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Replication procedure for grouped Sobol’ indices

estimation in dependent uncertainty spaces

Laurent Gilquin, Clémentine Prieur, Elise Arnaud

INRIA

LJK, Université de Grenoble, BP53 38041 Grenoble cedex, France

Abstract

This paper deals with the estimation of grouped Sobol’ indices in the case
where the dependence inside each group is given by sets of linear ordered
constraints. In the framework of independent inputs, the replication method
allows to estimate first-order indices with only two designs. Through the use
of orthogonal arrays of strength two the replication method can be applied
to estimate closed second-order indices. We extend this methodology to
estimate first-order and closed second-order grouped Sobol’ indices under
sets of linear constraints. The construction of the two designs required by
the replication method is now based on the simplex geometric structure to
handle the constraints within each set. We propose a space filling strategy
to construct these designs.

Keywords: sensitivity analysis, grouped Sobol’ index, dependence,
replicated designs, simplex

1. Introduction

Sensitivity analysis studies how the uncertainty on an output of a mathe-
matical model can be attributed to sources of uncertainty among the inputs.
There are two main classes of sensitivity analyses called local and global
sensitivity analysis. The former addresses sensitivity relatively to a nominal
value of a given parameter. The latter examines sensitivity on the whole
set of variation of the parameter. Global sensitivity analysis of complex and
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expensive mathematical models is a common practice to identify influent in-
puts and detect the potential interactions between them. Among the large
number of available approaches, the variance-based method introduced by
Sobol’ [1] allows to calculate sensitivity indices called Sobol’ indices. Each
index gives an estimation of the influence of an individual input or a group
of inputs. These indices give an estimation of how the output uncertainty
can be apportioned to the uncertainty in the inputs. One can distinguish
first-order indices that estimate the main effect from each input or group
of inputs from higher-order indices that estimate the corresponding order of
interactions between inputs. Closed k-th order indices estimate k-th order
interactions in addition to the main effect of each of the k inputs. This esti-
mation procedure requires a significant number of model runs, number that
has a polynomial growth rate with respect to the input space dimension.
This cost can be prohibitive for time consuming models and only a few num-
ber of runs is not enough to retrieve accurate informations about the model
inputs. Saltelli [2] proposed an improvement to reduce the number of runs
but the total cost still depends linearly on the dimension of input space.

The notion of replicated designs to estimate first-order Sobol’ indices
probably goes back to McKay [3] and appears later in Mara et al. [4]. These
last authors combine replicated designs with ”pick-freeze” estimators [1] to
estimate first-order Sobol’ indices. The procedure in Mara et al. [4] has the
major advantage of reducing drastically the estimation cost as the number of
runs becomes independent of the input space dimension. This procedure has
been further deeply studied and generalized in Tissot et al. [5] to the estima-
tion of closed second-order indices. The generalization to closed second-order
Sobol’ indices relies on the replication of randomized orthogonal arrays (see
Lemieux [6] or Owen [7]).

The motivation of our paper is to extend this methodology in presence of
dependent inputs. Indeed, the case of correlated parameters has to be tack-
led with caution, as the calculation of single input indices does not provide
anymore a proper information, that can be easily interpreted. One strategy is
thus to define grouped indices for groups of correlated variables as proposed
in Jacques et al. [8]. However, up to our knowledge, the problem of estimat-
ing those grouped indices, with a reasonable computing cost, has not been
addressed in the literature. In this paper, we address this issue by proposing
an approach based on replicated designs and randomized orthogonal arrays
that enables to take into account dependency within inputs. We suppose that
this dependency can be expressed through constraints. This approach can be
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used facing any set of constraints at the condition that one is able to provide
points in the input space that verify the considered constraints. Guided by
our application on a land-use and transport integrated model (LUTI) where
some economical parameters are linked by order relations, this paper focus
on the case of sets of linear ordered constraints. Thus we propose a sampling
strategy based on the simplex geometric structure, that ensures a proper
input space filling.

This paper is organized as follows. Section 2 recalls the notion of grouped
Sobol’ indices (see Jacques et al. [8]) to study the sensitivity of an output to
groups of inputs where variables within a group are dependent but variables of
different groups are independent. In Section 3 we review the use of replication
method and randomized orthogonal array to estimate first and closed second-
order Sobol’ indices. Section 4 is devoted to the sampling strategy adapted
to our sets of linear ordered constraints and section 5 gives a summary of
the whole procedure. Numerical experimentations are conducted in section
6. Classical case studies are addressed to compare our method to the ones
in Sobol’ [1] or Saltelli [2].

2. Definition of Sobol’ indices

2.1. Sobol’ indices for independent inputs

Consider the following model defined from a black box perspective:

f :

{
Rd → R

x = (x1, . . . , xd) 7→ y = f(x)
(1)

where y is the output of the model f , x the input vector.
Let (Ω,A,P) be a probability space. We model the uncertainty on the

inputs by a random vector X = (X1, . . . , Xd) whose components are indepen-
dent. Let PX = PX1

⊗. . .⊗PXd
denote the distribution of X. We assume that

f ∈ L2(PX). The model f can then be uniquely decomposed into summands
of increasing dimensions (functional ANOVA decomposition [1, 9]):

f(X) = f0 +
∑

i

fi(Xi) +
∑

i<j

fij(Xi, Xj) + · · ·+ f1...d(X1, . . . , Xd) , (2)

where each component of the decomposition verifies:
∫

fi1...is(xi1 , . . . , xis)dPXik
(xik) = 0, ∀k ∈ {1, . . . , s}, ∀i1, . . . , is ∈ {1, . . . , d}.
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This implies that f0 = E[Y ] and that the components are mutually orthog-
onal with respect to PX . Let I ⊆ {1, . . . , d}, each component is defined
by:

fI(XI) = E[Y |XI ]−
∑

J⊂I

fJ(XJ).

The functional decomposition can be used to measure the global sensitivity
of the output Y to the input Xi. By squaring and integrating (2), due to
orthogonality we get:

V =
∑

i

Vi +
∑

i<j

Vij + · · ·+ V1,...,d

where VI = Var[fI(XI)] = Var[E[Y |XI ]]−
∑

J⊂I

VJ

and V = Var[Y ] .

Resulting from this decomposition, the Sobol’ indices are defined by:

SI =
VI

V
.

Let |I| denote the cardinal of I. This index measures the contribution to V
of |I|th-order interaction between the Xi, i ∈ I.

Closed Sobol’ indices are defined by:

SI =
Var[E[Y |XI ]]

V
.

The closed Sobol’ index SI measures the contribution of the Xi, i ∈ I by
themselves or in interaction with each other.

As an example, if there exist i 6= j ∈ {1, . . . , d} such that I = {i, j}, then
Sij = Sij + Si + Sj.

