
HAL Id: hal-00926100
https://hal.inria.fr/hal-00926100v2

Submitted on 30 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound and Complete Bisimilarities for Call-by-Name
and Call-by-Value Lambda-mu Calculus

Dariusz Biernacki, Sergueï Lenglet

To cite this version:
Dariusz Biernacki, Sergueï Lenglet. Sound and Complete Bisimilarities for Call-by-Name and Call-
by-Value Lambda-mu Calculus. [Research Report] RR-8447, INRIA. 2014. �hal-00926100v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49606068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00926100v2
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
4

4
7

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8447
January 2014

Project-Team Pareo

Sound and Complete

Bisimilarities

for Call-by-Name and

Call-by-Value λµ-Calculus

Dariusz Biernacki, Sergueï Lenglet

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Sound and Complete Bisimilarities

for Call-by-Name and Call-by-Value

λµ-Calculus

Dariusz Biernacki⋆, Sergueï Lenglet⋆⋆

Project-Team Pareo

Research Report n° 8447 — January 2014 — 38 pages

Abstract: We propose the first sound and complete bisimilarities for the call-by-name and call-
by-value untyped λµ-calculus. We define applicative bisimilarities for both semantics and environ-
mental bisimilarity for call-by-name. We give equivalence examples to illustrate how our relations
can be used; in particular, we prove David and Py’s counter-example, which cannot be proved with
Lassen’s preexisting normal form bisimilarities for the λµ-calculus.

Key-words: Applicative bisimilarity, λµ-calculus, call-by-name, call-by-value

⋆ University of Wrocław, Wrocław, Poland
⋆⋆ Université de Lorraine, Nancy, France

Bisimilarités correctes et complètes

pour le λµ-calcul en appel par nom et par valeur

Résumé : Nous proposons les premières définitions de bisimilarités correctes et
complètes pour le λµ-calcul non typé en appel par nom et en appel par valeur.
Nous définissons une bisimilarité applicative pour chacune des sémantiques, et
une bisimilarité environnementale en appel par nom. Nous donnons des examples
d’équivalences pour montrer comment ces relations peuvent être utilisées ; en
particulier, nous prouvons le contre-exemple de David et Py, qui ne peut être
démontré avec la bisimilarité de forme normale définie auparavant par Lassen.

Mots-clés : Bisimilarité applicative, λµ-calcul, appel par nom, appel par valeur

Sound and Complete Bisimilarities for the λµ-Calculus 3

1 Introduction

Contextual equivalence [13] is considered as the most natural behavioral equiva-
lence in languages based on the λ-calculus. Two terms are contextually equivalent
if an outside observer cannot tell them apart when they are evaluated within
any context (a term with a hole). However, the quantification over contexts
makes proving the equivalence of two given programs difficult. Consequently,
characterizations of contextual equivalence are sought for, usually in the form of
coinductively defined bisimilarities.

Several kinds of bisimilarity have been proposed, such as, e.g., applicative
bisimilarity [1], which relates terms by reducing them to values (if possible), and
then compares these values by applying them to an arbitrary argument. The
idea is the same for environmental bisimilarity [18], except the values are tested
with arguments built from an environment, which represents the knowledge of
an observer about the tested terms. Finally, normal form bisimilarity [11] (ini-
tially called open bisimilarity [17]) reduces open terms to normal forms and then
compares their subterms. Applicative and environmental bisimilarities still con-
tain some quantification over arguments, and usually coincide with contextual
equivalence. In contrast, normal form bisimilarity is easier to use as its defini-
tion does not contain any quantification over arguments, but it is generally not
complete, i.e., there exist equivalent terms that are not normal form bisimilar.

This article treats the behavioral theory of the untyped λµ-calculus [15].
The λµ-calculus provides a computational interpretation of the classical natural
deduction and thus extends the Curry-Howard correspondence [7] from intu-
itionistic to classical logic. Operationally, the reduction rules of the calculus
express not only function applications but also captures of the current context
of evaluation. Therefore, when considered in the untyped setting, the calculus
offers an approach to the semantics of abortive control operators such as callcc
known from the Scheme programming language and it may be viewed as a closely
related alternative to Felleisen and Hieb’s syntactic theory of control [5].

So far no characterization of contextual equivalence have been proposed in
either call-by-value or call-by-name λµ-calculus. Lassen defines normal bisimilar-
ities for call-by-name [10], for head reduction semantics [12], and, with Støvring,
for call-by-value [20] that are not complete. However, normal form bisimilarity
is complete for Saurin’s Λµ-calculus [19] with head reduction semantics [12], and
also for call-by-value λµ-calculus with store [20]. Lassen also defines a not com-
plete applicative bisimilarity for call-by-name in [10]. A definition of applicative
bisimilarity has also been proposed for a call-by-value typed µPCF [14], but the
resulting relation is neither sound nor complete.

In this work we propose the first characterizations of contextual equivalence
for call-by-name and call-by-value λµ-calculus. We define sound and complete
applicative bisimilarities for both semantics, and we also discuss environmental
bisimilarity for call-by-name. The relations we obtain are harder to use than
Lassen’s normal form bisimilarity to prove the equivalence of two given terms,
but because they are complete, we can equate terms that cannot be related
with normal form bisimilarity, such as David and Py’s counter-example [3]. Even

RR n° 8447

4 Biernacki & Lenglet

though the applicative bisimilarities we define for call-by-name and call-by-value
are built along the same principles, the relation we obtain in call-by-value is
much more difficult to use than the one for call-by-name. However, we provide
counter-examples showing that it cannot be simplified.

The rest of the paper is organized as follows. We first discuss the behav-
ioral theory of the call-by-name λµ-calculus in Section 2. We propose a notion
of contextual equivalence (in Section 2.2) which observes top-level names, and
we then characterize it with, respectively, applicative (Section 2.3) and environ-
mental (Section 2.4) bisimilarities. In particular, we compare our definition of
applicative bisimilarity with Lassen’s one and we prove David and Py’s counter-
example using applicative bisimilarity. We then discuss call by value in Section 3.
We propose a definition of applicative bisimilarity (Section 3.2) which coincides
with contextual equivalence. We then show that the definition cannot be sim-
plified to match the call-by-value one by providing counter-examples. Although
the relation we obtain is harder to use than the one for call-by-name, we can still
prove some equivalences of terms, as we demonstrate in Section 3.3. We conclude
in Section 4, and the appendices contain some of the proofs missing from the
main text (Appendix A for call-by-name and Appendix B for call-by-value).

2 Call-by-Name λµ-calculus

In this section, we define applicative and environmental bisimilarities for the
call-by-name (CBN) λµ-calculus. We first recall its syntax and semantics, and
we then discuss the definition of contextual equivalence for the calculus.

2.1 Syntax and Semantics

The λµ-calculus [15] extends the λ-calculus with named terms and a µ construc-
tor that binds names in terms. We assume a set X of variables, ranged over by
x, y, etc., and a distinct set A of names, ranged over by a, b, etc. Terms (T) and
named terms (U) are defined by the following grammar:

Terms: t ::= x | λx.t | t t | µa.u
Named terms: u ::= [a]t

Values (V), ranged over by v, are terms of the form λx.t. A λ-abstraction λx.t
binds x in t and a µ-abstraction µa.t binds a in t. We equate terms up to α-
conversion of their bound variables and names, and we assume bound names
to be pairwise distinct, as well as distinct from free names. We write fv(t) and
fv(u) for the set of free variables of, respectively, t and u, and we write fn(t)
and fn(u) for their set of free names. A term t or named term u is said closed
if, respectively, fv(t) = ∅ or fv(u) = ∅. Note that a closed (named) term may
contain free names. The sets of closed terms, closed values, and named terms
are T 0, V 0, and U0, respectively. In any discussion or proof, we say a variable
or a name is fresh if it does not occur in any term under consideration.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 5

We distinguish several kinds of contexts, represented outside-in, as follows:

Contexts: C ::= � | C t | t C | λx.C | µa.C
Named contexts: C ::= [a]C

CBN evaluation contexts: E ::= � | E t
Named evaluation contexts: E ::= [a]E

The syntax of (named) evaluation contexts reflects the chosen reduction strategy,
here call-by-name. Contexts can be filled only with a term t, to produce either
regular terms C [t], E [t], or named terms C[t], E[t]; the free names and free
variables of t may be captured in the process.

We write t0{t1/x} and u0{t1/x} for the usual capture-avoiding substitution
of terms for variables. We define the capture-avoiding substitution of named
contexts for names, written t〈E/a〉 and u〈E/a〉, as follows. Note that the side-
condition in the µ-binding case can always be fulfilled using α-conversion.

x〈E/a〉
def
= x

(λx.t)〈E/a〉
def
= λx.t〈E/a〉

(t0 t1)〈E/a〉
def
= t0〈E/a〉 t1〈E/a〉

(µb.u)〈E/a〉
def
= µb.u〈E/a〉 if b /∈ fn(E) ∪ {a}

([b]t)〈E/a〉
def
=

{
[b]t〈E/a〉 if a 6= b
E[t〈E/a〉] if a = b

We define the CBN reduction relation →n inductively by the following rules:

(βn) [a](λx.t0) t1 →n [a]t0{t1/x}
(µ) [a]µb.u →n u〈[a]�/b〉

(app) [a]t0 t1 →n u〈[a]� t1/b〉 if [b]t0 →n u and b /∈ fn([a]t0 t1)

Reduction is defined on named terms only. The rule (βn) is the usual call-by-
name β-reduction. In rule (µ), the current continuation, represented by a, is
captured and substituted for b in u. In an application (cf. rule (app)), we reduce
the term t0 in function position by introducing a fresh name b which represents
the top level. We then replace b with [a]� t1 in the result u of the reduction of
[b]t0. We can also express reduction with top-level evaluation contexts as follows.

Lemma 1. u →n u′ iff u = E[(λx.t0) t1] and u′ = E[t0{t1/x}], or u = E[µa.u′′]
and u′ = u′′〈E/a〉.

Reduction is also compatible with evaluation contexts in the following sense.

Lemma 2. If u →n u′, then u〈E/a〉 →n u′〈E/a〉.

We write →∗
n for the transitive and reflexive closure of →n, and we define the

evaluation relation of the calculus as follows.

Definition 1. We write u ⇓n u′ if u →∗
n u′ and u′ cannot reduce further.

If u ⇓n u′, then u′ is a named value. If u admits an infinite reduction sequence,

we say it diverges, written u ⇑n. For example, let Ω
def
= (λx.x x) (λx.x x); then

[a]Ω ⇑n for all a.

RR n° 8447

6 Biernacki & Lenglet

2.2 Contextual Equivalence

As in the λ-calculus, contextual equivalence in the λµ-calculus is defined in terms
of convergence. However, unlike previous definitions [10,12], we define contextual
equivalence on named terms first, before extending it to any terms.

Definition 2. Two closed terms u0, u1 are contextually equivalent, written u0 ≈c

u1, if for all closed contexts C and names a, there exist b, v0, and v1 such that
C[µa.u0] ⇓n [b]v0 iff C[µa.u1] ⇓n [b]v1.

Note that we can plug only terms in a context, therefore we prefix u0 and u1

with a µ-abstraction. Definition 2 is not as generic as it could be, because we
require the resulting named values to have the same top-level name b; a more
general definition would simply say “C[µa.u0] ⇓n iff C[µa.u1] ⇓n.” Our definition
is strictly finer than the general one, because contexts cannot discriminate upon
top-level names in some cases, as we can see with the next example.

Example 1. Let Θ
def
= (λx.λy.y (x x y)) (λx.λy.y (x x y)) be Turing’s CBN fixed-

point combinator, and let v
def
= λx.λy.x. The terms u0

def
= [a]λx.µc.[b]λy.Θ v

and u1
def
= [b]λy.Θ v are distinguished by Definition 2 if a 6= b, but we show

they are related by the general contextual equivalence. To do so, we verify that
E[µc.u0] ⇓n iff E[µc.u1] ⇓n holds for all E and c, and we can then conclude that
u0 and u1 are in the general equivalence with David and Py’s context lemma [3].
Let E be of the form [d]E t for some d, E , t. Then E[µa.u0] ⇓n [b]λy.Θ v and
E[µa.u1] ⇓n [b]λy.Θ v, E[µb.u0] ⇓n [a]λx.µc.E[λy.Θ v] and E[µb.u1] ⇓n [d]λy.Θ v,
and finally E[µc.u0] ⇓n u0 and E[µc.u1] ⇓n u1 for c /∈ {a, b}. The case E = [d]�
is easy to check as well.

We choose Definition 2 because it gives more information on the behaviors
of terms than the general equivalence. Besides, only very peculiar terms u0 and
u1 are related by the general equivalence but not by Definition 2. These terms
are like black holes: they reduce (in some context C) to values [a]v0 and [b]v1
with a 6= b that never evaluate their arguments. Indeed, if E = [c]� t0 . . . tn,
then E[µa.[a]v0] →n E[v0〈E/a〉], and E[µa.[b]v1] ⇓n [b]v1〈E/a〉. Suppose that when
evaluating E[v0〈E/a〉], we evaluate one of the ti’s. Then by replacing ti with Ω,
we obtain a context E′ such that E′[µa.[a]v0] ⇑n (because Ω will be evaluated),
and E′[µa.[b]v1] ⇓n, which is in contradiction with the fact that u0 and u1 are
in the general equivalence (they are distinguished by E′[µa.C]).

We extend Definition 2 to any closed terms t0, t1, by saying that t0 ≈c t1 if
[a]t0 ≈c [a]t1 for any fresh a. Other versions of the extension are possible, for
example by replacing “for any a” by “for some a”, or by dropping the freshness
requirement; as can be shown using the results of Section 2.3, all these definitions
are equivalent. We can also define contextual equivalence on open terms, using
the notion of open extension, which extends any relation on closed (named) terms
to open (named) terms. We say a substitution σ closes t (or u) if σ replaces the
variables in fv(t) (or fv(u)) with closed terms.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 7

Definition 3. Let R be a relation on closed (named) terms. Two terms t0 and
t1 are in the open extension of R, written t0 R◦ t1, if for all substitutions σ
closing t0 and t1, we have t0σ R t1σ (and similarly for u0 R◦ u1).

2.3 Applicative Bisimilarity

We propose a notion of applicative bisimulation, which tests values by applying
them to a random closed argument. As with contextual equivalence, we give the
definitions for named terms, before extending it to regular terms.

