change

their vertical position to meet the loops they participate in.

Because these moving lines are hard to follow, the process

1We have done our best to find a trade-off between coverage and readability
in these graphs, by removing mildly interesting leading and trailing phases.
The reader may wish to look at the graphs on screen. We apologize for
any inconvenience. Full execution traces are available as PDF files from the
authors.

number is also displayed on the left side of the loop when

some processes have an usual vertical position.

V. GENERATING TRACE SCANNERS

The major benefits of having a formal model based on loops

is that, first, this model is analyzable with techniques usually

applied to source programs, and second that the model itself

is executable, for example to replay the sequence of events

for one or more processes of the program. This section tries

to illustrate both aspects.

A. Counting Events

The loop-based model can be used to delimit regions of

interest in the trace, by highlighting phases of repetitive

communication patterns. It can also be used to compute simple

characteristics of selected phases. An immediate example is

that of communication matrices. Once a region has been

delimited, it is immediate to count the number of messages

exchanged by consulting the model, without any need to access

the original traces. Figure 6 shows a simple example, on a

loop taken from a model of the NPB CG program run on 4

processors. This loop covers 54464 events. The model lets one

directly compute the number of messages exchanged between

any two processes, producing the matrix displayed on Figure 6.

This can be done by a simple post-order traversal of the loop.

The virtue of loop-base models is double in this case: first it

helps locate coherent phases of the execution, and second, it

directly provides simple characteristics of these phases.

74 26

3

3
0 1 2 3

0 5846

1 5846 1924

2 1924 5846

3 5846

Fig. 6. A loop (in CG/C on 4 processors) and its communication matrix.

B. Generating Data Extractors

The modeling algorithm presented in the previous sections

is purely topological, in that it uses only the chronology of

intra-node events (too build local loop nests) and the volume

of communication between process (to merge loops into a

global model). In practice, traces always contain other kinds of

data, usually of quantitative nature: typically, messages have

sizes, events have timestamps, etc. These data are much less

regular: timestamps, for example, show variations that are

sufficiently large for them to be considered irregular, even in

favorable execution conditions. Deciding whether they should

be included in the analysis is difficult. From the point of view

of modeling, the dilemma is the following: either sacrificing

regularity and manipulate raw data, or sacrificing precision

in the hope of finding regular patterns. Regularity being the

mainspring of our work, the first option is unacceptable.

Precision being essential when dealing with quantitative data,

the second option is hardly tenable.

We have chosen to experiment another way to solve the

dilemma, with the goal of leveraging regularity and keeping
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Fig. 5. A gallery of NPB models (class C, 16 processes): gray boxes represent loops (with iteration count in the upper left corner, and gray level indicating
loop-depth), message colors represent tags, and vertical dashed lines represent collective operations. All graphs show more than 95% of events in the trace.
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Fig. 7. A workflow for the analysis of quantitative data (see text for details).

precision. The idea is the following: during tracing, topological

and quantitative data are stored in distinct trace files (concep-

tually, at least). Quantitative data related to a given topological

event are identified by their position. The data-trace is kept on

the local node; it can even be quantized and/or compressed, as

long as random access to a record given by position remains

possible in a reasonably efficient way. In that setting, we

propose the workflow illustrated on Figure 7:

1) events traces are used to build a global model (as

explained in the previous sections);

2) the user selects events of interest, along with the data

she wishes to obtain, by annotating the model;

3) an annotation compiler generates a data-access program;

4) the program is run and retrieves the data stored on the

nodes.

The data can then be processed by any appropriate client

program.

The user selects one or more constructs in the loop-based

model (start and end of loops or loop iterations, collective

operations, or even individual messaging or local events).

This selection is enough to compute, from the model, a

function giving the positions of the occurrences of the selected

construct(s) in the trace. This function is always a polynomial

in the indices of the loops surrounding the constructs. It is

therefore immediate to copy these loops to create a program

that enumerates the positions of all instances of the events of

interest, seeks into the data-trace(s) to obtain the data, and

forwards them to a processing client for analysis, display, etc.

Let us take a short illustrative example. Suppose the user

wants to know the time taken by the second inner loop on

processes 0, 1, and 5 in the run of LU pictured in Figure 5(b).

The annotated model appears on Figure 8.

In this example, C-like comments provide internal positions

computed by the scanner generator: @ indicates position (on

all processes covered by the construct, relative to the enclosing

context), and # in loop bodies indicates duration of one

iteration. The get annotation requires the value of an attribute

(here time) for a given set of processes (here {0,1,5})

covered by a construct (in our text-based annotation system,

arrows indicate whether the annotation is attached to the next

or previous construct). Every annotation will produce one

output record (labeled with the string after get) for each

occurrence of the construct. From that annotated model, the

(pseudo-)code generated by the annotation compiler appears

in Figure 8. Obviously, the generated code depends on the

way the data-traces are accessed (this code could even be a

distributed program itself). The expressions giving locations

of data points are, however, always the same.