At last, note that
∑

I⊂{1,...,d},I 6=∅
SI = 1, allowing a direct interpretation of

the value of each index.
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2.2. Sobol’ indices for dependent inputs

Consider again the model (1). We now suppose that X is a vector of
d inputs among which one or multiple groups of variables are correlated.
Variables belonging to the same group are dependent but variables of different
groups are independent. This implies that one variable can not appear in
two groups. Each group is denoted with a multidimensional variable. X can
then be defined as follows:

X = (X1, . . . , XI , XI+1, . . . , XI+k1︸ ︷︷ ︸
~XI+1

, . . . , XI+1+Σi−1
, . . . , XI+Σi︸ ︷︷ ︸

~XI+i

,

. . . , XI+k1+k2+···+km−1+1, . . . , Xd︸ ︷︷ ︸
~XI+m

) where Σi =
i∑

l=0

kl, k0 = 0, (3)

each ~XI+i, i ∈ {1, . . . ,m} contains ki variables.
When inputs are dependent, equation (2) given by the FANOVA decom-

position of f does not hold as the components of the decomposition are not
mutually orthogonal. The correlation of variables within ~XI+1 implies that
a part of the sensitivity of one of these variables is explained by the other
correlated variables. We can still compute the closed Sobol’ index associated
to each variable (or subset) of ~XI+1 but its value is difficult to interpret. An
alternative is to define grouped Sobol’ indices as in Jacques et al. [8]. These
indices are defined like in the classical case of independent inputs, but refer to
the multidimensional variables. We consider X defined as in (3). First-order
grouped Sobol’ indices are defined by:

Sj =
Var[E[Y | ~Xj]]

V
, ∀j ∈ {1, . . . , I +m} .

If ~Xj is one-dimensional, then ~Xj = Xj and Sj has the same expression as in

the independent case. If ~Xj is multidimensional (case j ∈ {I+1, . . . , I+m}),
~Xj = ~XI+l, l ∈ {1, . . . ,m}, the index is:

Sj = SI+1+Σl−1,...,I+Σl
=

Var[E[Y |XI+1+Σl−1,...,I+Σl
]]

V
.

This index measures the impact of ~Xj on the output Y . Higher order Sobol’
indices can also be defined. In particular, second-order grouped Sobol’ indices
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are given by:

Sj,k =
Var[E[Y | ~Xj, ~Xk]− E[Y | ~Xj]− E[Y | ~Xk]]

V
.

This index measures the impact of the interaction between ~Xj and ~Xk on the
output Y . The grouped Sobol’ indices allow us to estimate the sensitivity of
our model to the sets of linear ordered constrained inputs and the remaining
unidimensional independent inputs.

2.3. standard estimation of Sobol’ indices

We define by design a n × d matrix which consists in n evaluations of
each Xi, i = 1, . . . , d. The standard estimation of a closed Sobol’ index SI

proposed by Sobol’ requires 2n evaluations of the model through two designs
[1]. Denoting by Ic the complement of I ⊆ {1, . . . , d}, the second design of n
evaluations is created from the first one by re-sampling the columns indexed
by Ic. This method is referred as the Sobol’ method. Let Y and YI be the
vectors of evaluations associated to those two designs. The expression of SI

can be rewritten as follows:

SI =
E[Y YI ]− E[Y ]E[YI ]

Var[Y ]
.

An efficient estimator of SI with good asymptotic properties [10, 11] is:

ŜI =

1
n

n∑
j=1

Y jY j
I −

(
1
n

n∑
j=1

Y j
)(

1
n

n∑
j=1

Y j
I

)

1
n

n∑
j=1

(Y j)2 −
(

1
n

n∑
j=1

(Y j)2
) . (4)

Note that this method can be applied to independent inputs or independent
groups of inputs. Its main drawback is the increasing number of needed
evaluations. Estimating all first-order, respectively all closed second-order,
Sobol’ indices requires n(d + 1), respectively n(

(
d

2

)
+ 1), evaluations. For

some models where a single evaluation takes a few minutes to one hour, this
solution becomes rapidly intractable in case of large input space dimension.

Some improvements have been introduced by Saltelli (2002) to reduce the
number of evaluations but with a cost still depending of the dimension d of
the input space. A solution to this issue lies in the use of the replication
method as explained in the next section.
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3. Replication method

The replication method has been described for first-order Sobol’ indices
estimation by Mara et al. [4]. It has been combined with the use of ran-
domized orthogonal array for closed second-order Sobol’ indices estimation
in Tissot and Prieur [5]. We propose hereafter a description of these methods
and their generalization to independent groups of dependent variables.

3.1. Replication method for first-order Sobol’ indices estimation

In their paper [4], Mara et al. propose a comparison between a determin-
istic sensitivity analysis and a stochastic sensitivity analysis. The determin-
istic approach is achieved using the improved FAST method. The stochastic
methodology is performed with a modification of the Sobol’ method using the
concept of replication. This improved Sobol’ method consists in two repli-
cated Monte Carlo designs in the case of d independent inputs. As described
below, this method can be extended for groups of independent inputs.

Let us consider p independent one-dimensional or multidimensional input
variables X1, . . . , XI , ~XI+1, . . . , ~Xp as in (3). Thus p = I +m.

Let D = {Xj = (Xj
1 , . . . , X

j
I ,

~Xj
I+1, . . . ,

~Xj
p), 1 ≤ j ≤ n}

be a design where Xj
i denotes the j-th sample of Xi. Each Xj is therefore a

point in the d-dimensional input space. We say that a design D′ is replicated
from D if it is obtained through a column-wise permutation of D. More
precisely it means that:

D′ = {X ′j = (X
π1(j)
1 , . . . , X

πI(j)
I , ~X

πI+1(j)
I+1 , . . . , ~Xπp(j)

p ), 1 ≤ j ≤ n}

where the vectors πi i ∈ {1, . . . , p} are p independent random variables uni-
formly distributed in the set of permutations Πn and πi(j) = πj

i denotes the
j-th component of πi.

Let us denote by f the model and by YD and YD′ the two vectors of model
outputs associated to D and D′:

YD = {Y j
D = f(Xj

1 , . . . , X
j
I ,

~Xj
I+1, . . . ,

~Xj
p), 1 ≤ j ≤ n} ,

YD′ = {Y j
D′ = f(X

π1(j)
1 , . . . , X

πI(j)
I , ~X

πI+1(j)
I+1 , . . . , ~Xπp(j)

p ), 1 ≤ j ≤ n} .

To estimate the index Sk, k ∈ {1, . . . , p}, the values of YD are rearranged
with the corresponding permutation πk. As a result, it looks like YD′ has
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been constructed by varying all groups of inputs except the k-th. This is the
same concept of ”freezing” as the one introduced by Sobol’ [1](see Appendix
B for a detailed example).
Then using (4) with YD rearranged and YD′ in place of Y and YI we obtain

Ŝk (see Appendix B for an illustration of the method).