Definition 4. A relation R on closed named terms is an applicative bisimula-
tion if u0 R u1 implies

– if u0 →n u′
0, then there exists u′

1 such that u1 →∗
n u′

1 and u′
0 R u′

1;
– if u0 = [a]λx.t0, then there exists t1 such that u1 →∗

n [a]λx.t1 and for all t,
we have [a]t0〈[a]� t/a〉{t/x} R [a]t1〈[a]� t/a〉{t/x};

– the symmetric conditions on u1.

Applicative bisimilarity, written ≈, is the largest applicative bisimulation.

For regular terms, we write t0 R t1 if [a]t0 R [a]t1 for any a /∈ fn(t0, t1). The
first item of Definition 4 plays the bisimulation game for named terms which
are not named values. If u0 is a named value [a]λx.t0, then u1 has to reduce
to a named value [a]λx.t1, and we compare the values by applying them to
an argument t. However, a context cannot interact with [a]λx.t0 and [a]λx.t1
by simply applying them to t, because ([a]λx.t0) t is not allowed by the syn-
tax. Consequently, we have to prefix them first with µa. As a result, we consider
the named terms [a](µa.[a]λx.t0)t and [a](µa.[a]λx.t1)t, which reduce to, respec-
tively, [a](λx.t0〈[a]� t/a〉)t and [a](λx.t1〈[a]� t/a〉)t, and then to [a]t0〈[a]� t/a〉{t/x}
and [a]t1〈[a]� t/a〉{t/x}; we obtain the terms in the clause for values of Defini-
tion 4.

Remark 1. When considering [a](µa.[a]λx.t0) t and [a](µa.[a]λx.t1) t, we use the
same top-level name a as the one of the named values [a]λx.t0 and [a]λx.t1. We
could use a fresh name b instead; reusing the same name makes the bisimulation
proofs easier (we do not have to introduce unnecessary fresh names).

We can also define a big-step version of the bisimulation, where we consider
only evaluation to a value.

Definition 5. A relation R on closed named terms is a big-step applicative
bisimulation if u0 R u1 implies

– if u0 →∗
n [a]λx.t0, then there exists t1 such that u1 →∗

n [a]λx.t1 and for all t,
we have [a]t0〈[a]� t/a〉{t/x} R [a]t1〈[a]� t/a〉{t/x};

– the symmetric condition on u1.

Lemma 3. If R is a big-step applicative bisimulation, then R ⊆ ≈.

RR n° 8447

8 Biernacki & Lenglet

As a first property, we prove that reduction (and therefore, evaluation) is in-
cluded in bisimilarity.

Lemma 4. We have →∗
n ⊆ ≈.

Proof. By showing that {(u, u′) | u →∗
n u′} ∪ {(u, u)} is a big-step bisimulation.

We give a basic example to show how applicative bisimulation can be used.

Example 2. For all closed v and a, b /∈ fn(v)1, we prove that [a]v ≈ [a]λx.µb.[a]v
by showing that {([a]v, [a]λx.µb.[a]v) | b /∈ fn(v)}∪ ≈ is an applicative bisim-
ulation. Indeed, if v = λx.t, then for all t′, we have [a]t{t′/x} ≈ [a]µb.[a]v t′,
because [a]µb.[a]v t′ →∗

n [a]t{t′/x} (and by Lemma 4).

Soundness and completeness. We now prove that ≈ coincides with ≈c. We
first show that ≈ is a congruence using Howe’s method [8,6], which is a classic
proof method to show that an applicative bisimilarity is a congruence. As in [10],
we need to slightly adapt the proof to the λµ-calculus. Here we only sketch the
application of the method, all the details can be found in Appendix A.1.

The principle of the method is to prove that a relation called the Howe’s
closure of ≈, which is a congruence by construction, is also a bisimulation. The
definition of Howe’s closure relies on an auxiliary relation, called the compatible
refinement R̃ of a relation R, and inductively defined by the following rules:

x R̃ x

t0 R t1

λx.t0 R̃ λx.t1

t0 R t1 t′0 R t′1

t0 t
′
0 R̃ t1 t

′
1

u0 R u1

µa.u0 R̃ µa.u1

t0 R t1

[a]t0 R̃ [a]t1

t0 R t1 E0 R̃ E1

t0〈E0/a〉 R̃ t1〈E1/a〉

u0 R u1 E0 R̃ E1

u0〈E0/a〉 R̃ u1〈E1/a〉

� R̃ �

E0 R̃ E1 t0 R t1

E0 t0 R̃ E1 t1

E0 R̃ E1

[a]E0 R̃ [a]E1

In the original definition of compatible refinement [6], two terms are related by

R̃ if they have the same outer language constructor, and their subterms are
related by R. In the λµ-calculus, compatible refinement is extended to (named)
evaluation contexts, and we allow for the substitution of names with related
named contexts.

Given two relations R1 and R2, we write R1R2 for their composition, e.g.,
t0 R1R2 t2 holds if there exists t1 such that t0 R1 t1 and t1 R2 t2. We can now
define Howe’s closure of ≈, written ≈•, as follows.

Definition 6. The Howe’s closure ≈• is the smallest relation verifying:

≈◦ ⊆ ≈• ≈•≈◦ ⊆ ≈• ≈̃• ⊆ ≈•

1 Note that the result still holds if a ∈ fn(v)

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 9

Howe’s closure is defined on open (named) terms as well as on (named) evaluation
contexts. Because it contains its compatible refinement, ≈• is a congruence. To
prove it is a bisimulation, we need a stronger result, called a pseudo-simulation
lemma, where we test named values not with the same argument, but with
arguments t′0, t

′
1 related by ≈•.

Lemma 5. Let (≈•)c be ≈• restricted to closed terms, and let u0 (≈•)c u1.

– If u0 →n u′
0, then u1 →∗

n u′
1 and u′

0 (≈•)c u′
1.

– If u0 = [a]λx.t0, then u1 →∗
n [a]λx.t1 and for all t′0 (≈•)c t′1, we have

[a]t0〈[a]� t′0/a〉{t′0/x} (≈•)c [a]t1〈[a]� t′1/a〉{t′1/x}.

With this result, we can prove that (≈•)c is a bisimulation, and therefore included
in ≈. Because it also contains ≈ by definition, we have ≈=(≈•)c, and this implies
that ≈ is a congruence. As a result, ≈ is sound w.r.t. to ≈c.

Theorem 1. ≈ ⊆ ≈c.

To simplify the proof of completeness (the reverse inclusion), we consider an
alternate definition of contextual equivalence, where we test terms with named
evaluation contexts only. By doing so, we prove a context lemma in the process.2

Definition 7. Let u0, u1 be closed terms. We write u0
.
≈c u1 if for all closed

contexts E and names a, there exist b, v0, v1 such that E[µa.u0] ⇓n [b]v0 iff
E[µa.u1] ⇓n [b]v1.

Theorem 2. ≈c ⊆
.
≈c ⊆ ≈.

The first inclusion is by definition, and the second one is by showing that
.
≈c is

a big-step applicative bisimulation.

Comparison with Lassen’s work. In [10], Lassen also proposes a definition
of applicative bisimilarity that he proves sound, but he conjectures that it is not
complete. We discuss here the differences between the two approaches.

Lassen defines a notion of bisimulation for regular terms only, and not for
named terms. The definition is as follows.

Definition 8. A relation R on closed terms is a Lassen applicative bisimulation
if t0 R t1 implies:

– for all a, if [a]t0 →∗
n [b]λx.t′0, then there exists t′1 such that [a]t1 →∗

n [b]λx.t′1,
and for all t, we have t′0〈[b]� t/b〉{t/x} R t′1〈[b]� t/b〉{t/x};

– the symmetric condition on t1.

2 We cannot directly use David and Py’s context lemma [3], because we use a different
notion of contextual equivalence.

RR n° 8447

10 Biernacki & Lenglet

Lassen’s definition is quite similar to our definition of big-step applicative bisimu-
lation (Definition 5), except it requires t0〈[b]� t/b〉{t/x} R t1〈[b]� t/b〉{t/x}, which
implies that these terms must be related when reduced with any top-level name a.
This is more restrictive than our definition, where we compare these terms only
with the top-level name b (or, as discussed in Remark 1, we could instead compare
[c]t0〈[c]� t/b〉{t/x} and [c]t1〈[c]� t/b〉{t/x} for some fresh name c). To illustrate the
difference, we consider Lassen’s counter-example from [10].

Example 3. Let t0
def
= (λx.λy.x x) (λx.λy.x x), and t1

def
= µa.[a]λy.µc.[a]t0 (with

c 6= a). These terms are not bisimilar according to Lassen’s definition. For all b,
we have [b]t0 →∗

n [b]λy.t0 and [b]t1 →∗
n [b]λy.µc.[b]t0. With Lassen’s definition,

one has to relate t0 and µc.[b]t0 t for any t, which means comparing [d]t0 and
[d]µc.[b]t0 t for all d. But these two terms are not equivalent if d 6= b.

Lassen conjectures in [10] that these terms are contextually equivalent, and
we can indeed prove that they are (big-step) bisimilar with our definition: we just
have to compare [b]t0 and [b]µa′.[b]t0 t (or [c]t0 and [c]µa′.[c]t0 t for some fresh
c) for any t, and both terms evaluate to [b]λx.t0 (or [c]λx.t0) and are therefore
equivalent.

By comparing primarily named terms, as we do in our definition, we can keep
track of what happens to the top level, and especially of any connection between
the top level and a subterm. In Example 3, we can see that it is essential to
remember that b represents the top level in µc.[b]t0 t, and therefore it does not
make sense to compare [d]t0 and [d]µc.[b]t0 t for any d 6= b, as we have to do
with Lassen’s definition. We believe that comparing named terms is essential
to obtain completeness w.r.t. contextual equivalence; note that the sound and
complete normal form bisimilarity for the λµρ-calculus [20] is also defined on
named terms.

David and Py’s counter-example. In [3], David and Py give a counter-
example showing that Böhm’s theorem fails in CBN λµ-calculus. They prove
that their terms are contextually equivalent using a context lemma. Here we
slightly simplify their counter-example, and prove equivalence using applicative
bisimilarity. Note that these terms cannot be proved equivalent with (a CBN
variant of) eager normal form bisimilarity [10,20].

Example 4. Let 0
def
= λx.λy.y, 1

def
= λx.λy.x, and ta

def
= µc.[a]0. Then we have

λx.µa.[a]x µb.[a]x ta 0 ≈ λx.µa.[a]x µb.[a]x ta 1
3.

Proof (Sketch). We only give the main ideas here, the complete equivalence proof
can be found in Appendix A.2. First, λx.µa.[a]x µb.[a]x ta 0 is not normal form
bisimilar to λx.µa.[a]x µb.[a]x ta 1, because the subterms of these two terms are
not normal form bisimilar (0 is not equivalent to 1).

3 The terms David and Py consider in their work are λx.µa.[a]x µb.[a](x ta 0) ta and
λx.µa.[a]xµb.[a](xta 1) ta. However, the additional argument ta would not come into
play in the proof we present, so we have elided it.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 11

To prove applicative bisimilarity, let c be a fresh name and t be a closed
term. We want to relate [c]µa.[a]t µb.[a]t ta 0 and [c]µa.[a]t µb.[a]t ta 1, which
reduce respectively to [c]t µb.[c]t tc 0 (1) and [c]t µb.[c]t tc 1 (2). Let d /∈ fn(t); we
distinguish several cases depending on the behavior of [d]t. The interesting case
is when [d]t ⇓n [d]λy.t′; then µb.[c]t tc 0 or µb.[c]t tc 1 is passed as an argument to
λy.t′ in respectively (1) and (2). If t′ executes its argument (that is, if t′ reduces
to E [y] for some E), then (1) reduces to [c]t tc 0 (3), and (2) to [c]t tc 1 (4). But
we know that [d]t ⇓n [d]λy.t′, and t′ executes its argument, so when evaluating
(3) and (4), tc will be reduced, and therefore (3) and (4) will evaluate to [c]0.

In the other cases (e.g., [d]t ⇓n [e]λy.t′ with e 6= d), either (1) and (2)
eventually get to a point similar to the situation above where tc is executed, or
they diverge. In all cases, they are applicative bisimilar.

2.4 Environmental Bisimilarity

Definition and basic properties. Environmental bisimilarity [18] uses en-
vironments (denoted by E) to accumulate knowledge when comparing terms.
Like applicative bisimilarity, it challenges values by passing them arguments,
except the arguments are built from the environments instead of being com-
pletely arbitrary. In λµ-calculus, we define an environment E as a relation on
named closed values; for example, the identity environment I is defined as
{([a]v, [a]v) | a ∈ A, v ∈ V 0}. To build arguments from E , we use the notion
of context closure, defined as follows: given a relation R on (named) terms, its

context closure R̂ is the smallest relation verifying R ⊆ R̂ and
˜̂
R ⊆ R̂. Like

compatible refinement, context closure is defined on open (named) terms and
evaluation contexts, but we restrict it to closed (named) terms and contexts,
unless specified otherwise. Note that, unlike usual definitions of context closure,
our definition requires context closure to be stable by substitution of a name by
a named evaluation context.

An environmental relation X is a set of environments E and triples (E , u0, u1),
where u0 and u1 are closed. We write u0 XE u1 for (E , u0, u1) ∈ X ; it means that
u0 and u1 are compared within the current knowledge E . We define environmen-
tal bisimulation as follows.

Definition 9. An environmental relation X is an environmental bisimulation if
u0 XE u1 implies

– if u0 →n u′
0, then there exists u′

1 such that u1 →∗
n u′

1 and u′
0 XE u′

1;
– if u0 = [a]v0, then there exists v1 such that u1 →∗

n [a]v1 and {([a]v0, [a]v1)}∪
E ∈ X ;

– the converse of the above condition on u1.

Furthermore, if E ∈ X and [a]λx.t0 E [a]λx.t1, then for all t′0 Ê t′1, we have
[a]t0〈[a]� t′0/a〉{t′0/x} XE [a]t1〈[a]� t′1/a〉{t′1/x}.

Environmental bisimilarity ≅ is the largest environmental bisimulation. To
prove the equivalence between u0 and u1, we want to relate them without any

RR n° 8447

12 Biernacki & Lenglet

predefined knowledge, i.e., we want to prove that u0 ≅∅ u1 holds; we also write
≃ for ≅∅. We extend these definitions to regular terms by saying that t0 XE t1
holds if we have [a]t0 XE [a]t1 for any a /∈ fn(t0, t1).