Provided a simple annotation user interface, any kind of

data extraction can be performed this way.

VI. RELATED WORK

A. Parallel Trace Modeling

There are basically two approaches to trace processing.

The first one, profiling, includes timing information and/or

aggregates of quantities; see, e.g., [1]. The second is more

qualitative in nature, focusing on building an abstract model

of the program behavior. This paper addresses a specific

form of the latter approach, in the particular case of parallel

and distributed systems. The goal is to build a model of

all communications between processes. In that field many

studies have been focusing on detecting repetitions in traces.

For instance, ScalaTrace [9], [4] includes an incremental

algorithm not unlike our NLR algorithm. Krishnamoorthy and

Agarwal [10] use variations of Sequitur [11] to build one or

more grammars from a trace. Xu et al [12] use a variation

of the Crochemore algorithm [13] to locate the repetitions. In

all cases, the trace is made of discrete symbols taken in some

specific finite alphabet. Even though NLR theoretically has

more expressive power, in the current state of our system any

of these algorithms could be used instead.

In a related approach, Xu and colleagues [14] have studied

trace logicalization, where the underlying topology is explic-

itly extracted and used to formulate a unified trace. We feel

that building a loop nest representing a parallel trace can help

in highlighting topological properties of the communication

scheme.

B. ScalaTrace

ScalaTrace [9], [4] is a system for deterministic compression

and replay of parallel communication traces. ScalaTrace intro-

duced the model-then-merge strategy, that we have borrowed

in this work: individual traces undergo loop recognition, and

at the end of the run are sent to a centralized component which

merges all models to produce a global trace.

ScalaTrace’s models are made of regular section descriptors

(RSD) and power RSDs, which are essentially nested loops.

ScalaTrace also has some knowledge of MPI primitives and

calling contexts, and encodes message destinations as offsets

from the source, which makes it somewhat specific to MPI

programs: local traces actually contain MPI calls (with pa-

rameters).

The merging phase in ScalaTrace heuristically solves an iter-

ative multiple sequence alignment problem. Aligning elements

in distinct individual models is based on syntactic matching,

and targets high compression rates rather than expressive

power. The models can be interpreted to replay the program.

Later work on ScalaTrace [15] aims at keeping timing

information in the trace. Timestamps are quantized on-the-

fly by the use of dynamically balanced histograms. This is



for i0 = 0 to 248 // @{0=671,1=999,5=1327...}

// #{0=644,1=966,5=1288...}

for i1 = 0 to 159 // @{0=0,1=0,5=0...}

...

done

get "before" {0,1,5}.time ->

for i1 = 0 to 159 // @{0=320,1=480,5=640...}

// #{0=2,1=3,5=4...}

...

done

get "after" {0,1,5}.time <-

print start,end

0 send 1 2 // @{0=640}

1 send 2 2 // @{1=960}

0 recv 1 2 // @{1=961}

...

done

for (i0=0 ; i0<=248 ; i0++ ) {

output_start("before",i0);

output_val(0,991+644*i0,TIME);

output_val(1,1479+966*i0,TIME);

output_val(5,1967+1288*i0,TIME);

output_end();

output_start("after",i0);

output_val(0,1311+644*i0,TIME);

output_val(1,1959+966*i0,TIME);

output_val(5,2607+1288*i0,TIME);

output_end();

}

Fig. 8. Generating data extractors: an annotated model on the left, the generated code on the right.

in effect a successful implementation based on a trade-off

between regularity and precision (mentioned in Section V-B).

VII. CONCLUSION

This paper presents a communication trace analysis strategy

for distributed programs. The strategy is based on the modeling

of individual process traces with loops nests, and the merging

of these models into a global graph of loops and events.

Examples have shown that a direct visualization of this graph

provides a compact representation of the program’s execution.

The model can also help accessing additional trace data,

and data scanners can be generated automatically for a large

class of quantitative analysis tasks. We are convinced that our

topological approach can be useful for other analyzes.

This work opens several potential research directions. First,

all regularities are searched for along the chronological di-

mension: loops are using counters that are basically abstract

(and sometimes multi-dimensional) clocks. Even though our

algorithm scales well for large numbers of processes, the

results are barely usable, for instance for visualization. New

notions of regularity have to be defined to compact models

along the “spatial” dimension.

Second, the models we build focus on communication,

without ever considering what is carried by the messages.

Modeling data transfers somehow would provide deeper in-

sight into the program’s behavior. Again, this requires new

notions of regularity (NLR’s ability to build affine functions

may help here). But the result would allow far reaching

analyzes.
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