3.2. Replication method for closed second-order Sobol’ indices estimation

In the case of closed second-order Sobol’ indices estimation, the replica-
tion method does not consist anymore into a column-wise set of permutations.
Indeed, to estimate closed second-order Sobol’ indices, a way to ”freeze” each
subset of two variables has to be found. We need to find a structure allow-
ing to get the same 2-sets of values in each subset of two columns of each
replicated design. Such a structure has been introduced by Kishen [12] and
further extended by Rao [13] and is known as orthogonal array. It is defined
as follows:

Definition 1. A t − (q, d, λ) orthogonal array (t ≤ d) is a λqt × d matrix
whose entries are chosen from a q-set of N such that in every subset of t
columns of the array, every t-subset of points of this q-set appears in exactly
λ rows.

From this definition by setting t = 2, we can construct a structure consisting
of points in {1, . . . , q}λq2 where each 2-set of columns have the same 2-set of
points λ times.

We present now a result from the method of differences introduced by
Bose and Bush [14] to construct a 2 − (q, p, 1) linear orthogonal array. We
begin with some useful definitions and a theorem resulting from the method
of differences:

Definition 2. A linear orthogonal array is a t − (q, d, λ) orthogonal array
where λ = 1 and q is a prime number. The set of rows of a linear orthogonal
array is a subspace of (Z/qZ)d.

Definition 3. Let G be the Galois field of order q, GF (q), a λq × d matrix
D(λq, d, q) is a difference matrix (or difference scheme) of strength 2 if for
every subset of 2 columns of the matrix, the vector of row-wise difference of
the subset contains every elements of GF (q) λ times.
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Theorem 1. Let M be a D(λq, d, q) difference matrix of strength 2, B the
vector of elements of GF (q), ⊕ the Kronecker sum and T the transpose
operator then (M ⊕ B)T is a 2− (q, d, λ) orthogonal array.

Now, consider q a prime number and G = GF (q) the Galois field associ-
ated, the multiplication table of G is a D(q, q, q) difference matrix of strength
2 with λ = 1. From Theorem 1 we can construct a 2 − (q, p, 1) linear or-
thogonal array: A = (M ⊕ B)T where M is a sub-matrix of p columns of
the multiplication table of G where p still denotes the number of groups of
independent inputs. What is left is to connect this 2 − (q, p, 1) orthogonal
array to the replication method. We consider a q × p design:

D = {Xj = (Xj
1 , . . . , X

j
I ,

~Xj
I+1, . . . ,

~Xj
p), 1 ≤ j ≤ q}

where X1, . . . , XI , ~XI+1, . . . , ~Xp are one-dimensional or multidimensional in-
dependent variables and q is a prime number. Denote by A the previous
2 − (q, p, 1) orthogonal array. We can establish a direct bijection between
the indices {1, . . . , q} of rows of D and the set {1, . . . , q} from which A is
constructed. Each column of A will serve as new indices to build the respec-
tive column of the new design. Resulting from the construction procedure,
in each column of A, each entry of {1, . . . , q} appears q times. This is due
to the fact that each entry is involved in q different 2-sets. The number of
rows of A is equal to q2 meaning that using the previous bijection we can
construct a design DOA of q2 rows where each column has the same entries
of the corresponding column of D but re-indexed from the elements of the
corresponding column of A:

DOA = {Xj = (X
A

j
1

1 , . . . , X
A

j
I

I , ~X
A

j
I+1

I+1 , . . . , ~XA
j
p

p ), 1 ≤ j ≤ q2}.
This gives us the first of the two needed replicated designs. To replicate
DOA we consider once again random vectors of permutations πi in Πq. We
also have a direct bijection between the elements {1, . . . , q} of each πi and
the set {1, . . . , q} from which A is constructed. This allows the following
construction of the second needed replicated design:

D′
OA = {X ′j = (X

π1(A
j
1
)

1 , . . . , X
πI(A

j
I
)

I , ~X
πI+1(A

j
I+1

)

I+1 , . . . , ~Xπp(A
j
p)

p ), 1 ≤ j ≤ q2}
where each πi is re-indexed from the elements of the corresponding column
of A. In fact, the matrix whose columns are the vectors π1(A1), . . . , πp(Ap)
is also an orthogonal array (see Appendix A for details).
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We obtain two designs of length q2. Denote then YDOA
and YD′

OA
the

two vectors of model outputs associated to DOA and D′
OA. To get the same

”freezing” concept as in the last subsection, but this time for each subset of
two coordinates (k, l) ∈ {1, . . . , p}2, we apply the following transformation:

∀j ∈ {1, . . . , q2} : Y A
j
k
+A

j
l
∗q−q = YDOA

j, Y ′ πk(A
j
k
)+πl(A

j
l
)∗q−q

= YD′

OA

j .

As a result, Y and Y ′ have been constructed by varying all groups of inputs
except the k-th and l-th. This allows us to estimate the index Skl with the
formula (4) by replacing YI with Y ′ (see Appendix C for a detailed example).

Remark 1. The construction of a 2 − (q, d, 1) linear orthogonal array is
possible only if q ≥ d − 1. The total number of evaluation required by the
replication method will be 2q2.

Remark 2. For the sake of clarity, we have treated the case of first-order
and closed second-order indices estimation separately. Actually, given that
a 1 − (q, d, 1) orthogonal array is a matrix of permutations we could have
written a general definition for both cases.

4. Sampling strategy under linear ordered constraints

In the previous section a method based on replicated designs to estimate
Sobol’ indices for independent groups of inputs was proposed. The fact that it
handles groups of inputs is a way to tackle the problem of dependence within
parameters. Indeed, each set of dependent inputs is treated as a group. The
first- and second-order indices are calculated for the group, and not inde-
pendently for each parameter (which would provide values that can not be
interpreted easily). This method can be used for any kind of dependency,
under the condition that one is able to properly sample from the input space;
samples that are further needed to feed the designs. When inputs are inde-
pendent, getting samples uniformly distributed in [0, 1] is sufficient. When
dependency is expressed through constraints, one has to create samples that
satisfy the constraints, which is not an easy task in general. As mentioned in
the introduction, the work presented in this paper is motivated by a variance-
based sensitivity analysis we want to conduct on a land use and transport
integrated model, called Tranus [15]. Such a model creates a numerical rep-
resentation of the transport network on a territory, and calculates the spatial
repartition of the economic activities. It is based on economic laws whose
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parameters can be linked though ordered linear constraints. We thus focus
on such constraints and propose an adapted sampling strategy based on the
simplex geometric structure. This strategy is further enhanced with a space
filling methodology.