Definition 9 is divided into two parts, the first one making explicit the bisim-
ulation game for named terms, and the second one focusing on environments.
If u0 is a named value [a]v0, then u1 has to evaluate to named value with the
same top-level name [a]v1, and E extended with the newly acquired knowledge
([a]v0, [a]v1) must belong to X . We then compare two named values [a]λx.t0 and
[a]λx.t1 in E by passing them two terms t′0 and t′1 built from E . As in the applica-
tive bisimulation definition, we have to prefix the named values with µa first,
and we therefore have to relate [a]t0〈[a]� t′0/a〉{t′0/x} and [a]t1〈[a]� t′1/a〉{t′1/x}.

It is possible to define a big-step variant of environmental bisimulation by
removing the first item of Definition 9 and by changing equality in the value
case by →∗

n. We also use the following properties.

Lemma 6 (Weakening). If u0 ≅E u1 and E ′ ⊆ E then u0 ≅E′ u1.

A smaller environment is a weaker constraint, because we can build less
arguments to test the named values in E . The proof is as in [18]. Like with
applicative bisimilarity, reduction and evaluation are included in ≃.

Lemma 7. If u →∗
n u′, then u ≃ u′.

Bisimulation proofs with environmental bisimulation are usually harder than
with applicative bisimulation, as we can see with the next example.

Example 5. Following Example 2, we want to prove [a]v ≃ [a]λx.µb.[a]v for all

closed v and b /∈ fn(v). To this end, we start with X
def
= {(∅, [a]v, [a]λx.µb.[a]v) |

a ∈ A, v ∈ V 0, b /∈ fn(v)} ∪ {E | E ⊆ E}, where E = {([a]v, [a]λx.µb.[a]v) | a ∈

A, v ∈ V 0, b /∈ fn(v)}. Let [a]v E [a]λx.µb.[a]v, where v = λx.t. For all t0 Ê t1, we
want [a]t{t0/x} XE [a]µb.[a]v t1 to hold. In contrast with Example 2, [a]µb.[a]v t1
does not reduce to [a]t{t0/x}; to conclude the proof easily, we need some up-to
techniques, introduced later (see Example 6).

Soundness and completeness. Here we sketch the soundness and complete-
ness proofs for ≃, which are adaptations of the proofs for the λ-calculus [18].
More details can be found in Appendix A.3. The first step is to define some basic
up-to techniques, specifically bisimulation up to environment (which allows for
bigger environments in the bisimulation clauses) and up to bisimilarity (where
≃ is used at some specific points in the bisimulation clauses); the definitions and
proofs of soundness mimic the ones for the λ-calculus [18].

We then prove congruence w.r.t. evaluation contexts. Given a relation R on
named terms, we write Rnv for its restriction to named values. Let Y be an
environmental bisimulation. Then the relation

{(Ê
nv
, u0〈E

0
0/a0〉 . . . 〈E

n

0/an〉, u1〈E
0
1/a0〉 . . . 〈E

n

1/an〉) | u0 YE u1,E
i
0 Ê Ei

1}

∪ {(Ê
nv
, u0, u1) | E ∈ Y, u0 Ê u1} ∪ {Ê

nv
| E ∈ Y}

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 13

is an environmental bisimulation up to environment. From that, we can deduce
the following lemma.

Lemma 8. If u0 ≅E u1, then u0〈E/a〉 ≅E u1〈E/a〉.

Next, we prove that ≃ is a congruence by showing that {(≃̂nv
, u0, u1) | u0 ≃̂

u1} ∪ {≃̂nv} is an environmental bisimulation up to bisimilarity.

Lemma 9. If u0 ≃ u1, then C [u0] ≅≃̂nv C [u1] and C[u0] ≅≃̂nv C[u1].

Using congruence, we can prove that ≃ is sound w.r.t. ≈c, and completeness is
proved using Definition 7, as in the case for applicative bisimulations.

Theorem 3. We have ≃=≈c.

Up-to techniques. As witnessed by Example 5, proving the equivalence of two
terms with Definition 9 alone is usually too difficult. To ease the proofs, it is
common to rely on up-to techniques. We already mentioned bisimulation up to
bisimilarity and up to environment; other techniques include bisimulation up to
reduction, up to expansion, and up to context. We only discuss the last for space
reasons, the others are defined and proved sound as in [18].

Bisimulation up to context allows to factor out a context common to both
terms. Formally, we define the context closure of X , written X , as follows: we
have u0 XE u1 if

– either u0 = u′
0〈E0/a〉, u1 = u′

1〈E1/a〉 with u′
0 XE u′

1 and E0 Ê E1

– or u0 Ê u1.

Terms related by XE are either built from E (second case), or we can decompose
them into terms related by XE and evaluation contexts built from E . We then
define bisimulation up to context as follows.

Definition 10. A relation X is an environmental bisimulation up to context if
u0 XE u1 implies

– if u0 →n u′
0, then there exists u′

1 such that u1 →∗
n u′

1 and u′
0 XE u′

1;
– if u0 = [a]v0, then there exist v1 and E ′ ⊆ X such that u1 →∗

n [a]v1 and

{([a]v0, [a]v1)} ∪ E ⊆ Ê ′;
– the converse of the above condition on u1.

Furthermore, if E ∈ X and [a]λx.t0 E [a]λx.t1, then for all t′0 Ê t′1, we have
[a]t0〈[a]� t′0/a〉{t′0/x} XE [a]t1〈[a]� t′1/a〉{t′1/x}.

Lemma 10. If X is a bisimulation up to context, then X⊆ ≅.

The proof of soundness is as in [18]. We now give some examples showing how
bisimulation up to context (combined with other up-to techniques) can be used
to simplify proofs.

RR n° 8447

14 Biernacki & Lenglet

Example 6. Continuing Example 5, we can prove that the candidate relation X
defined in this example is a bisimulation up to context up to reduction (meaning
that we can do some reduction steps to get terms related by X). Indeed, we

remind that we want to relate [a]t{t0/x} and [a]µb.[a]vt1 for all t0 Ê t1, v = λx.t,

and b /∈ fn(v). But [a]µb.[a]v t1 →2
n [a]t{t1/x}, and [a]t{t0/x} Ê [a]t{t1/x} holds,

which implies [a]t{t0/x} XE [a]t{t1/x}, as wished.

3 Call-by-Value λµ-calculus

We now discuss the behavioral theory of the call-by-value (CBV) λµ-calculus
and point out the differences with call-by-name.

3.1 Semantics and Contextual Equivalence

Semantics. In this section, we use CBV left-to-right evaluation, which is en-
coded in the syntax of the CBV evaluation contexts:

E ::= � | E t | v E

The CBV reduction relation →v is defined by the following rules.

(βv) [a](λx.t) v →v [a]t{v/x}

(µ) [a]µb.u →v u〈[a]�/b〉

(app) [a]t0 t1 →v u〈[a]� t1/b〉 if [b]t0 →v u and b /∈ fn([a]t0 t1)

(appv) [a]v t →v u〈[a]v �/b〉 if [b]t →v u and b /∈ fn([a]v t)

With rule (appv), we reduce arguments to values, to be able to apply CBV β-
reduction (rule (βv)). The rules (µ) and (app) are the same as in CBN. We
could also express reduction with top-level named evaluation contexts, as in
Lemma 1. Furthermore, CBV reduction is compatible with CBV contexts, as in
Lemma 2. We write →∗

v for the reflexive and transitive closure of →v, ⇓v for
CBV evaluation, and ⇑v for CBV divergence.

Contextual equivalence. We use the same definition as in CBN.

Definition 11. Two closed named terms u0, u1 are contextually equivalent,
written u0 ≈c u1, if for all closed C, C[µa.u0] ⇓v [b]v0 iff C[µa.u1] ⇓v [b]v1.

However, unlike in CBN, this definition (where we require the resulting values
to have the same top-level names) coincides with the general definition where
we simply say “C[µa.u0] ⇓v iff C[µa.u1] ⇓v.” Indeed, if C[µa.u0] ⇓v [b]v0 and
C[µa.u1] ⇓v [c]v1 with c 6= b, then we can easily distinguish them, because
[b]µb.C[µa.u0]Ω →∗

v [b]v0〈[b]� Ω/b〉Ω ⇑v, and [b]µb.C[µa.u1]Ω ⇓v [c]v1〈[b]� Ω/b〉.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 15

3.2 Applicative Bisimilarity

Before giving its complete definition, we explain how applicative bisimilarity ≈
should compare two named values [a]λx.t0 and [a]λx.t1. The following reason-
ing explains and justifies the clauses in Definition 12. In particular, we provide
counter-examples to show that we cannot simplify this definition.

In CBV λ-calculus (and also with delimited control [2]), values are tested
by applying them to an arbitrary value argument. Following this principle, it is
natural to propose the following clause for CBV λµ-calculus.

(1) For all v, we have [a]t0〈[a]� v/a〉{v/x} ≈ [a]t1〈[a]� v/a〉{v/x}.

As with Definition 4, we in fact compare [a](µa.[a]λx.t0)v with [a](µa.[a]λx.t1)v,
which reduce to the terms in clause (1). However, such a clause would produce an
unsound applicative bisimilarity; it would relate terms that are not contextually
equivalent, like the ones in the next example.

Example 7. Let v0
def
= λx.µb.[a]w x, v1

def
= λx.w x x, with w

def
= λy.λz.z y. Then

we have ([a]v0)〈[a]� v/a〉 = [a](λx.µb.[a]wxv)v →∗
v [a]wvv and ([a]v1)〈[a]� v/a〉 =

[a](λx.wxx)v →∗
v [a]wvv. Because they reduce to the same term, ([a]v0)〈[a]� v/a〉

is contextually equivalent to ([a]v1)〈[a]� v/a〉, and using clause (1) would lead us
to conclude that [a]v0 and [a]v1 are equivalent as well.

However, [a]v0 and [a]v1 can be distinguished with t
def
= µd.[d]λy.µc.[d]w′,

where w′ def
= λx.µc.[d]x w′′ and w′′ def

= λx.λy.λz.Ω. Indeed, we can check that
([a]v0)〈[a]� t/a〉 →∗

v λz.Ω and ([a]v1)〈[a]� t/a〉 →∗
v Ω. This discrepancy comes

from the fact that, in ([a]v1)〈[a]� t/a〉, t is reduced to a value once, capturing
[a]v1 � in the process, while t is reduced twice to a value in ([a]v0)〈[a]� t/a〉, and
each time it captures a different context. Therefore, [a]v0 and [a]v1 are distin-
guished by the context [a](µa.�) t, and they are consequently not contextually
equivalent.

Example 7 suggests that we should compare [a]λx.t0 and [a]λx.t1 with con-
texts of the form [a]� t, instead of [a]� v. Therefore, we should compare

u0
def
= [a](λx.t0〈[a]� t/a〉) t with u1

def
= [a](λx.t1〈[a]� t/a〉) t. However, we can re-

strict a bit the choice of the testing term t, based on its behavior. Let b /∈ fn(t);
if [b]t diverges, then u0 and u1 diverge as well, and we gain no information
on [a]λx.t0 and [a]λx.t1 themselves. If [b]t →∗

v [c]v with b 6= c, then u0 →∗
v

[c]v〈[a]λx.t0〈[a]� t/a〉 �/b〉, and similarly with u1. The values [a]λx.t0 and [a]λx.t1
are captured by [b]t, and no interaction between t and the two named values takes
place in the process ([a]λx.t0 and [a]λx.t1 are not applied to any value); again, we
do not gain any new knowledge on the behavior of [a]λx.t0 and [a]λx.t1. Finally,
if [b]t →∗

v [b]v, then u0 →∗
v [b](λx.t0〈[a]� t/a〉) v〈[a]λx.t0〈[a]� t/a〉 �/b〉, and similarly

with u1; in this case, a value is indeed passed to [a]λx.t0 and [a]λx.t1, and we can
compare their respective behaviors. Therefore, an interaction happens between
t and the tested values iff [b]t →∗

v [b]v, and the results of the interaction (after
β-reduction) are the two terms in the clause below.

RR n° 8447

16 Biernacki & Lenglet

(2) For all t, b, v such that [b]t →∗
v [b]v and b /∈ fn(t), we have

[a]t0〈[a]� t/a〉{v〈[a]λx.t0〈[a]� t/a〉 �/b〉/x}

≈ [a]t1〈[a]� t/a〉{v〈[a]λx.t1〈[a]� t/a〉 �/b〉/x}.

Unfortunately, clause (2) is not enough to obtain a sound bisimilarity. The next
example shows that an extra clause is needed.

Example 8. Let v0
def
= λx.µb.[a](λy.λz.wy)x and v1

def
= w with w

def
= λx.w′(xλy.y),

and w′ def
= λy.y λz.Ω. We first show that [a]v0 and [a]v1 are related by clause (2).

Let t such that [b]t ⇓v [b]v for b /∈ fn(t). Then we have ([a]v0)〈[a]� t/a〉 →∗
v

[a]w′ (v〈[a]v0〈[a]� t/a〉 �/b〉λx.x) and ([a]v1)〈[a]� t/a〉 →∗
v [a]w′ (v〈[a]v1 �/b〉λx.x). We

can prove that the two resulting terms are contextually equivalent by showing
that the relation {(u〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉, u〈[a]E [v1 �]/b〉) | [b]t ⇓v [b]v, b /∈ fn(t)}
is an applicative bisimulation according to Definition 12, and by using Theo-
rem 4. The proof can be found in Appendix B.1. Because ([a]v0)〈[a]� t/a〉 and
([a]v1)〈[a]� t/a〉 are contextually equivalent, using only clause (2) would lead us
to conclude that [a]v0 and [a]v1 are also equivalent.

However, these two named values can be distinguished with the context
[a](λx.x x) µa.�, because in one case we have ([a]v0)〈[a](λx.x x) �/a〉 →∗

v λz.Ω,
and in the other ([a]v1)〈[a](λx.x x) �/a〉 →∗

v Ω. As in Example 7, when evaluating
([a]v0)〈[a](λx.x x) �/a〉, the body of v0 is evaluated twice, and two different con-
texts are captured each time. In contrast, v1 does not contain any control effect,
so when its body is evaluated twice, we get the same result.

Example 8 shows that we have to compare two values [a]λx.t0 and [a]λx.t1
by also testing them with contexts of the form [a]v �, i.e., by considering
[a]v λx.t0〈[a]v �/a〉 and [a]v λx.t1〈[a]v �/a〉. If v = λx.t, then these terms reduce
in one β-reduction step into [a]t{λx.t0〈[a]v �/a〉/x}, and [a]t{λx.t1〈[a]v �/a〉/x}.
Taking this and clause (2) into account, we obtain the following definition of
applicative bisimulation.

Definition 12. A relation R on closed named terms is an applicative bisimula-
tion if u0 R u1 implies

– if u0 →v u′
0, then there exists u′

1 such that u1 →∗
v u′

1 and u′
0 R u′

1;
– if u0 = [a]λx.t0, then there exists t1 such that u1 →∗

v [a]λx.t1, and:
1. for all t, b, v such that [b]t →∗

v [b]v and b /∈ fn(t), we have

[a]t0〈[a]� t/a〉{v〈[a]λx.t0〈[a]� t/a〉 �/b〉/x}

R [a]t1〈[a]� t/a〉{v〈[a]λx.t1〈[a]� t/a〉 �/b〉/x};

2. for all v = λx.t, we have

[a]t{λx.t0〈[a]v �/a〉/x} R [a]t{λx.t1〈[a]v �/a〉/x};

– the symmetric conditions on u1.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 17

Applicative bisimilarity, written ≈, is the largest applicative bisimulation.

The definition is extended to regular terms t0, t1 as in CBN, by using a fresh top-
level name a. Note that clause (2) implies that a bisimulation R is a congruence
w.r.t. (regular) values; indeed, if v0 R v1, then [a]v0 R [a]v1 for a fresh a, and so
we have [a]t{v0/x} R [a]t{v1/x} for all t (by clause (2)). This property simplifies
the congruence proof of ≈ with Howe’s method.

As in CBN, we can define a big-step version of the bisimulation (where we
use evaluation instead of reduction), and bisimilarity contains reduction.

Lemma 11. We have →∗
v ⊆ ≈.

The applicative bisimulation for CBV is more difficult to use than the one
for CBN, as we can see by considering again the terms of Example 2.

Example 9. Let v = λx.t and a, b /∈ fn(v); then [a]v ≈ [a]λx.µb.[a]v. To prove
clause (1), we consider t′ be such that [b]t′ →∗

v [b]v′ for b /∈ fn(t′); we have to
compare [a]t{v′〈[a]v �/b〉/x} with [a]µb.[a]v t′. But [a]µb.[a]v t′ →v [a]v t′ →∗

v

[a]t{v′〈[a]v �/b〉/x}, therefore we can conclude with Lemma 11.
For clause (2), we have to relate [a]t′{v/y} and [a]t′{λx.µb.[a]v′ v/y} for

all v′ = λy.t′. We proceed by case analysis on t′; the most interesting case is
t′ = E [yv′′]. In this case, we have [a]t′{λx.µb.[a]v′ v/y} →∗

v [a]v′ v →v [a]t′{v/y},
therefore we can conclude with Lemma 11. To handle all the possible cases, we
prove in Appendix B.1 that {(u{v/y}, u{λx.µb.[a]t0/y}) | [a]t0 →∗

v u{v/y}} ∪ ≈
is an applicative bisimulation.

In the next example, we give two terms that can be proved equivalent with
applicative bisimilarity but not with eager normal form bisimilarity [20].

Example 10. Let u0
def
= [b]λxy.Ω, v

def
= λy.µa.[b]λx.y, and u1

def
= [b]λxy.Θv v y,

where Θv

def
= (λxy.y (λz.xxyz))(λxy.y (λz.xxyz)) is Turing’s call-by-value fixed-

point combinator. For u0 and u1 to be normal form bisimilar, we need [c]Ω to
be related to [c]Θv v y for a fresh c, but [c]Θv v y ⇓v [b]λy.Θvv y and [c]Ω ⇑v. In
contrast, we can prove that u0 ≈ u1 (see Appendix B.1).

We now briefly sketch the proofs of soundness and completeness; more de-
tails can be found in Appendix B.2. The application of Howe’s method is easier
than in CBN because, as already pointed out, an applicative bisimulation (and,
therefore, the applicative bisimilarity) is already a congruence for regular val-
ues by definition. What is left to prove is congruence for (named) terms. We
use the same definitions of compatible refinement and Howe’s closure ≈• as in
CBN. However, because ≈ is a congruence for values, we can prove directly that
the restriction of ≈• to closed terms (written (≈•)c) is an applicative bisimula-
tion, without having to prove a pseudo-simulation lemma (similar to Lemma 5)
beforehand.

Lemma 12. The relation (≈•)c is an applicative bisimulation.

RR n° 8447

18 Biernacki & Lenglet

As in CBN, we can conclude that (≈•)c=≈, and therefore ≈ is a congruence. We
can then deduce that ≈ is sound w.r.t. ≈c. For the reverse inclusion, we use an
alternate definition of contextual equivalence where we test terms with evaluation
contexts (see Definition 7), and we prove it is an applicative bisimulation. As a
result, ≈ coincides with ≈c.

Theorem 4. ≈=≈c.

Remark 2. In [9], Koutavas et al. show that applicative bisimilarity cannot be
sound in a CBV λ-calculus with exceptions, a mechanism that can be seen as
a form of control. Our work agrees with their conclusions, as their definition
of applicative bisimilarity compares λ-abstractions by applying them to values
only, and Example 7 shows that it is indeed not sufficient.

3.3 Examples

Even if applicative bisimulation for CBV is difficult to use, we can still prove
some equivalences with it. Here we give some examples inspired from Sabry
and Felleisen’s axiomatization of call/cc [16]. Given a name a, we write a† for
the term λx.µb.[a]x, and we encode call/cc into λx.µa.[a]x a†. Given a named
context E, we also write E† for λx.µb.E[x], where b /∈ fn(E). The first example
is the axiom Ctail of [16], where call/cc is exchanged with a λ-abstraction.

Example 11. If y /∈ fv(t1) and b is fresh, then [b](λx.µa.[a]x a†) (λy.(λz.t0) t1) ≈
[b](λz.(λx.µa.[a]x a†) (λy.t0)) t1.

Proof. Let v0
def
= λz.t0{b

†/y} and v1
def
= λz.(λx.µa.[a]x a†) (λy.t0). The term

on the left reduces to [b]v0 t1, so we relate this term to the one on the right,
i.e., [b]v1 t1. We distinguish several cases depending on t1. Let c be a fresh
name. If [c]t1 ⇓v [c]v, then [b]v0 t1 →∗

v [b]t0{b
†/y}{v〈[b]v0 �/c〉/z} and [b]v1 t1 →∗

v

[b]t0{b
†/y}{v〈[b]v1 �/c〉/z}; because c is fresh, it does not occur in t0, and the pre-

vious terms can be written u〈[b]v0 �/c〉 and u〈[b]v1 �/c〉 with u
def
= [b]t0{b

†/y}{v/z}.
Similarly, if [c]t1 ⇓v [d]v with c 6= d, then [b]v0 t1 ⇓v [d]v〈[b]v0 �/c〉 and

[b]v1 t1 ⇓v [d]v〈[b]v1 �/c〉. When testing these two values with clauses 1 and 2,
we obtain each time terms of the form u〈[b]v0 �/c〉 and u〈[b]v1 �/c〉 for some u.
With this reasoning, we can prove that {(u〈[b]v0 �/c〉, u〈[b]v1 �/c〉) | u ∈ U0} is an
applicative bisimulation, by case analysis on u.

With the next example and congruence of ≈, we can prove the axiom Cabort.

Example 12. Let a 6= b; we have [b]E [a† t] ≈ [b]a† t.

Proof. We prove that the relation R
def
= {(u〈[b]E [E†

�]/c〉, u〈[b]E†
�/c〉) | u ∈ U0} is

an applicative bisimulation by case analysis on u. For example, if u = [c]t and
u ⇓v [c]v, then u〈[b]E [E†

�]/c〉 →∗
v [b]E [E† v〈[b]E [E†

�]/c〉] →v E[v〈[b]E [E†
�]/c〉] and

u〈[b]E†
�/c〉 →∗

v [b]E† v〈[b]E†
�/c〉 →v E[v〈[b]E†

�/c〉]. If E 6= [d]�, then the resulting

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 19

terms are in R, otherwise we get two named values; when checking clauses 1
and 2, we obtain terms of the form u′〈[b]E [E′†

�]/c〉 and u′〈[b]E′†
�/c〉 that are in

R. The remaining cases are similar.

Example 13 (axiom Clift). We have [b]E [(λx.µa.[a]xa†) t] ≈ [b]E [t (λx.b†E [x])].

Proof. In this proof, we use an intermediary result, proved in Appendix B.1: if
E = E0[E1], then E† ≈ λx.E†

0 (E1 [x]). The proof of the axiom itself is by case
analysis on t. An interesting case is when [d]t ⇓v [d]λy.t′ where d /∈ fn(t). Then
[b]E [(λx.µa.[a]x a†) t] →∗

v [b]E [(λx.µa.[a]x a†) λy.t′〈[b]E [(λx.µa.[a]x a†) �]/d〉] →∗
v

[b]E [t′〈[b]E [(λx.µa.[a]x a†) �]/d〉{E†/y}] (with E = [b]E), and [b]E [t(λx.b†E [x])] →∗
v

[b]E [t′〈[b]E [� (λx.b† E [x])]/d〉{λx.b†E [x]/y}]. From the intermediary result, and be-
cause ≈ is a congruence, we know that [b]E [t′{E†/y}] ≈ [b]E [t′{λx.b† E [x]/y}].
Hence, to conclude the proof, one can show that

{(u0〈E[(λx.µa.[a]x a
†
) �]/d〉, u1〈E[� (λx.E

†
0 E1 [x])]/d〉) | u0 ≈ u1,E = E0[E1]}

is an applicative bisimulation.

4 Conclusion

In this work we propose a definition of applicative bisimilarity for CBN and
CBV λµ-calculus. Even if the two definitions seem quite different, they follow
the same principles. First, we believe it is essential for completeness to hold
to relate primarily named terms, and then extend the definition to all terms,
as explained when discussing Lassen’s definition of applicative bisimilarity (Sec-
tion 2.3). The top-level names allow to keep track of how the top level is captured
and manipulated in the compared terms.

Then, the idea is to test named values with elementary contexts, [a]� t for
CBN, and [a]� t and [a]v � for CBV. In the CBV case, we slightly restrict the
terms t tested when considering [a]� t, but the resulting definition remains com-
plex to use compared to CBN, as we can see with Examples 2 and 9. However,
we provide counter-examples showing that we cannot simplify it further (see Ex-
amples 7 and 8). In CBV as well as in CBN, applicative bisimilarity is harder to
use than eager normal form bisimilarity [20], but our relations are complete char-
acterizations of contextual equivalence, and we can therefore prove equivalences
of terms that cannot be related with normal form bisimilarity, such as David
and Py’s example (see Example 4) and Example 10. To prove the equivalence
between two given λµ-terms, one should start with the bisimulation of [20], and
if it fails, try next our applicative or environmental bisimulations.

We believe the relations we define remain complete w.r.t. contextual equiv-
alence in other variants of the λµ-calculus (perhaps with some slight varia-
tions), such as λµ with different reduction semantics (like, e.g., in [3]), typed
λµ-calculus [15], or de Groote’s extended calculus (Λµ-calculus [4]). However,
any direct implications of this work for other calculi for abortive continuations
such as the syntactic theory of control [5] are unclear and remain to be investi-
gated. The reason is that our approach hinges on the syntactic notion of names,

RR n° 8447

20 Biernacki & Lenglet

unique to the λµ-calculus, that allows one to keep track of the whereabouts of
the top level.

Acknowledgments: We thank Wojciech Jedynak and the anonymous ref-
erees for helpful comments on the presentation of this work. The first author has
been supported by the Polish NCN grant number DEC-011/03/B/ST6/00348.

References

1. S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus.
Information and Computation, 105:159–267, 1993.

2. D. Biernacki and S. Lenglet. Applicative bisimulations for delimited-control oper-
ators. In L. Birkedal, editor, FOSSACS’12, number 7213 in LNCS, pages 119–134,
Tallinn, Estonia, Mar. 2012. Springer-Verlag.

3. R. David and W. Py. λµ-calculus and Böhm’s theorem. Journal of Symbolic Logic,
66(1):407–413, 2001.

4. P. de Groote. On the relation between the λµ-calculus and the syntactic theory of
sequential control. In F. Pfenning, editor, LPAR’94, number 822 in LNAI, pages
31–43, Kiev, Ukraine, July 1994. Springer-Verlag.

5. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235–271, 1992.

6. A. D. Gordon. Bisimilarity as a theory of functional programming. Theoretical

Computer Science, 228(1-2):5–47, 1999.
7. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and

J. R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-

Calculus and Formalism, pages 470–490. Academic Press, 1980.
8. D. J. Howe. Proving congruence of bisimulation in functional programming lan-

guages. Information and Computation, 124(2):103–112, 1996.
9. V. Koutavas, P. B. Levy, and E. Sumii. From applicative to environmental bisim-

ulation. Electronic Notes in Theoretical Computer Science, 276:215–235, 2011.
10. S. B. Lassen. Bisimulation for pure untyped λµ-caluclus (extended abstract). Un-

published note, Jan. 1999.
11. S. B. Lassen. Eager normal form bisimulation. In P. Panangaden, editor, LICS’05,

pages 345–354, Chicago, IL, June 2005. IEEE Computer Society Press.
12. S. B. Lassen. Head normal form bisimulation for pairs and the λµ-calculus. In

R. Alur, editor, LICS’06, pages 297–306, Seattle, WA, Aug. 2006. IEEE Computer
Society Press.

13. J. H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis,
Massachusets Institute of Technology, 1968.

14. C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional com-
putation with control. In N. D. Jones, editor, POPL, pages 215–227, Paris, France,
Jan. 1997. ACM Press.

15. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In A. Voronkov, editor, LPAR’92, number 624 in LNAI, pages 190–201,
St. Petersburg, Russia, July 1992. Springer-Verlag.

16. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

17. D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. In A. Scedrov,
editor, LICS’92, pages 102–109, Santa Cruz, California, June 1992. IEEE Computer
Society.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 21

18. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-
order languages. ACM Transactions on Programming Languages and Systems,
33(1):1–69, Jan. 2011.