4.1. Sampling strategy based on the simplex to handle constraints

We consider the same vector of inputs X as defined in (3). Each unidi-
mensional variable is uniformly distributed in [0, 1]. Each multidimensional

variable ~XI+i, i ∈ {1, . . . ,m} contains ki variables valued in [0, 1] and is
subject to the following linear ordered constraints:

XI+1+Σi−1
≤ XI+2+Σi−1

≤ · · · ≤ XI+Σi
. (5)

In case of absence of constraints, the joint distribution of each multidimen-
sional variable ~XI+i is a uniform distribution on the unit ki-hypercube. The
introduction of constraints (5) transforms the support of the joint uniform
distribution in a ki-simplex. The general definition of a simplex is the fol-
lowing:

Definition 4. A simplex, or k-simplex, is the generalization of a triangle
(2-simplex) or tetrahedron (3-simplex) to any dimension k. Let ∆k be the
simplex with vertices P0, . . . , Pk in Rk:

∆k = {M =
k∑

j=0

wjPj | wj ≥ 0,
k∑

j=0

wj = 1}

To sample from a uniform distribution over a simplex we refer to the following
theorem of L. Devroye [16]:

Theorem 2 (Devroye,1986). Let ∆k be a simplex in Rk with vertices
P0, . . . , Pk and U1, . . . , Uk be independent variables uniformly distributed in
[0, 1]. We define W0, . . . ,Wk the associated differences as follows:

∀j ∈ {1, . . . , k}, Wj = Vj+1 − Vj, V0 = 0, Vk+1 = 1

where Vj denote the j-th ordered statistics constructed from the set (Ui)i:

∀j ∈ {1, . . . , k}, Vj = min
i=1,...,k

Ui \ Vj−1.

Then the random variable Z =
k∑

j=0

WjPj is uniformly distributed in the

simplex ∆k.
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To each set of constraints (5) is associated a ki-simplex, defined as follows:

∆∗
ki
= {M =

ki∑

j=0

wje
∗
j | wj ≥ 0,

ki∑

j=0

wj = 1}

with vertices the ordered vectors of the standard basis of Rki :

e∗0 = (0, 0, . . . , 0, 0), e∗1 = (0, 0, . . . , 0, 1), . . . , e∗ki = (1, 1, . . . , 1, 1)

Since the vertices of ∆∗
ki

satisfy ordered linear constraints (5), then every
point sampled in ∆∗

ki
will also satisfy those constraints. Sampling in ∆∗

ki

using the strategy of Theorem 2 is equivalent to sampling uniformly under a
set of ki linear ordered constraints (5).

This method enables to sample each of the m multidimensional vari-
ables contained in the vector of inputs X. For the remaining independent
one-dimensional variables we use uniform random numbers. Algorithm 1
summarizes the whole sampling strategy to get n samples:

Algorithm 1 Sampling n points from d inputs under m disjoint ki-sets of
linear ordered constraints

1. for each of the m multidimensional variables ~XI+i

• create the unit ordered ki-simplex

• sample n points with Theorem 2

2. for each of the d−
m∑
i=1

ki one-dimensional variables

sample n random uniform numbers.

4.2. Space filling strategy

In the classical case of independent variables, one should prefer to use
a Latin Hypercube rather than sampling each variable from a uniform dis-
tribution. Such a procedure ensures that the input space will be properly
explored. To ensure the same property in our case of constrained input space,
the proposed sampling method has to be improved as nothing prevents all
the points to be located in a small area of the space. A way to do so is to
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first subdivide each ki-simplex into sub-simplices of order ki and then sam-
ple from the latter. Algorithm 2 summarizes our subdivision method (see
Appendix D for a detailed example). For the sake of clarity, in the following,
ki has been replaced by k. Figure 1 shows two examples of subdivisions for
k = 2 and k = 3.

Figure 1: examples of subdivision of the unit ordered k-simplex

unit ordered 2-simplex
with n = 25

unit ordered 3-simplex
with n = 27

Let us remark that from Theorem 2, the uniform distribution in the
unit ordered k-simplex in Rk corresponds to the joint distribution of the k
ordered statistics. The l-th ordered statistic of a uniform distribution is a
Beta variable : X(l) ∼ B(l, k + 1− l).

This remark can serve as a goodness of fit measure for our space filling
sampling improvement of the uniform distribution over the unit ordered k-
simplex. Indeed, since the marginal distributions are known, a Kolmogorov
Smirnov test (ks.test) can be performed to compare our space filling strategy
to a standard uniform sampling in the simplex. For each l-th ordered statistic,
we perform the test for k = 3 and different sizes n of the sample. The test
procedure is repeated r = 100 times. We take the average value of the
r p-values obtained. Table 1 gives the averaged p-value obtained for each
(n, l)-set. The general observation is that for each l-th ordered statistic the
average p-value obtained for the space filling sampling is better than the one
obtained for the standard sampling, whatever the number of samples is. This
clearly shows the advantage of using the space filling strategy.
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Algorithm 2 Space filling sampling of n points for a set of k linear ordered
constraints

1. create the k2 vertices of the unit k-hypercube and assign a
number to each vertice according to the order of creation

2. identify the k+1 vertices whose coordinates satisfy the set of
constraints

3. store those vertices into a (k + 1) × k matrix Mcoor, each
column corresponding to one of the k coordinates

4. create the k! vectors of permutations of Πk

5. apply each permutation to the columns of Mcoor, this creates
a total of k! matrices

6. for each one of the k! matrices, match the vertices with those
of the unit k-hypercube and retrieve the vector of matching
numbers, this creates a total of k! vectors of matching num-
bers that we note ωj, j ∈ {1, . . . , k!}

7. choose α = floor(n
1

k ) (respectively α = n
1

k if n
1

k ∈ N) the
number of levels

8. subdivide the unit k-hypercube into (α+1)k (respectively αk

if n
1

k ∈ N) sub-hypercubes. For each sub-hypercube, assign a
number to each vertices following the same order of numera-
tion as in 1.

9. for each sub-hypercube:

• for each ωj, conserve the vertices whose indices corre-
spond to ωj, this gives k! sets of vertices

• among those sets keep only those whose coordinates sat-
isfy the constraints

10. randomly discard (α + 1)k − n of all the sets created to keep
only n sets

11. sample one point using each set in theorem 2 (each set are
the vertices of a simplex) to get a total of n points

14



Table 1: Averaged p-values given by the ks.test to compare our space-filling sampling to
the standard sampling on the unit ordered 3-simplex. The test is repeat r = 100 times for
each l-th ordered statistic and for different value of number n of points sampled.

standard sampling space filling sampling

n l 1 2 3 1 2 3

100 0.53 0.56 0.50 0.80 0.82 0.76
250 0.54 0.53 0.47 0.82 0.82 0.75
500 0.51 0.48 0.53 0.93 0.98 0.93
1250 0.49 0.51 0.52 0.93 0.96 0.93
2500 0.46 0.47 0.46 0.93 0.97 0.95
3750 0.46 0.52 0.50 0.96 0.98 0.96
5000 0.46 0.49 0.49 0.92 0.94 0.93

5. Summary of the whole procedure

Consider the vector of inputs

X = (X1, . . . , XI , XI+1, . . . , XI+k1︸ ︷︷ ︸
~XI+1

, . . . , XI+1+Σi−1
, . . . , XI+Σi︸ ︷︷ ︸

~XI+i

,

. . . , XI+k1+k2+···+km−1+1, . . . , Xd︸ ︷︷ ︸
~XI+m

) where Σi =
i∑

l=0

kl, k0 = 0 .