19. A. Saurin. Böhm theorem and Böhm trees for the Λµ-calculus. Theoretical Com-

puter Science, 435:106–138, 2012.
20. K. Støvring and S. B. Lassen. A complete, co-inductive syntactic theory of se-

quential control and state. In M. Felleisen, editor, POPL’07, SIGPLAN Notices,
Vol. 42, No. 1, pages 161–172, Nice, France, Jan. 2007. ACM Press.

RR n° 8447

22 Biernacki & Lenglet

A Call-by-Name λµ-calculus

A.1 Soundness and Completeness of Applicative Bisimilarity

Let (≈•)c be the restriction of ≈• to closed terms.

Lemma 13. If t0 ≈• t1, then there exists a substitution σ which closes t0 and
t1 such that t0σ (≈•)c t1σ, and the size of the derivation of t0σ (≈•)c t1σ is
equal to the size of the derivation of t0 ≈• t1. A similar result holds if u0 ≈• u1.

Proof. As usual.

Lemma 14. Let t0 (≈•)c t1, and a /∈ fn(t0) ∪ fn(t1).

– If [a]t0 →n u0, then [a]t1 →∗
n u1 and u0 (≈•)c u1.

– If t0 = λx.t′0, then [a]t1 →∗
n [a]λx.t′1 and for all t′′0 (≈•)c t′′1 , we have

[a]t′0{t
′′
0/x} (≈•)c [a]t′1〈[a]� t′′1/a〉{t′′1/x}.

Proof. By induction on t0 (≈•)c t1.

Suppose t0 ≈ t1. Then [a]t0 ≈ [a]t1. If [a]t0 →n u0, then by bisimilarity, we
have [a]t1 →∗

n u1 and u0 ≈ u1, i.e., u0 (≈•)c u1, as required.
Suppose t0 = λx.t′0, and let t′′0 (≈•)c t′′1 . By the bisimilarity definition, we

have [a]t1 →∗
n [a]λx.t′1 and [a]t′0{t

′′
1/x} ≈ [a]t′1〈[a]� t′′1/a〉{t′′1/x} (using the fact

that a /∈ fn(t′0)). From t′′0 (≈•)c t′′1 , we deduce t′0{t
′′
0/x} (≈•)c t′0{t

′′
1/x}, and

then [a]t′0{t
′′
0/x} (≈•)c≈ [a]t′1〈[a]� t′′1/a〉{t′′1/x}, which implies [a]t′0{t

′′
0/x} (≈•)c

[a]t′1〈[a]� t′′1/a〉{t′′1/x}, as required.

Suppose t0 ≈• t ≈◦ t1, so that t is closed (using Lemma 13 if necessary). In
fact, we have t0 (≈•)c t ≈ t1. If [a]t0 →n u0, then by the induction hypothesis,
there exists u such that [a]t →∗

n u and u0 (≈•)c u. By bisimilarity, there exists u1

such that [a]t1 →∗
n u1 and u ≈ u1. From u0 (≈•)c u ≈ u1, we deduce u0 (≈•)c u1,

as wished.
Suppose t0 = λx.t′0, and let t′′0 (≈•)c t′′1 . By induction, there exists t′ such

that [a]t →∗
n [a]λx.t′ and [a]t′0{t

′′
0/x} (≈•)c [a]t′〈[a]� t′′1/a〉{t′′1/x}. By bisimi-

larity, there exists t′1 such that [a]t1 →∗
n [a]λx.t′1 and [a]t′〈[a]� t′′1/a〉{t′′1/x} ≈

[a]t′1〈[a]� t′′1/a〉{t′′1/x}. Hence, we have [a]t′0{t
′′
0/x} (≈•)c≈ [a]t′〈[a]� t′′1/a〉{t′′1/x},

i.e., [a]t′0{t
′′
0/x} (≈•)c [a]t′1〈[a]� t′′1/a〉{t′′1/x} as required.

If t0 (̃≈•)c t1, then we have several cases to consider.
Suppose t0 = λx.t′0 and t1 = λx.t′1 with t′0 ≈• t′1. Let t′′0 (≈•)c t′′1 . We

have [a]t′0{t
′′
0/x} (≈•)c [a]t′1{t

′′
1/x}, hence the result holds (note that a /∈ fv(t′1)

because a /∈ fv(t1)).
Suppose t0 = µb.u0 and t1 = µb.u1 with u0 (≈•)c u1. We have [a]t0 →n

u0〈[a]�/b〉, [a]t1 →n u1〈[a]�/b〉, and u0〈[a]�/b〉 (≈•)c u1〈[a]�/b〉, hence the result
holds.

Suppose t0 = t10 t
2
0, t1 = t11 t

2
1 with t10 (≈•)c t11 and t20 (≈•)c t21. We distinguish

two cases.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 23

– If [b]t10 →n u0 (for some fresh b), then [a]t0 →n u0〈[a]� t20/b〉. By the induction
hypothesis, there exists u1 such that [b]t11 →∗

n u1 and u0 (≈•)c u1. Conse-
quently, we have [a]t1 →∗

n u1〈[a]� t21/b〉, and by definition of ≈•, we have
u0〈[a]� t20/b〉 (≈•)c u1〈[a]� t21/b〉, as required.

– If t10 = λx.t′0, then we have [a]t0 →n [a]t′0{t
2
0/x}. By the induction hy-

pothesis, there exists t′1 such that [a]t11 →∗
n [a]λx.t′1 and [a]t′0{t

2
0/x} (≈•)c

[a]t′1〈[a]� t21/a〉{t21/x}. From [a]t11 →∗
n [a]λx.t′1, we deduce

[a]t1 →∗
n [a](λx.t′1〈[a]� t

2
1/a〉)t

2
1 →n [a]t′1〈[a]� t

2
1/a〉{t

2
1/x},

hence the result holds.

Suppose t0 = t′0〈E0/b〉, t1 = t′1〈E1/b〉 with t′0 (≈•)c t′1, E0 (≈•)c E1. If [a]t0 →n

u0, then in fact [a]t′0 →n u′
0 with u0 = u′

0〈E0/b〉. By the induction hypothesis,
there exists u′

1 such that [a]t′1 →∗
n u′

1 and u′
0 (≈•)c u′

1. Consequently, we have
[a]t1 →∗

n u′
1〈E1/b〉, and u′

0〈E0/b〉 (≈•)c u′
1〈E1/b〉 holds, as wished. If [a]t0 is a

named value, then in fact t′0 = λx.t′′′0 and t0 = λx.t′′′0 〈E0/b〉. Let t′′0 (≈•)c t′′1 .
Then t′′0〈[c]�/b〉 (≈

•)c t′′1〈[c]�/b〉 for a fresh c. By the induction hypothesis, there
exists t′′′1 such that [a]t′1 →∗

n [a]λx.t′′′1 and

[a]t′′′0 {t′′0〈[c]�/b〉/x} (≈•)c [a]t′′′1 〈[a]� t
′′
1 〈[c]�/b〉/a〉{t′′1〈[c]�/b〉/x}.

Therefore, we have [a]t1 →∗
n [a]λx.t′′′1 〈E1/b〉, and

[a]t′′′0 {t′′0〈[c]�/b〉/x}〈E0/b〉 (≈•)c [a]t′′′1 〈[a]� t
′′
1 〈[c]�/b〉/a〉{t′′1〈[c]�/b〉/x}〈E1/b〉.

Because b does not occur in t′′0〈[c]�/b〉, t
′′
1〈[c]�/b〉 thanks to the renaming to a fresh

c, we can switch the substitutions around, and in fact

[a]t′′′0 〈E0/b〉{t′′0〈[c]�/b〉/x} (≈•)c [a]t′′′1 〈E1/b〉〈[a]� t
′′
1 〈[c]�/b〉/a〉{t′′1〈[c]�/b〉/x}

holds. Renaming c back into b, we obtain

[a]t′′′0 〈E0/b〉{t′′0/x} (≈•)c [a]t′′′1 〈E1/b〉〈[a]� t
′′
1/a〉{t′′1/x},

which gives us the required result.

Lemma 15. Let u0 (≈•)c u1.

– If u0 →n u′
0, then u1 →∗

n u′
1 and u′

0 (≈•)c u′
1.

– If u0 = [a]λx.t0, then u1 →∗
n [a]λx.t1 and for all t′0 (≈•)c t′1, we have

[a]t0〈[a]� t′0/a〉{t′0/x} (≈•)c [a]t1〈[a]� t′1/a〉{t′1/x}.

Proof. By induction on u0 (≈•)c u1.

Suppose u0 ≈ u1. The first item holds by bisimilarity. Suppose u0 = [a]λx.t0,
and let t′0 (≈•)c t′1. By definition of the bisimilarity, we have u1 →∗

n [a]λx.t1
and [a]t0〈[a]� t′1/a〉{t′1/x} ≈ [a]t1〈[a]� t′1/a〉{t′1/x}. From t′0 (≈•)c t′1, we deduce
t0〈[a]� t′0/a〉{t′0/x} (≈•)c t0〈[a]� t′1/a〉{t′1/x}, which implies

t0〈[a]� t
′
0/a〉{t′0/x} (≈•)c≈ [a]t1〈[a]� t

′
1/a〉{t′1/x},

RR n° 8447

24 Biernacki & Lenglet

which in turn implies

[a]t0〈[a]� t
′
0/a〉{t′0/x} (≈•)c [a]t1〈[a]� t

′
1/a〉{t′1/x},

as required.

Suppose u0 ≈• u ≈◦ u1, so that u is closed (using Lemma 13 if necessary).
In fact, we have u0 (≈•)c u ≈ u1. If u0 →n u′

0, then by the induction hypothesis,
there exists u′ such that u →∗

n u′ and u′
0 (≈•)c u′. By bisimilarity, there exists u′

1

such that u1 →∗
n u′

1 and u′ ≈ u′
1. From u′

0 (≈•)c u′ ≈ u′
1, we deduce u′

0 (≈•)c u′
1,

as wished.
Suppose u0 = [a]λx.t0, and let t′0 (≈•)c t′1. By induction, there exists t

such that u →∗
n [a]λx.t and [a]t0〈[a]� t′0/a〉{t′0/x} (≈•)c [a]t〈[a]� t′1/a〉{t′1/x}. By

bisimilarity, there exists t1 such that u1 →∗
n [a]λx.t1 and [a]t〈[a]� t′1/a〉{t′1/x} ≈

[a]t1〈[a]� t′1/a〉{t′1/x}. Consequently, we have

[a]t0〈[a]� t
′
0/a〉{t′0/x} (≈•)c≈ [a]t〈[a]� t

′
1/a〉{t′1/x},

i.e., [a]t0〈[a]� t′0/a〉{t′0/x} (≈•)c [a]t1〈[a]� t′1/a〉{t′1/x} holds as required.

If u0 (̃≈•)c u1, then we have two cases.

Suppose u0 = [a]t0 and u1 = [a]t1 with t0 (≈•)c t1. If a /∈ fn(t0) ∪ fn(t1),
then we can apply Lemma 14 directly to get the required result. Otherwise, let
b /∈ fn(t0) ∪ fn(t1). If u0 →n u′

0, then [b]t0 →n u′′
0 and u′

0 = u′
0〈[a]�/b〉. We can

apply Lemma 14 to [b]t0 and [b]t1, and then rename b into a.

Suppose u0 = u′
0〈E0/a〉, u1 = u′

1〈E1/a〉 with u′
0 (≈•)c u′

1 and E0 (≈•)c E1.
If u0 is a named value, then we distinguish two cases. First, we may have

u′
0 = [a]λx.t0, E0 = E1 = [b]�, and u0 = [b]λx.t0〈E0/a〉. Let t′0 (≈•)c t′1. Let

t′′0 , t′′1 be t′0 and t′1 where a, b are renamed into fresh c, d to avoid some name
clashes (we still have t′′0 (≈•)c t′′1). By the induction hypothesis, there exists t1
such that u′

1 →∗
n [a]λx.t1 and [a]t0〈[a]� t′′0/a〉{t′′0/x} (≈•)c [a]t1〈[a]� t′′1/a〉{t′′1/x}.

This implies

[a]t0〈[a]� t
′′
0/a〉{t′′0/x}〈[a]� t

′′
0/b〉 (≈•)c [a]t1〈[a]� t

′′
1/a〉{t′′1/x}〈[a]� t

′′
1/b〉,

which is the same as

[a]t0〈[a]� t
′′
0/a〉〈[a]� t

′′
0/b〉{t′′0/x} (≈•)c [a]t1〈[a]� t

′′
1/a〉〈[a]� t

′′
1/b〉{t′′1/x}

because b does not occur in t′′0 , t′′1 . In turn, we have

[b]t0〈[a]� t
′′
0/a〉〈[a]� t

′′
0/b〉{t′′0/x}〈E0/a〉

(≈•)c [b]t1〈[a]� t
′′
1/a〉〈[a]� t

′′
1/b〉{t′′1/x}〈E1/a〉,

which is equal to

[b]t0〈E0/a〉〈[b]� t
′′
0/b〉{t′′0/x} (≈•)c [b]t1〈E1/a〉〈[b]� t

′′
1/b〉{t′′1/x}

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 25

because a does not occur in t′′0 , t′′1 . Renaming c, d back into a, b, we obtain

[b]t0〈E0/a〉〈[b]� t
′
0/b〉{t′0/x} (≈•)c [b]t1〈E1/a〉〈[b]� t

′
1/b〉{t′1/x},

and because u1 →∗
n [b]λx.t1〈E1/a〉, the result holds.

In the second case, we have u′
0 = [b]λx.t0 and u0 = [b]λx.t0〈E0/a〉 with b 6= a.

Let t′0 (≈•)c t′1. Let t′′0 , t′′1 be t′0 and t′1 where a is renamed into a fresh c. By the
induction hypothesis, there exists t1 such that u′

1 →∗
n [b]λx.t1 and

[b]t0〈[b]� t
′′
0/b〉{t′′0/x} (≈•)c [b]t1〈[b]� t

′′
1/b〉{t′′1/x}.

From E0〈[b]� t′′0/b〉 (≈•)c E1〈[b]� t′′1/b〉 and the previous relation, we can deduce

[b]t0〈[b]� t
′′
0/b〉{t′′0/x}〈E0〈[b]� t

′′
0/b〉/a〉 (≈•)c [b]t1〈[b]� t

′′
1/b〉{t′′1/x}〈E1〈[b]� t

′′
1/b〉/a〉.

Because a does not occur in t′′0 , t′′1 , this can be rewritten into

[b]t0〈E0/a〉〈[b]� t
′′
0/b〉{t′′0/x} (≈•)c [b]t1〈E1/a〉〈[b]� t

′′
1/b〉{t′′1/x}.

By renaming c back into a, we obtain

[b]t0〈E0/a〉〈[b]� t
′
0/b〉{t′0/x} (≈•)c [b]t1〈E1/a〉〈[b]� t

′
1/b〉{t′1/x},

and because u1 →∗
n [b]λx.t1〈E1/a〉, the result holds.

If u0 →n, then again we distinguish two cases. First, suppose u′
0 →n u′′

0 ; then
u0 →n u′′

0〈E0/a〉. By the induction hypothesis, there exists u′′
1 such that u′

1 →∗
n u′′

1

and u′′
0 (≈•)c u′′

1 . Then u1 →∗
n u′′

1〈E1/a〉 and u′′
0〈E0/a〉 (≈•)c u′′

1〈E1/a〉, hence the
result holds.

Otherwise, u′
0 = [a]λx.t0, E0 = E′

0[� t′0], and u0 →n E′
0[t0〈E0/a〉{t′0/x}]. We

can prove by induction on E0 (≈•)c E1 that E1 = E′
1[� t′1] with E′

0 (≈•)c E′
1 and

t′0 (≈•)c t′1. Let E′′
i , t′′i be E′

i, t
′
i with a renamed into a fresh b. By the induction

hypothesis, there exists t1 such that u′
1 →∗

n [a]λx.t1, and

[a]t0〈[a]� t
′′
0/a〉{t′′0/x} (≈•)c [a]t1〈[a]� t

′′
1/a〉{t′′1/x}.

This implies

([a]t0〈[a]� t
′′
0/a〉{t′′0/x})〈E

′′
0/a〉 (≈•)c ([a]t1〈[a]� t

′′
1/a〉{t′′1/x})〈E

′′
1/a〉,

i.e., E′′
0 [t0〈E

′′
0 [� t′′0]/a〉{t′′0/x}] (≈•)c E′′

1 [t1〈E
′′
1 [� t′′1]/a〉{t′′1/x}] because a does not

occurs in t′′0 , t′′1 . Renaming b into a, we obtain

E′
0[t0〈E0/a〉{t′0/x}] (≈

•)c E′
1[t1〈E1/a〉{t′1/x}],

and because u1 →∗
n E′

1[t1〈E1/a〉{t′1/x}], we have the required result.

From there, we can prove that (≈•)c=≈ using the usual techniques [6], and
then we deduce soundness of ≈. To prove completeness, we show that

.
≈c is an

applicative bisimulation.

Lemma 16. The relation
.
≈c is a big step applicative bisimulation.

Proof. Suppose u0
.
≈c u1. If u0 ⇓n [a]λx.t0, then u1 ⇓n [a]λx.t1. We have

[a](µa.u0) t →
∗
n [a]t0〈[a]� t/a〉{t/x}, [a](µa.u1) t →

∗
n [a]t1〈[a]� t/a〉{t/x}, but also

[a](µa.u0) t
.
≈c [a](µa.u1) t. From →∗

n ⊆ ≈ ⊆
.
≈c, we have [a]t0〈[a]� t/a〉{t/x}

.
≈c

[a]t1〈[a]� t/a〉{t/x} as wished.

RR n° 8447

26 Biernacki & Lenglet

A.2 David and Py’s Counter-Example

Lemma 17. Let 0
def
= λx.λy.y, 1

def
= λx.λy.x, and ta

def
= µc.[a]0. Then we have

λx.µa.[a]x µb.[a]x ta 0 ≈ λx.µa.[a]x µb.[a]x ta 1.

Proof. We fix a name c, and for all t, we want to relate [c]µa.[a]t µb.[a]t ta 0 and
[c]µa.[a]tµb.[a]tta1, which reduce respectively to [c]tµb.[c]ttc0 and [c]tµb.[c]ttc1.

Let st0
def
= µb.[c]ttc0, s

t
1

def
= µb.[c]ttc1, E

t
0

def
= [c]� st0, and Et

1
def
= [c]� st1. We define a

relation [d]t k u as [d]t →∗
n u if k = 0 and as [d]t ⇓n [d]λx1.t1, [c]t1 ⇓n [d]λx2.t2,

. . . [c]tk →∗
n u for some t1 . . . tk if k > 0. The rationale behind this relation

appears in the proof. Note that if [d]t k u, then fv(u) ⊆ {x1, . . . xk}, and
[d]t〈E/e〉 k u〈E/e〉 for all E and e 6= d. We define R as

{(u〈Et

0/d〉{s
t
0/xi}

k
i=1, u〈E

t

1/d〉{s
t
1/xi}

k
i=1) | u ∈ U, t ∈ T 0, d /∈ fn(t), [d]t k u}

∪ {([c]t tc 0, [c]t tc 1) | t ∈ T 0, d /∈ fn(t), [d]t k E[xi], k ≥ 1, 1 ≤ i ≤ k}

∪ {(u, u) | u ∈ U0}

where t{ti/xi}
k
i=1 stands for t{t1/x1} . . . {tk/xk}, and we show that R is an

applicative bisimulation.
Let u〈Et

0/d〉{st0/xi}
k
i=1 R u〈Et

1/d〉{st1/xi}
k
i=1. If u →n u′, then it is easy to

conclude. Otherwise, we distinguish several cases.
If u = [e]λy.t0 with e 6= d, then [e]t0〈[e]� t′/e〉{t′/y}〈Et

′′

0 /d〉{st
′′

0 /xi}
k
i=1 R

[e]t0〈[e]� t′/e〉{t′/y}〈Et
′′

1 /d〉{st
′′

1 /xi}
k
i=1 (where t′′ = t〈[e]� t′/e〉) for all t′, because

the relation [d]t k [e]λy.t0 implies [d]t′′ k [e]t0〈[e]� t′/e〉{t′/y}.
If u = [d]λxk+1.tk+1, then we have the reduction u〈Et

0/d〉{st0/xi}
k
i=1 →n

[c]tk+1{s
t
0/xk+1}〈E

t

0/d〉{st0/xi}
k
i=1 as well as the reduction u〈Et

1/d〉{st1/xi}
k
i=1 →n

[c]tk+1{s
t
1/xk+1}〈E

t

1/d〉{st1/xi}
k
i=1. We obtain terms in R because we can rewrite

them into, respectively, [c]tk+1〈E
t

0/d〉{st0/xi}
k+1
i=1 and [c]tk+1〈E

t

1/d〉{st1/xi}
k+1
i=1 , and

[d]t k+1 [c]tk+1 holds.
Finally, if u = E[xi], for 1 ≤ i ≤ k (assuming k ≥ 1), then we have

u〈Et

0/d〉{st0/xi}
k
i=1 →n [c]t tc 0 and u〈Et

0/d〉{st0/xi}
k
i=1 →n [c]t tc 1, and [c]t tc 0 R

[c]t tc 1 holds.
Let [c]t tc 0 R [c]t tc 1 with [d]t k E[xi]. There exist t1, . . . , tk such that

[d]t ⇓n [d]λx1.t1, [c]t1 ⇓n [d]λx2.t2, . . . [c]tk−1 ⇓n [d]λxk.tk, and [c]tk →∗
n E[xi].

Then [c]t tc 0 →∗
n [c](λx1.t1〈[c]� tc 0/d〉) tc 0 →n [c]t1〈[c]� tc 0/d〉{tc/x1} 0 →∗

n

[c]t2〈[c]� tc 0/d〉〈[c]� 0/c〉{tc/xi}
2
i=1 0 →∗

n [c]tk〈[c]� tc 0/d〉〈[c]� 0/c〉{tc/xi}
k
i=1 0 →∗

n

E′[tc] →n [c]0 with E′ def
= E〈[c]� tc 0/d〉〈[c]� 0/c〉{tc/xi}

k
i=1. Similarly [c]t tc 1 →∗

n

E′′[tc] →n [c]0 with E′′ def
= E〈[c]� tc 1/d〉〈[c]� 1/c〉{tc/xi}

k
i=1. Because the two terms

evaluate to [c]0, it is easy to conclude.

A.3 Soundness and Completeness of Environmental Bisimilarity

Lemma 18. Let R be a relation on closed terms and named terms. If t0 R̂ t1
and t′0 R̂ t′1, then t0{t

′
0/x} R̂ t1{t

′
1/x} (and similarly if u0 R̂ u1)

Proof. By induction on t0 R̂ t1.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 27

Lemma 19. If u0 ≅E u1, then u0〈E/a〉 ≅E u1〈E/a〉.

Let Y be an environmental bisimulation. We define

X = X1 ∪ X2 ∪ {Ê
nv
, E ∈ Y}

X1 = {(Ê
nv
, u0〈E

0
0/a0〉 . . . 〈E

n

0/an〉, u1〈E
0
1/a0〉 . . . 〈E

n

1/an〉), u0 YE u1,E
i
0 Ê Ei

1}

X2 = {(Ê
nv
, u0, u1), E ∈ Y, u0 Ê u1}

We first prove some preliminary lemmas about X .

Lemma 20. Let E ∈ Y.

– If λx.t0 Ê λx.t1 and t′0 Ê t′1, then [a]t0{t
′
0/x} Ê [a]t1{t

′
1/x}.

– If [a]λx.t0 Ê [a]λx.t1 and t′0 Ê t′1, then we have [a]t0〈[a]� t′0/a〉{t′0/x} XÊ
nv

[a]t1〈[a]� t′1/a〉{t′1/x}.

Proof. The first item is proved by induction on λx.t0 Ê λx.t1. If t0 Ê t1, then
[a]t0{t

′
0/x} Ê [a]t1{t

′
1/x} holds using Lemma 18. Otherwise, we have λx.t0 =

λx.t′′0〈E0/b〉, λx.t1 = λx.t′′1〈E1/b〉 with λx.t′′0 Ê λx.t′′1 and E0 Ê E1. Let t′′′0 , t′′′1 be

t′0, t
′
1 where b is renamed to a fresh c (we still have t′′′0 Ê t′′′1). By the induc-

tion hypothesis, we have t′′0{t
′′′
0 /x} Ê t′′1{t

′′′
1 /x}, which implies t′′0{t

′′′
0 /x}〈E0/b〉 Ê

t′′1{t
′′′
1 /x}〈E1/b〉, i.e., t′′0〈E0/b〉{t′′′0 /x} Ê t′′1〈E1/b〉{t′′′1 /x} because b /∈ fn(t′′′0)∪fn(t′′′1).

Renaming c back into b, we obtain t′′0〈E0/b〉{t′0/x} Ê t′′1〈E1/b〉{t′1/x} as wished.

The second item is proved by induction on [a]λx.t0 Ê [a]λx.t1. If [a]λx.t0 E
[a]λx.t1, then we have [a]t0〈[a]� t′0/a〉{t′0/x} YE [a]t1〈[a]� t′1/a〉{t′1/x} because Y
is a bisimulation, i.e., [a]t0〈[a]� t′0/a〉{t′0/x} XÊ

nv [a]t1〈[a]� t′1/a〉{t′1/x} holds as
wished.

Suppose λx.t0 Ê λx.t1, and let t′′0 , t′′1 be t′0, t′1 where a is renamed into

a fresh b. By the first item, we have [b]t0{t
′′
0/x} Ê [b]t1{t

′′
1/x}, which implies

[b]t0{t
′′
0/x}〈[a]� t′0/a〉 Ê [b]t1{t

′′
1/x}〈[a]� t′1/a〉, which gives [b]t0〈[a]� t′0/a〉{t′′0/x} Ê

[b]t1〈[a]� t′1/a〉{t′′1/x} because a does not occur in t′′0 , t′′1 . Renaming b in a, we
obtain [a]t0〈[a]� t′0/a〉{t′0/x} XÊ

nv [a]t1〈[a]� t′1/a〉{t′1/x}, as wished.

Suppose [a]λx.t0 = [a]λx.t′′0〈E0/b〉, [a]λx.t1 = [a]λx.t′′1〈E1/b〉 with [a]λx.t′′0 Ê

[a]λx.t′′1 and E0 Ê E1. Let t′′′0 , t′′′1 be t′0, t
′
1 where b is renamed to a fresh c. By the

induction hypothesis, we have [a]t′′0〈[a]� t′′′0 /a〉{t′′′0 /x} XÊ
nv [a]t′′1〈[a]� t′′′1 /a〉{t′′′1 /x},

which implies [a]t′′0〈[a]� t′′′0 /a〉{t′′′0 /x}〈E0/b〉 XÊ
nv [a]t′′1〈[a]� t′′′1 /a〉{t′′′1 /x}〈E1/b〉 (ac-

cording to the definition of X), which gives us [a]t′′0〈E0/b〉〈[a]� t′′′0 /a〉{t′′′0 /x} XÊ
nv

[a]t′′1〈E1/b〉〈[a]� t′′′1 /a〉{t′′′1 /x} (because a does not occur in t′′′0 , t′′′1). Renaming b
into a, we obtain [a]t′′0〈E0/b〉〈[a]� t′0/a〉{t′0/x} XÊ

nv [a]t′′1〈E1/b〉〈[a]� t′1/a〉{t′1/x}, as
wished.

Lemma 21. Let E ∈ Y, t0 Ê t1, and a /∈ fn(t0) ∪ fn(t1). If [a]t0 →n u0, then
[a]t1 →∗

n u1, and u0 XÊ
nv u1.

Proof. We proceed by induction on t0 Ê t1.

RR n° 8447

28 Biernacki & Lenglet

Suppose t0 = µb.u0, t1 = µb.u1 with u0 Ê u1. Then [a]t0 →n u0〈[a]�/b〉,

[a]t1 →n u1〈[a]�/b〉, and u0〈[a]�/b〉 Ê u1〈[a]�/b〉 holds, so we have u0〈[a]�/b〉 XÊ
nv

u1〈[a]�/b〉, as wished.

Suppose t0 = t10 t
2
0 and t1 = t11 t

2
1 with t10 Ê t11 and t20 Ê t21. We have two cases

to consider.

– Assume [a]t10 →v u0, so that [a]t0 →v u0〈[a]� t20/a〉. By the induction hypoth-

esis, there exists u1 such that [a]t11 →∗
v u1 and u0 XÊ

nv u1. From t20 Ê t21 and
u0 XÊ

nv u1, we can deduce u0〈[a]� t20/a〉 XÊ
nv u1〈[a]� t21/a〉 by definition of X .