Each multidimensional variable ~XI+i, i ∈ {1, . . . ,m} contains ki variables
and is subject to the following linear ordered constraints:

XI+1+Σi−1
≤ XI+2+Σi−1

≤ · · · ≤ XI+Σi
.

Let d be the dimension of input space, K =
m∑
i=1

ki be the number of con-

strained inputs, m be the number of sets of constrained variables then the
number of grouped Sobol’ indices to estimate is p = d−K+m for first-order
indices and

(
p

2

)
for closed second-order indices.

Let (Aj
i )i=1..p,j=1..n be an orthogonal array of strength t. t = 1 respectively

2 to estimate first- respectively second-order indices. Let n = qt ∈ N∗ be the
number of samples of the input space with q a prime number if t = 2. Denote
(DOA

j
i )i=1,...,d, j=1,...,n and (D′

OA
j
i )i=1,...,d, j=1,...,n

the two replicated designs.
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1. For the independent inputs Xi i ∈ {1, . . . , I}, construct the replicated
designs sampling from Latin Hypercube [5] to get space filling uniform
distribution.

∀i ∈ {1, . . . , I} : DOA
j
i =

Aj
i − U

A
j
i

i

q
,

D′
OA

j

i =
πi(A

j
i )− U

πi(A
j
i )

i

q
,

where the πi and the U j
i are independent random variables uniformly

distributed in Πn and [0, 1].

2. For the constrained inputs ~XI+i i ∈ {1, . . . ,m}, construct the repli-
cated designs sampling from algorithm 2 to get a space filling uniform
distribution in the corresponding ordered ki-simplices.

∀i ∈ {1, . . . ,m} : DOA
j
I+1+Σi−1,I+2+Σi−1,...,I+Σi

=

ki∑

l=0

W
A

j
i

l P
A

j
i

l ,

D′
OA

j

I+1+Σi−1,I+2+Σi−1,...,I+Σi
=

ki∑

l=0

W
πi(A

j
i )

l P
πi(A

j
i )

l ,

where W
A

j
i

0 , . . . ,W
A

j
i

ki
(respectively W

πi(A
j
i )

0 , . . . ,W
πi(A

j
i )

ki
) are the asso-

ciated differences constructed from U
A

j
i

I+1+Σi−1
, . . . , U

A
j
i

I+Σi
(respectively

U
πi(A

j
i )

I+1+Σi−1
, . . . , U

πi(A
j
i )

I+Σi
) and P0, . . . , Pki are the columns of the n×(ki+1)

matrix P storing the sets of vertices resulting from Algorithm 2.

3. Denote then YDOA
and YD′

OA
the two vectors of model outputs associ-

ated to DOA and D′
OA we compute the Sobol’ indices with the method-

ology presented in section 3.

Remark 3. As we stated at the beginning of section 4, we can apply the
replication method to any kind of distributions under any type of correlation.
The only requirement is to be able to generate a design or in other words
to be able to sample each multidimensional variable (see section 6 for a
multivariate Gaussian example).
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6. Application to test functions

In this section the replication method is applied to standard test functions
with sets of linear ordered constraints and to a case of a multivariate normal
distribution. We compare the results to those given by the Saltelli method
and the standard method of Sobol’ that we both generalized to the case of
groups of inputs (a first generalization of the standard method of Sobol’ can
be found in [8]). For both the standard method and our replication method
we used the efficient estimator with formula given in (4). The size N of the
design of experiments (DoE) is different for each method. Let n denotes the
numbers of points in the d-dimensional input space:

• for the replication method we get N = 2n (each of the two replicated
designs has n points) for first-order indices and N = 2n for closed
second-order Sobol’ indices where

√
n has to be a prime number

• for Saltelli’s method we get N = n(p + 2) for first-order indices and
N = n(2p + 2) for closed second-order indices where p is the number
of independent one-dimensional or multidimensional input variables

• for the standard method we get N = n(p + 1) for first-order indices
and N = n(

(
p

2

)
+ 1) for closed second-order indices

From the user point of view, the total number of evaluations required is
one of the most important aspect of the method. Thus, the comparison are
made for similar computational time. For each method, we chose n to get
the same value N .

6.1. Sobol’s g-function

We consider the g-function introduced by Sobol’ [1]. The g-function is
defined as follows:

f(X1, . . . , Xd) =
d∏

i=1

gi(Xi),

where gi(Xi) =
|4Xi − 2|+ ai

1 + ai
, ai ≥ 0.

Each value ai determines the relative importance of the Xi. When the value
of ai gets closer to zero the variable Xi becomes more influent. We choose
here d = 4 and (a1 = 0, a2 = 1, a3 = 3, a4 = 6).

We consider the following sets of characteristics:
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• X3 ≤ X4 with (X3, X4) uniformly distributed in ∆∗
2

• X1 and X2 are independent and both uniformly distributed in [0, 1].

Since f has an analytical expression, Sobol’ indices can be calculated by
symbolic integrals to evaluate their theoretical value. Each of the three
methods are used to compute the three first-order Sobol’ indices and the three
closed second-order Sobol’ indices. The estimation procedure is repeated
r = 100 times to get a sample of estimated indices; and this for various
values of N .

To evaluate the precision of each method, are shown for each index:

• boxplots drawn depending on increasing values of N ;

• evolutions of the error relative to the true value, depending on N . The
error calculated is a variation of the SAE (Sum of Absolute Error)
indicator used in [4], and is defined as:

SAEN =
r∑

k=1

|Ŝk,N − S|,

where Ŝk,N is the k-th estimation of the index, and S the theoretical
value of the index.

Results on first-order indices are shown on figure 2, while results on closed
second-order Sobol’ indices are shown on figure 3. In both cases, the first row
corresponds to boxplots and the second row to error curves. Note that for all
illustrations, black is associated to our replication method, blue to Saltelli
approach and green to Sobol’ method (also referred as standard method).
The theoretical values of indices are indicated by red horizontal broken lines.

For the calculation of first-order indices, the observation is that the repli-
cation method gives better results, and particularly for low values of N . This
observation is explained by the independence between the computational cost
of our approach and the input space dimension. Thus, this observation is
emphasized when we increase the number p of independent groups of inputs.
The Saltelli’s method gives better results when it comes to estimate indices
with low value rather than indices with high value. At the opposite both the
standard method and the replication method are better at estimating indices
with high value but this could be due to the choice of the estimator rather
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than from the method itself (see Owen [17] for a discussion on the estimation
of small indices).

The replication method performs also better compared to the other two
approaches for the calculation of closed second-order indices. The Saltelli
method is once again better at estimating indices with low value and the
other two methods are better at estimating indices with high value. Despite
the difference, for low value indices our method still stays competitive.

In order to test our method facing a high number of inputs, we consider
the Sobol’ g-function with a dimension of input space now equals to 50. The
following characteristics are considered:

• (X1, X50), (X2, X49), (X3, X48), (X4, X47), (X5, X46) uniformly
distributed in ∆∗

2,

• (X6, X10, X40), (X7, X11, X39), (X8, X12, X38), (X9, X13, X37),
(X19, X30, X31) uniformly distributed in ∆∗

3,

• (X14, X20, X21, X36), (X15, X22, X23, X35), (X16, X24, X25, X34),
(X17, X26, X27, X33), (X18, X28, X29, X32) uniformly distributed in ∆∗

4,

• (X41, X42, X43, X44, X45) uniformly distributed in ∆∗
5.

The values of the ai are the following: (a1 = ... = a10 = 0, a11 = ... =
a20 = 1, a21 = ... = a30 = 2, a31 = ... = a40 = 4, a41 = ... = a50 = 6).

Since there is a substantial number of indices, we choose not to draw all
boxplots but instead to compute the two errors. The average of the p SAEN

calculated for each first-order index is referred as ASAE1
N . The average of

the
(
p

2

)
SAEN calculated for each closed second-order index is referred as

ASAE2
N .

Table 2 gives the values of ASAE1
N for each method and each value of N .

Figure 4 right represents the evolution curves of the ASAE2
N . Since there is

120 closed second-order indices to estimate, the difference in that case be-
tween the results of the three methods is even more noticeable. Figure 4 left
represents the evolution curves of the ASAE1

N given N for the three meth-
ods. It clearly illustrates the benefit of the independence of the replication
method’s total cost to the dimension of the input space. Even for N = 104

the replication method is still in average two times better than the other two
methods.
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Figure 2: Estimation of first-order Sobol’ indices given by the three methods for r = 100 repetitions. The color black is for the
replication method, the blue for the Saltelli method and the green for the standard method. At the top: boxplot representation
for different values of N . At the bottom: curve of the SAEN for different values of N .

Sobol’ index S1 Sobol’ index S2 Sobol’ index S3,4
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Figure 3: Estimation of closed second-order Sobol’ indices given by the three methods for r = 100 repetitions. The color black
is for the replication method, the blue for the Saltelli method and the green for the standard method. At the top: boxplot
representation for different values of N . At the bottom: curve of the SAEN for different values of N .

Sobol’ index S{1}{2} Sobol’ index S{1}{3,4} Sobol’ index S{2}{3,4}
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Table 2: Values of ASAE1

N
for each method and for different size N of the design of

experiments

size
N

replicated
method

Saltelli
method

standard
method

200 4.80 54.39 16.62
500 3.40 39.27 7.40
1000 2.35 16.59 5.80
2500 1.61 4.18 3.35
5000 1.18 3.41 2.97
7500 1.01 2.12 2.54
104 0.93 2.02 1.78

Figure 4: Curves of ASAE1

N
(left figure) and ASAE2

N
(right figure) for each method

depending on N

6.2. Bratley et al. Function

For the second example, we consider the function introduced by Bratley
et al. The function is defined as follows:

f(X1, . . . , Xd) =
d∑

i=1

(−1)i
i∏

j=1

Xj .

We consider the following characteristics:

• X3 ≤ X4 with (X3, X4) uniformly distributed in ∆∗
2

• X1 and X2 are independent and both uniformly distributed in [0, 1].
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We use the same estimation procedure as in the last subsection and we draw
the same graphical results (Figure 5 and Figure 6). Conclusions are similar to
the ones for the g-function of Sobol’. It shows the efficiency of our approach
with respect to more standard approaches such as Saltelli or Sobol’.

6.3. Correlated multivariate normal distribution

As stated in Remark 3, this example of a correlated multivariate normal
distribution is to shows that the replication method can be used in a gen-
eral case of correlated inputs at the condition that we know how to sample
each multidimensional input. Furthermore, the case of multivariate normal
distribution with correlation terms is a common example of dependence for
the inputs.

Let Σ be a positive-definite matrix, non necessarily diagonal. As in the
previous subsection we write X = (X1, . . . , XI , ~XI+1, . . . , ~XI+m) where the

multidimensional variables ~XI+j, j ∈ {1, . . . ,m} are independent random
gaussian vectors with mean vector µ and covariance matrix Σ. Based on
section 2.2 we can estimate the Sobol’ indices for the groups of correlated
variables ~XI+i.

To sample such a distribution we first use a Cholesky decomposition of the
covariance matrix Σ = LLT . Then, let Z = (Z0, . . . , Zd) be a vector whose
components are independent and follow a standard normal distribution. We
obtain the true sampling from the formula: X = µ + LZ. We obtain the
two replicated designs of experiments DOA and D′

OA with the formula from
section 3 applied to our previous sample of X. As an example we consider
the following function inspired from the function presented in [18]:

f(X1, X2, X3, X4) = g1(X1, X2) + g2(X2) + g3(X3) + g4(X4)

where





g1(X1, X2) = (2(X1 − µ1) + 1)(3(X2 − µ2) + 2)
g2(X2) = 2(X2 − µ2)

2 +X2 − µ2 + 3
g3(X3) = 1 + 2(X3 − µ3) + 2(X3 − µ3)

2 + 3(X3 − µ3)
3

g4(X4) = 1 + 4(X4 − µ4)

andX = (X1, X2, X3, X4) follows a centered multivariate normal distribution
N (µ,Σ) with parameters:

Σ =




σ2
1 ρ12σ1σ2 0 0

ρ12σ1σ2 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


 µ =




0
0
0
0


 .

23



Figure 5: Estimation of first-order Sobol’ indices given by the three methods for r = 100 repetitions. The color black is for the
replication method, the blue for the Saltelli method and the green for the standard method. At the top: boxplot representation
for different values of N . At the bottom: curve of the SAEN for different values of N .

Sobol’ index S1 Sobol’ index S2 Sobol’ index S3,4
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Figure 6: Estimation of closed second-order Sobol’ indices given by the three methods for r = 100 repetitions. The color black
is for the replication method, the blue for the Saltelli method and the green for the standard method. At the top: boxplot
representation for different values of N . At the bottom: curve of the SAEN for different values of N .

Sobol’ index S{1}{2} Sobol’ index S{1}{3,4} Sobol’ index S{2}{3,4}
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The first two variables X1,X2 are correlated and we chose the following
values for the terms in Σ:

σ1 = σ2 = 0.3, σ3 = 0.5, σ4 = 0.6, ρ12 = 0.2

We use the same estimation procedure as in the last two subsections and we
draw the results only for first-order Sobol’ indices since the sum of the true
values of those indices is equal to 0.999 which means that interactions are
negligible.