We also have [a]t1 →∗
v u1〈[a]� t21/a〉, hence the result holds.

– Assume t10 = λx.t′0 so that [a]t0 →v [a]t′0{t
2
0/x}. Because E relates only

named values, t11 must be value λx.t′1 as well. We have [a]t1 →v [a]t′1{t
2
1/x},

and by Lemma 20, we have [a]t′0{t
2
0/x} XÊ

nv [a]t′1{t
2
1/x}, hence the result

holds.

Suppose t0 = t′0〈E0/b〉, t1 = t′1〈E1/b〉 with t′0 Ê t′1 and E0 Ê E1. If [a]t0 →n,
then [a]t′0 →n u0 and [a]t0 →n u0〈E0/a〉. By the induction hypothesis, there
exists u1 such that [a]t′1 →∗

n u1 and u0 XÊ
nv u1. By definition of XÊ

nv u1, we
have u0〈E0/b〉 XÊ

nv u1〈E1/b〉, and we have [a]t1 →∗
n u1〈E1/b〉, as wished.

We now prove Lemma 19 by showing that X is a bisimulation up to environ-
ment.

Proof. We first prove the bisimulation for the elements in X2 (for these, we do

not need the “up to environment”). Let t0 Ê t1, with E ∈ Y. If u0 is a named
value, then one can check that so is t1 (because E relates only named values),

and we have Ê
nv

∪{(t0, t1)} = Ê
nv

∈ X .

Let u0 Ê u1 such that u0 →n u′
0. We proceed by induction on u0 Ê u1.

Suppose u0 = [a]t0, u1 = [a]t1, with t0 Ê t1. If a /∈ fn(t0) ∪ fn(t1), then we
can apply Lemma 21 directly to get the required result. Otherwise, let b /∈
fn(t0) ∪ fn(t1). If u0 →n u′

0, then [b]t0 →n u′′
0 and u′

0 = u′
0〈[a]�/b〉. We can apply

Lemma 21 to [b]t0 and [b]t1, and then rename b into a.

Suppose u0 = u′
0〈E0/a〉, u1 = u′

1〈E1/a〉 with u′
0 Ê u′

1 and E0 Ê E1. If u0 is a
named value, then u′

0 = [c]v0, and u0 = [b]v0〈E0/a〉. Because E relates only named

values, u′
1 is also a named value [b]v1, and we have [b]v0〈E0/a〉 Ê [b]v1〈E1/a〉, as

wished.
If u0 →n, then we distinguish two cases. First, suppose u′

0 →n u′′
0 ; then

u0 →n u′′
0〈E0/a〉. By the induction hypothesis, there exists u′′

1 such that u′
1 →∗

n u′′
1

and u′′
0 XÊ

nv u′′
1 . Then u1 →∗

n u′′
1〈E1/a〉 and u′′

0〈E0/a〉 XÊ
nv u′′

1〈E1/a〉 (by definition
of X), hence the result holds.

Otherwise, we have u′
0 = [a]λx.t0, E0 = E′

0[� t′0], which implies u0 →n

E′
0[t0〈E0/a〉{t′0/x}]. We can prove by induction on E0 Ê E1 that E1 = E′

1[� t′1]

with E′
0 Ê E′

1 and t′0 Ê t′1. Let E′′
i , t′′i be E′

i, t
′
i with a renamed into a fresh b.

Because E relates only named values, we must have u′
1 = [a]λx.t1. By Lemma 20,

we have [a]t0〈[a]� t′′0/a〉{t′′0/x} XÊ
nv [a]t1〈[a]� t′′1/a〉{t′′1/x}, which in turn implies

([a]t0〈[a]� t′′0/a〉{t′′0/x})〈E
′′
0/a〉 XÊ

nv ([a]t1〈[a]� t′′1/a〉{t′′1/x})〈E
′′
1/a〉 by definition of

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 29

X . Because a does not occurs in t′′0 , t′′1 , the previous relation is equivalent to
E′′
0 [t0〈E

′′
0 [� t′′0]/a〉{t′′0/x}] XÊ

nv E′′
1 [t1〈E

′′
1 [� t′′1]/a〉{t′′1/x}] . Renaming b into a, we

obtain E′
0[t0〈E0/a〉{t′0/x}] XÊ

nv E′
1[t1〈E1/a〉{t′1/x}], and because we have u1 →∗

n

E′
1[t1〈E1/a〉{t′1/x}], the result holds.

We now prove bisimulation (up to environment) for elements in X1. Let

u0〈E
0
0/a0〉 . . . 〈E

n

0/an〉 XÊ
nv u1〈E

0
1/a0〉 . . . 〈E

n

1/an〉) so that u0 YE u1 and Ei
0 Ê Ei

1.
If u0 is a named value [a]v0, then because Y is a bisimulation, there exists
v1 such that u1 →∗

v [a]v1 and E ′ = E ∪ {([a]v0, [a]v1)} ∈ Y. We then have
u1〈E

0
1/a0〉 . . . 〈E

n

1/an〉 →∗
v ([a]v1)〈E

0
1/a0〉 . . . 〈E

n

1/an〉, and ([a]v0)〈E
0
0/a0〉 . . . 〈E

n

0/an〉 and
([a]v0)〈E

0
0/a0〉 . . . 〈E

n

0/an〉 are in X2. We can prove the bisimulation property with
these two named terms the same way we did with the named terms in X2,
except that we reason up to environment, because E ⊆ E ′. Suppose u0 is not a
named value. There exists u′

0 such that u0 →v u′
0, and so u0〈E

0
0/a0〉 . . . 〈E

n

0/an〉 →v

u′
0〈E

0
0/a0〉 . . . 〈E

n

0/an〉. Because Y is a bisimulation, there exists u′
1 such that u1 →∗

v

u′
1 and u′

0 YE u′
1. We therefore have u1〈E

0
0/a0〉 . . . 〈E

n

0/an〉 →∗
v u′

1〈E
0
0/a0〉 . . . 〈E

n

0/an〉
with u′

0〈E
0
0/a0〉 . . . 〈E

n

0/an〉 XÊ
nv u′

1〈E
0
0/a0〉 . . . 〈E

n

0/an〉 , as wished.

For the last bisimulation condition, let [a]λx.t0 Ê
nv

[a]λx.t1 and t′0 Ê t′1. By
Lemma 20, we have [a]t0〈[a]� t′0/a〉{t′0/x} XÊ

nv [a]t1〈[a]� t′1/a〉{t′1/x}, hence the
result holds.

Lemma 22. If [a]λx.t0 ≃ [a]λx.t1 then [a]t0〈[a]� t/a〉{t/x} ≃ [a]t1〈[a]� t/a〉{t/x}

Proof. Follows almost directly from the bisimilarity definition.

Lemma 23. If [a]λx.t0 ≃̂ [a]λx.t1 and t′0 ≃̂ t′1 then [a]t0〈[a]� t′0/a〉{t′0/x} ≃̂≃
[a]t1〈[a]� t′1/a〉{t′1/x}.

Proof. By case analysis on [a]λx.t0 ≃̂ [a]λx.t1. Suppose [a]λx.t0 ≃ [a]λx.t1.
By Lemma 22, we have [a]t0〈[a]� t′1/a〉{t′1/x} ≃ [a]t1〈[a]� t′1/a〉{t′1/x}. From t′0 ≃̂
t′1, we deduce t0〈[a]� t′0/a〉 ≃̂ t0〈[a]� t′1/a〉, which implies [a]t0〈[a]� t′0/a〉{t′0/x} ≃̂
[a]t0〈[a]� t′1/a〉{t′1/x} (using Lemma 18). Finally, we get [a]t0〈[a]� t′0/a〉{t′0/x} ≃̂≃
[a]t1〈[a]� t′1/a〉{t′1/x} as wished.

Suppose λx.t0 ≃̂ λx.t1. We distinguish two cases. If λx.t0 ≃ λx.t1, then
[a]λx.t0 ≃ [a]λx.t1, and we proceed as before. Otherwise, we have t0 ≃̂ t1, which
implies t0〈[a]� t′0/a〉 ≃̂ t1〈[a]� t′1/a〉, which in turn implies t0〈[a]� t′0/a〉{t′0/x} ≃̂
t1〈[a]� t′1/a〉{t′1/x} by Lemma 18, and finally we have [a]t0〈[a]� t′0/a〉{t′0/x} ≃̂
[a]t1〈[a]� t′1/a〉{t′1/x}, as wished.

Lemma 24. Let t0 ≃̂ t1 and a /∈ fn(t0) ∪ fn(t1).

– If [a]t0 →n u0, then [a]t1 →∗
n u1, and u0 ≃̂≃ u1.

– If t0 = λx.t′0, then [a]t1 →∗
n [a]λx.t′1 and [a]λx.t′0 ≃̂ [a]v ≃ [a]λx.t′1 for some

v.

Proof. By induction on t0 ≃̂ t1.

RR n° 8447

30 Biernacki & Lenglet

If t0 ≃ t1, then [a]t0 ≃ [a]t1, and the result holds by bisimilarity.
If t0 = λx.t′0 and t1 = λx.t′1 with t′0 ≃̂ t′1, then [a]t0 ≃̂ [a]t1, and the result

holds.
Suppose t0 = µb.u0 and t1 = µb.u1 with u0 ≃̂ u1. We have [a]t0 →n u0〈[a]�/b〉,

[a]t1 →n u1〈[a]�/b〉, and u0〈[a]�/b〉 ≃̂ u1〈[a]�/b〉, hence the result holds.
Suppose t0 = t10 t

2
0, t1 = t11 t

2
1 with t10 ≃̂ t11 and t20 ≃̂ t21. We distinguish two

cases.

– If [b]t10 →n u0 (for some fresh b), then [a]t0 →n u0〈[a]� t20/b〉. By the induction
hypothesis, there exist u1, u such that [b]t11 →∗

n u1 and u0 ≃̂ u ≃ u1. Conse-
quently, we have [a]t1 →∗

n u1〈[a]� t21/b〉. By congruence, we have u0〈[a]� t20/b〉 ≃̂
u〈[a]� t21/b〉, and by Lemma 19, we have u〈[a]� t21/b〉 ≃ u1〈[a]� t21/b〉, hence the
result holds.

– If t10 = λx.t′0, then [a]t0 →n [a]t′0{t
2
0/x}. By the induction hypothesis, there

exist t, t′1 such that [a]t11 →∗
n [a]λx.t′1 and [a]λx.t′1 ≃̂ [a]λx.t ≃ [a]λx.t′1. By

Lemma 23, we have [a]t′0{t
2
0/x} ≅̂ [a]t〈[a]� t21/a〉{t21/x}, and by Lemma 22,

we have [a]t〈[a]� t21/a〉{t21/x} ≃ [a]t′1〈[a]� t21/a〉{t21/x}. From [a]t11 →∗
n [a]λx.t′1,

we deduce [a]t1 →∗
n [a](λx.t′1〈[a]� t21/a〉)t21 →n [a]t′1〈[a]� t21/a〉{t21/x}, hence the

result holds.

Suppose t0 = t′0〈E0/b〉, t1 = t′1〈E1/b〉 with t′0 ≃̂ t′1, E0 ≃̂ E1. If [a]t0 →n u0,
then in fact [a]t′0 →n u′

0 with u0 = u′
0〈E0/b〉. By the induction hypothesis, there

exists u′
1 such that [a]t′1 →∗

n u′
1 and u′

0 ≃̂≃ u′
1. Consequently, we have [a]t1 →∗

n

u′
1〈E1/b〉, and u′

0〈E0/b〉 ≃̂≃ u′
1〈E1/b〉 holds (using Lemma 19), as wished. If [a]t0

is a named value, then in fact t′0 = λx.t′′0 and t0 = λx.t′′0〈E0/b〉. By induction,
there exist t′′1 such that [a]t′1 →∗

n [a]λx.t′′1 and [a]λx.t′′0 ≃̂≃ [a]λx.t′′1 . Hence, we
have [a]t1 →∗

n [a]λx.t′′1〈E1/b〉, and [a]λx.t′′0〈E0/b〉 ≃̂≃ [a]λx.t′′1〈E1/b〉 holds using
Lemma 19.

Lemma 25. u0 ≃ u1 implies C [u0] ≅≃̂nv C [u1] and C[u0] ≅≃̂nv C[u1].

Proof. We prove that

X = {(≃̂nv
, u0, u1), u0 ≃̂ u1} ∪ {≃̂nv}

is a bisimulation up-to bisimilarity.
Let u0 ≃̂ u1; we proceed by induction on u0 ≃̂ u1.
If u0 ≃ u1, then the result holds by bisimilarity.
Suppose u0 = [a]t0, u1 = [a]t1, with t0 ≃̂ t1. If a /∈ fn(t0) ∪ fn(t1), then

we can apply Lemma 24 directly to get the required result. Otherwise, let
b /∈ fn(t0) ∪ fn(t1). If u0 →n u′

0, then [b]t0 →n u′′
0 and u′

0 = u′
0〈[a]�/b〉. We

can apply Lemma 24 to [b]t0 and [b]t1, and then rename b into a.

Suppose u0 = u′
0〈E0/a〉, u1 = u′

1〈E1/a〉 with u′
0 ≃̂ u′

1 and E0 ≃̂ E1.
If u0 is a named value, then u′

0 = [c]v0, and u0 = [b]v0〈E0/a〉. By the induction
hypothesis, there exists v1 such that u′

1 →∗
n [c]v1 and [c]v0 ≃̂≃ [c]v1. We have

u1 →∗
n [b]v1〈E1/a〉, and also [b]v0〈E0/a〉 ≃̂≃ [b]v1〈E1/a〉 (using Lemma 19), hence

the result holds.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 31

If u0 →n, then we distinguish two cases. First, suppose u′
0 →n u′′

0 ; then u0 →n

u′′
0〈E0/a〉. By the induction hypothesis, there exists u′′

1 such that u′
1 →∗

n u′′
1 and

u′′
0 ≃̂≃ u′′

1 . Then u1 →∗
n u′′

1〈E1/a〉 and u′′
0〈E0/a〉 ≃̂≃ u′′

1〈E1/a〉 (using Lemma 19),
hence the result holds.