Looking at the results in Figure 7 our replication method still gives good
results even in this case where there is no space filling strategy involved. The
results given by the Saltelli method are in accordance with the results from
the previous two subsections.

Conclusion

In this paper we proposed a methodology to estimate first-order or closed
second-order grouped Sobol’ indices using replicated designs to handle groups
of dependent inputs. In our application on the LUTI model of Tranus this
dependency translates into groups of linear ordered inputs. Thus, through
an algorithm (Algorithm 2) we have presented a space filling strategy based
on the simplex structure to sample points satisfying those constraints and
a detailed procedure to estimate the associated Sobol’ indices. Compared
to the standard method of Sobol’ [1] or to Saltelli’s approach [2], our new
estimation procedure has a better precision for a given cost, especially in the
case of high number of inputs. An application on the Tranus LUTI model
will be the subject of a future work via a grid deployment.
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Figure 7: Estimation of first-order Sobol’ indices given by the three methods for r = 100 repetitions. The color black is for the
replication method, the blue for the Saltelli method and the green for the standard method. At the top: boxplot representation
for different values of N . At the bottom: curve of the SAEN for different values of N .
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Appendix A. Proofs

Proposition 1. Let A be a 2-(q, p, 1) linear orthogonal array of elements in
{1, . . . , q}. Let π1(A1), . . . , πp(Ap) ∈ Πq, p independent vectors of permuta-
tions. Then the matrix Aπ whose columns are the vectors π1(A1), . . . , πp(Ap)
is also a 2-(q, p, 1) orthogonal array.

Proof. From Definition 1, we need to demonstrate that for every subset of
2 columns of Aπ, every 2-set appears exactly one time. This would mean that
every subset of 2 columns of Aπ is identical to the space {1, . . . , q}×{1, . . . , q}.
Let us consider only A1, A2 and π1, π2, the demonstration will be identical
for the other subset of 2 columns. Consider the following application:

f :

{
{1, . . . , q} × {1, . . . , q} → {1, . . . , q} × {1, . . . , q}

(x, y) 7→ (π1(x), π2(y))

f is a bijection since π1, π2 are two bijections from {1, . . . , q} to {1, . . . , q}.
Now if x are elements of A1 and y are elements of A2 this means that the
subset (π1(A1) π2(A2)) have the same 2-set of (A1 A2). Applying this to
every other subset of 2 columns leads to the result.

Proposition 2. We want to prove that the following transformation allows
us to freeze each set of two coordinates (k, l) ∈ {1, . . . , p}2 allowing us to
estimate each closed second-order index Skl:

∀j ∈ {1, . . . , q2} : Y A
j
k
+A

j
l
∗q−q = YDOA

j, Y ′πk(A
j
k
)+πl(A

j
l
)∗q−q

= YD′

OA

j

Proof. To simplify the proof consider k = 1, l = 2, the method will be the
same for the other set of two coordinates. Consider the following application:

f :

{
{1, . . . , q} × {1, . . . , q} → {1, . . . , q2}

(x, y) 7→ x+ y ∗ q − q

f is a bijection. To prove it, we only have to demonstrate that f is injective.
Consider (x, y) and (x′, y′) in {1, . . . , q} × {1, . . . , q} such that:

x− x′ = (y′ − y) ∗ q

this implies
x− x′ ≡ 0[q]
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given that
(x, x′) ∈ {1, . . . , q} × {1, . . . , q}

we obtain
x = x′.

Then
(y′ − y) ∗ q = 0

implies
y = y′.

Since Aj
1 and Aj

2 ∈ {1, . . . , q} (resp. π1(A
j
1) and π2(A

j
2)), this means that

every element of {1, . . . , q2} is obtained from a unique 2-set of (A1 A2) (resp.
(π1(A1) π2(A2)) thus each value of the vectors Y and Y ′ are calculated from
the same set of the first two coordinates. We get the same ’freezing’ result
for every other set of two coordinates.

Appendix B. Example of the replication method for first-order in-
dices

D = X =




X1 X2 X3 X4

1 11 21 31 41
2 12 22 32 42
3 13 23 33 43


 Π =




π1 π2 π3 π4

2 1 3 1
3 3 1 2
1 2 2 3




construction of D′:

Π =




2 1 3 1
3 3 1 2
1 2 2 3


 −→ X =




11 21 31 41

12 22 32 42

13 23 33 43




Π =




2 1 3 1
3 3 1 2
1 2 2 3


 −→ X =




11 21 31 41

12 22 32 42

13 23 33 43




Π =




2 1 3 1
3 3 1 2
1 2 2 3


 −→ X =




11 21 31 41

12 22 32 42

13 23 33 43



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resulting in:

D′ =




12 21 33 41
13 23 31 42
11 22 32 43




for a model f , the associated response are:

YD =




f(11, 21, 31, 41)
f(12, 22, 32, 42)
f(13, 23, 33, 43)


 YD′ =




f(12, 21, 33, 41)
f(13, 23, 31, 42)
f(11, 22, 32, 43)




to estimate the index S1 we re-sample YD with π1:

π1 =




2
3
1


 −→ YDnew =




f(12, 22, 32, 42)
f(13, 23, 33, 43)
f(11, 21, 31, 41)




looking at both YDnew and YD′ , X1 has been ”frozen”.

Appendix C. Example of the replication method for closed second-
order indices

D = X =




X1 X2 X3 X4

1 11 21 31 41
2 12 22 32 42
3 13 23 33 43


 Π =




π1 π2 π3 π4

2 1 3 1
3 3 1 2
1 2 2 3




construction of a 2− (3, 4, 1) orthogonal array A = (M ⊕ B)T :

A =






0 0 0
0 1 2
0 2 1


⊕




0
1
2






T

=




0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0




T

we can always add another column corresponding to the vector of elements
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of GF (3) repeated 3 times:

A =




0 0 0 0
0 1 2 1
0 2 1 2
1 1 1 0
1 2 0 1
1 0 2 2
2 2 2 0
2 0 1 1
2 1 0 2




⇐⇒ A =




3 3 3 3
3 1 2 1
3 2 1 2
1 1 1 3
1 2 3 1
1 3 2 2
2 2 2 3
2 3 1 1
2 1 3 2




construction of DOA:

A =




3 3 3 3
3 1 2 1
3 2 1 2
1 1 1 3
1 2 3 1
1 3 2 2
2 2 2 3
2 3 1 1
2 1 3 2




−→ X =




11 21 31 41
12 22 32 42

13 23 33 43




we iterate the procedure over the rows of A, resulting in:

DOA =




13 23 33 43
13 21 32 41
13 22 31 42
11 21 31 43
11 22 33 41
11 23 32 42
12 22 32 43
12 23 31 41
12 21 33 42



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construction of D′
OA:

A =




3 3 3 3
3 1 2 1
3 2 1 2
1 1 1 3
1 2 3 1
1 3 2 2
2 2 2 3
2 3 1 1
2 1 3 2




−→ Π =




2 1 3 1
3 3 1 2

1 2 2 3




then:

Π =




2 1 3 1
3 3 1 2

1 2 2 3


 −→ X =




11 21 31 41

12 22 32 42

13 23 33 43




we iterate the procedure over the rows of A, resulting in:

D′
OA =




11 22 32 43
11 21 31 41
11 23 33 42
12 21 33 43
12 23 32 41
12 22 31 42
13 23 31 43
13 22 33 41
13 21 32 42




for a model f , the associated response are:

YDOA
=




f(13, 23, 33, 43)
f(13, 21, 32, 41)
f(13, 22, 31, 42)
f(11, 21, 31, 43)
f(11, 22, 33, 41)
f(11, 23, 32, 42)
f(12, 22, 32, 43)
f(12, 23, 31, 41)
f(12, 21, 33, 42)




YD′

OA
=




f(11, 22, 32, 43)
f(11, 21, 31, 41)
f(11, 23, 33, 42)
f(12, 21, 33, 43)
f(12, 23, 32, 41)
f(12, 22, 31, 42)
f(13, 23, 31, 43)
f(13, 22, 33, 41)
f(13, 21, 32, 42)



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to estimate the index S12 we re-sample YDOA
the following way: denotes

A1 and A2 the first two columns of A:

A1 + A2 ∗ 3− 3 =




3
3
3
1
1
1
2
2
2




+




3
1
2
1
2
3
2
3
1




∗ 3− 3 =




9
3
6
1
4
7
5
8
2




we construct Y with this new indexation:




Y [9] = YDOA
[1] = f(13, 23, 33, 43)

Y [3] = YDOA
[2] = f(13, 21, 32, 41)

Y [6] = YDOA
[3] = f(13, 22, 31, 42)

Y [1] = YDOA
[4] = f(11, 21, 31, 43)

Y [4] = YDOA
[5] = f(11, 22, 33, 41)

Y [7] = YDOA
[6] = f(11, 23, 32, 42)

Y [5] = YDOA
[7] = f(12, 22, 32, 43)

Y [8] = YDOA
[8] = f(12, 23, 31, 41)

Y [2] = YDOA
[9] = f(12, 21, 33, 42)
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Next, we re-sample YD′

OA
the following way:

Denotes Aπ the matrix A re-indexed by Π:

A =




3 3 3 3
3 1 2 1
3 2 1 2
1 1 1 3
1 2 3 1
1 3 2 2
2 2 2 3
2 3 1 1
2 1 3 2




−→ Π =




2 1 3 1
3 3 1 2

1 2 2 3




then:

Π =




2 1 3 1
3 3 1 2

1 2 2 3


 −→ Aπ =

(
1 2 2 3
...

...
...

...

)

we calculate the following indexation:

Aπ1 + Aπ2 ∗ 3− 3 =




1
1
1
2
2
2
3
3
3




+




2
1
3
1
3
2
3
2
1




∗ 3− 3 =




4
1
7
2
8
5
9
6
3




we construct Y ′ with this new index:



Y ′[4] = YD′

OA
[1] = f(11, 22, 32, 43)

Y ′[1] = YD′

OA
[2] = f(11, 21, 31, 41)

Y ′[7] = YD′

OA
[3] = f(11, 23, 33, 42)

Y ′[2] = YD′

OA
[4] = f(12, 21, 33, 43)

Y ′[8] = YD′

OA
[5] = f(12, 23, 32, 41)

Y ′[5] = YD′

OA
[6] = f(12, 22, 31, 42)

Y ′[9] = YD′

OA
[7] = f(13, 23, 31, 43)

Y ′[6] = YD′

OA
[8] = f(13, 22, 33, 41)

Y ′[3] = YD′

OA
[9] = f(13, 21, 32, 42)
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looking at both Y and Y ′, the two inputs X1, X2 have been ”frozen”:

Y =




f(11, 21, 31, 43)
f(12, 21, 33, 42)
f(13, 21, 32, 41)
f(11, 22, 33, 41)
f(12, 22, 32, 43)
f(13, 22, 31, 42)
f(11, 23, 32, 42)
f(12, 23, 31, 41)
f(13, 23, 33, 43)




Y ′ =




f(11, 21, 31, 41)
f(12, 21, 33, 43)
f(13, 21, 32, 42)
f(11, 22, 32, 43)
f(12, 22, 31, 42)
f(13, 22, 33, 41)
f(11, 23, 33, 42)
f(12, 23, 32, 41)
f(13, 23, 31, 43)




Appendix D. Algorithm 2 illustration for k = 2 and n = 9

creation of the vertices of the unit 2-hypercube and numeration:




1 0 0
2 1 0
3 0 1
4 1 1




vertices satisfying the constraints and creation of Mcoor:





0≤0
1�0
0≤1
1≤1

−→ Mcoor =




0 0
0 1
1 1




vectors of permutations and creation of the 2! matrices by column-wise
permutations of Mcoor:

v1 =
(
1 2

)
−→ M1 = Mcoor =




0 0
0 1
1 1




v2 =
(
2 1

)
−→ M2 =




0 0
1 0
1 1



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retrieve the vectors of numbers of matching vertices:

M1 =




0 0
0 1
1 1


 −→




1 0 0

2 1 0

3 0 1

4 1 1


 −→ w1 =

(
1 3 4

)

M2 =




0 0
1 0
1 1


 −→




1 0 0

2 1 0

3 0 1

4 1 1


 −→ w2 =

(
1 2 4

)

matrix of subdivision of the 2-hypercube into 32 = 9 sub-hypercubes (one
sub-hypercube per row of the matrix):




1 2 5 6
2 3 6 7
3 4 7 8
5 6 9 10
6 7 10 11
7 8 11 12
9 10 13 14
10 11 14 15
11 12 15 16




for each sub-hypercube, for each wj conserve the vertices whose index
corresponds to wj:





w1 =
(
1 3 4

)
−→

(
1 2 5 6

)

w2 =
(
1 2 4

)
−→

(
1 2 5 6

)
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iterate the process over the list of sub-hypercubes, to get all the sets of
vertices, then conserve only those satisfying the constraints:





w1 =
(
1 5 6

)
−→




0≤0
0≤1

3
1
3
≤1

3


 −→ accept

w2 =
(
1 2 6

)
−→




0≤0
1
3
�0

1
3
≤1

3


 −→ reject

this gives a total of 32 = 9 conserved simplices (one simplex per row of
the matrix):




1 5 6
5 9 10
5 6 10
6 10 11
9 13 14
9 10 14
10 14 15
10 11 15
11 15 16




We then sample one point in each of the 9 simplices thus created.
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