Otherwise, we have u′
0 = [a]λx.t0, E0 = E′

0[� t′0], which implies u0 →n

E′
0[t0〈E0/a〉{t′0/x}]. We can prove by induction on E0 ≃̂ E1 that E1 = E′

1[� t′1]
with E′

0 ≃̂ E′
1 and t′0 ≃̂ t′1. Let E′′

i , t′′i be E′
i, t

′
i with a renamed into a fresh

b. By the induction hypothesis, there exist t, t1 such that u′
1 →∗

n [a]λx.t1,
and [a]λx.t0 ≃̂ [a]λx.t ≃ [a]λx.t1. By Lemma 23 and Lemma 22, we have
[a]t0〈[a]� t′′0/a〉{t′′0/x} ≃̂≃ [a]t〈[a]� t′′1/a〉{t′′1/x} ≃ [a]t1〈[a]� t′′1/a〉{t′′1/x}, which in
turn implies ([a]t0〈[a]� t′′0/a〉{t′′0/x})〈E

′′
0/a〉 ≃̂≃ ([a]t1〈[a]� t′′1/a〉{t′′1/x})〈E

′′
1/a〉 us-

ing Lemma 19. Because a does not occurs in t′′0 , t′′1 , the previous relation is
equivalent to E′′

0 [t0〈E
′′
0 [� t′′0]/a〉{t′′0/x}] ≃̂≃ E′′

1 [t1〈E
′′
1 [� t′′1]/a〉{t′′1/x}] . Renaming b

into a, we obtain E′
0[t0〈E0/a〉{t′0/x}] ≃̂≃ E′

1[t1〈E1/a〉{t′1/x}], and because u1 →∗
n

E′
1[t1〈E1/a〉{t′1/x}], we have the required result.

To prove the last item, we take [a]λx.t0 ≃̂ [a]λx.t1 and t′0 ≃̂ t′1. Then
[a]t0〈[a]� t′0/a〉{t′0/x} ≃̂≃ [a]t1〈[a]� t′1/a〉{t′1/x} holds by Lemma 23.

B Call-by-Value λµ-calculus

B.1 Equivalence Proofs

Lemma 26 (see Example 9). The relation R
def
= {(u{v/y}, u{λx.µb.[a]t0/y}) |

[a]t0 →∗
v u{v/y}}∪ ≈ is an applicative bisimulation.

Proof. We proceed by case analysis on u. If u →v u′ or if u = E[v′ y], then
it is easy to conclude. If u = E[y v′], then u{λx.µb.[a]t0/y} →v [a]t0 and
[a]t0 →∗

v u{v/y} by definition, so it we can conclude with Lemma 11. Similarly,
the transition from u{v/y} is matched by u{λx.µb.[a]t0/y}.

If u = [c]v′, then we have to compare (the result of the reduction of)
u〈E/c〉{v〈E/c〉/y} and u〈E/c〉{λx.µb.([a]t0)〈E/c〉/y} for some E (which depends on
the clause we check). The resulting terms are in R, because [a]t0 →∗

v u{v/y}
implies ([a]t0)〈E/c〉 →

∗
v u〈E/c〉{v〈E/c〉/y}.

We decompose the equivalence proof of Example 10 into several lemmas

to improve readability. We remind that u0
def
= [b]λxy.Ω, v

def
= λy.µa.[b]λx.y,

u1
def
= [b]λxy.Θv v y, and Θv

def
= (λxy.y (λz.xx y z)) (λxy.y (λz.xx y z))

Lemma 27. Let t1, t2 such that [c]t1 ⇓v [c]v1 (c /∈ fn(t1)), and [d]t2 ⇓v [d]v2
(d /∈ fn(t2)). For all v′, we have [b]Ω ≈ [b]Θv v〈[b]� t1 t2/b〉v′ .

RR n° 8447

32 Biernacki & Lenglet

Proof. We have

[b]Θv v〈[b]� t1 t2/b〉v′

→∗
v[b]v〈[b]� t1 t2/b〉 (λx.Θv v〈[b]� t1 t2/b〉 x) v′

→∗
v[b](λzx.Θv v〈[b]� t1 t2/b〉 x) t1 t2

→∗
v[b](λzx.Θv v〈[b]� t1 t2/b〉 x) v′1 t2

→∗
v[b](λzx.Θv v〈[b]� t1 t2/b〉 x) v′1 v

′
2

→∗
v[b]Θv v〈[b]� t1 t2/b〉 v′2

for some v′1, v′2 (which depend on v1, v2). So for all v′, there exists v′′ such
that [b]Θv v〈[b]� t1 t2/b〉v′ →∗

v [b]Θv v〈[b]� t1 t2/b〉v′′ ; from that, we deduce that
[b]Θv v〈[b]� t1 t2/b〉v′ is diverging, and therefore [b]Ω ≈ [b]Θv v〈[b]� t1 t2/b〉v′ holds.

Lemma 28. Let v′
def
= λz.t′, and t1 such that there exists v1 such that [c]t1 ⇓v

[c]v1 for c /∈ fn(t1). We have

[b]t′{λy.Ω/z} ≈ [b]t′{λy.Θv v〈[b]v
′
(� t1)/b〉 y/z}.

Proof. Let R
def
= {(u{λy.Ω/z}, u{λy.Θvv〈E[v

′ (� t1)]/b〉y/z}) | ∃v1.[c]t1 ⇓v [c]v1, c /∈
fn(t1), v

′ = λz.t′,E[t′] →∗
v u}∪ ≈. We prove R is an applicative bisimilarity, by

case analysis on u.

The case u →v u′ is easy. Suppose u = [d]v2, with v2
def
= λz2.t2. Then we

have two items to prove.

– Let [e]t3 ⇓v [e]v3 (e /∈ fn(t3)). Then we have to relate

[d]t2{λy.Ω/z}〈[d]� t3/d〉{v3〈[d]v2〈[d]� t3/d〉 �/e〉/z2}

to

[d](t2{λy.Θv v〈E[v
′
(� t1)]/b〉 y/z})〈[d]� t3/d〉{v3〈[d]v2〈[d]� t3/d〉 �/e〉/z2}.

These terms can be rewritten into

[d]t2〈[d]� t3/d〉{v3〈[d]v2〈[d]� t3/d〉 �/e〉/z2}{λy.Ω/z} (1)

and

[d]t2〈[d]� t3/d〉{v3〈[d]v2〈[d]� t3/d〉 �/e〉/z2}{λy.Θv v〈E
′
[v

′′
(� t

′
1)]/b〉 y/z} (2)

where E′ def
= E〈[d]� t3/d〉, v′′

def
= v′〈[d]� t3/d〉, and t′1

def
= t1〈[d]� t3/d〉. We have

v′′ = λz.t′〈[d]� t3/d〉, and

E′[t′〈[d]� t3/d〉]

→∗
v[d]v2〈[d]� t3/d〉 t3 (because E[t′] →∗

v u = [d]v2)

→∗
v[d]v2〈[d]� t3/d〉 v3〈[d]v2〈[d]� t3/d〉 �/e〉 (because [e]t3 ⇓v [e]v3)

→v[d]t2〈[d]� t3/d〉{v3〈[d]v2〈[d]� t3/d〉 �/e〉/z2}.

The side-conditions are satisfied, therefore (1) and (2) are in R.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 33

– Let v3 = λz3.t3. We have to relate

[d]t3{v2{λy.Ω/z}〈[d]v3 �/d〉/z3}

to

[d]t3{(v2{λy.Θv v〈E[v′
(� t1)]/b〉 y/z})〈[d]v3 �/d〉/z3}

These terms can be rewritten into

[d]t3{v2〈[d]v3 �/d〉/z3}{λy.Ω/z} (3)

and

[d]t3{v2〈[d]v3 �/d〉/z3}{λy.Θv v〈E
′
[v

′′
(� t

′
1)]/b〉 y/z} (4)

where E′ def
= E〈[d]v3 �/d〉, v′′

def
= v′〈[d]v3 �/d〉, and t′1

def
= t1〈[d]v3 �/d〉. We have

v′′ = λz.t′〈[d]v3 �/d〉, and

E′[t′〈[d]v3 �/d〉]

→∗
v[d]v3 v2〈[d]v3 �/d〉 (because E[t′] →∗

v u = [d]v2)

→v[d]t3{v2〈[d]v3 �/d〉/z3}

The side-conditions are satisfied, therefore (3) and (4) are in R.

The last case is when u = E′[x v′′]. Then u{λy.Ω/z} →v E′′[Ω] for some E′′,
and

u{λy.Θv v〈E[v
′
(� t1)]/b〉 y/z}

→vE
(3)[Θv v〈E[v

′
(� t1)]/b〉 v(3)] for some E(3), v(3)

→∗
vE

(3)[v〈E[v′
(� t1)]/b〉 (λy.Θv v〈E[v

′
(� t1)]/b〉 y)v(3)]

→∗
vE[v

′ ((λzy.Θv v〈E[v
′
(� t1)]/b〉 y) t1)]

→∗
vE[v

′ ((λzy.Θv v〈E[v
′
(� t1)]/b〉 y) v′1)] for some v′1, because [c]t1 ⇓v [c]v1

→vE[v
′ (λy.Θv v〈E[v

′
(� t1)]/b〉 y)]

→vE[t
′{λy.Θv v〈E[v

′
(� t1)]/b〉 y/z}]

→∗
vu{λy.Θv v〈E[v

′
(� t1)]/b〉 y/z} because E[t′] →∗

v u

We obtain two non-terminating terms that are therefore bisimilar.

Lemma 29. Let v′
def
= λz.t′. We have

[b]t′{λxy.Ω/z} ≈ [b]t′{λxy.Θv v〈[b]v
′
�/b〉 y/z}

Proof. Let R
def
= {(u{λxy.Ω/z}, u{λxy.Θv v〈E[v

′
�]/b〉y/z}) | v′ = λz.t′,E[t′] →∗

v

u}∪ ≈. We prove R is an applicative bisimilarity, by case analysis on u. The proof

RR n° 8447

34 Biernacki & Lenglet

is the same as for Lemma 28; we only detail the last case, where u = E′[x v1 v2].
Then u{λxy.Ω/z} →2

v E′′[Ω] for some E′′, and

u{λxy.Θv v〈E[v
′
�]/b〉 y/z}

→2
vE

(3)[Θv v〈E[v
′
�]/b〉 v′2] for some E(3), v′2

→∗
vE

(3)[v〈E[v′
�]/b〉 (λy.Θv v〈E[v

′
�]/b〉 y)v′2]

→∗
vE[v

′ (λxy.Θv v〈E[v
′
�]/b〉 y)]

→vE[t
′{λxy.Θv v〈E[v

′
�]/b〉 y/z}]

→∗
vu{λxy.Θv v〈E[v

′
�]/b〉 y/z} because E[t′] →∗

v u

We obtain two non-terminating terms that are therefore bisimilar.

Lemma 30 (Example 10). The relation {([b]λxy.Ω, [b]λxy.Θv v y)}∪ ≈ is an
applicative bisimulation.

Proof. We have to prove two items

– Let t1 such that [c]t1 ⇓v [c]v1 (c /∈ fn(t1)). We have to prove that [b]λy.Ω is
bisimilar to [b]λy.Θv v〈[b]� t1/b〉y , which, in turn, requires that
• for all [d]t2 ⇓v [d]v2 (d /∈ fn(t2)), we need [b]Ω ≈ [b]Θv v〈[b]� t1 t2/b〉v′2 for

some v′2. This holds by Lemma 27;

• for all v′
def
= λz.t′, we need [b]t′{λy.Ω/z} ≈ [b]t′{λy.Θvv〈[b]v

′ (� t1)/b〉y/z}.
This holds by Lemma 28.

– Let v′
def
= λz.t′. We have to prove that [b]t′{λxy.Ω/z} is related to the term

[b]t′{λxy.Θv v〈[b]v
′
�/b〉 y/z}. This a consequence of Lemma 29.

For the next lemma and its proof, we use the same definitions of terms as in
Example 8.

Lemma 31 (see Example 8). The relation

R
def
= {(u〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉, u〈[a]E [v1 �]/b〉) | [b]t ⇓v [b]v, b /∈ fn(t)}

is an applicative bisimulation.

Proof. We proceed by case analysis on u. If u →v u′, then the result holds. If
u = [c]v′ with c 6= a and c 6= b, then when checking clauses 1 and 2, we obtain
terms that can be written u′〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉 and u′〈[a]E [v1 �]/b〉 for some u′,
and are therefore in R.

If u = [a]v′, then when checking clauses 1 and 2, we obtain terms that can
be written u′〈[a]E ′[E [v0〈[a]E′[E[� t]]/a〉 �]]/b〉 and u′〈[a]E ′[E [v1 �]]/b〉 for some u′ and
E ′ (depending on which clause we check). We obtain terms in R.

If u = [b]v′, then

u〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉 = [a]E [v0〈[a]E [� t]/a〉 v′〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉]

→∗
v [a]E [w′ (v′〈[a]E [v0〈[a]E[� t]/a〉 �]/b〉 λx.x)]

and u〈[a]E [v1 �]/b〉 = [a]E [v1 v′〈[a]E [v1 �]/b〉] →∗
v [a]E [w′ (v′〈[a]E [v1 �]/b〉 λx.x)]; we

obtain terms in R.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 35

The next lemma uses the notations of Section 3.3

Lemma 32 (see Example 13). Let E, E0, and E1 be such that E = E0[E1].

Then E† ≈ λx.E†
0 E1 [x].

Proof. Let a be a fresh name. Let t such that [d]t ⇓v [d]v. To check clause 1,

we have to relate [a]µc.E[v〈[a]E†
�/d〉] and [a]E†

0 E1 [v〈[a]λx.E
†
0 E1 [x] �/d〉]. These

terms reduce respectively to E[v〈[a]E†
�/d〉] and E0[E1 [v〈[a]λx.E

†
0 E1 [x] �/d〉]], which

we can rewrite into respectively u〈[a]E†
�/d〉 and u〈[a]λx.E†

0 E1 [x] �/d〉. To check

clause 2, we have to relate [a]t{E†/y} and [a]t{λx.E†
0 E1 [x]/y} for all t. The

most interesting case is when t = E [y v]; then these terms reduce to respectively

E[v]{E†/y} and E[v]{λx.E†
0E1 [x]/y}. In fact, one can prove the result by showing

that

{(u〈[a]E†
�/d〉, u〈[a]λx.E†

0 E1 [x] �/d〉), (u{E†/y}, u{λx.E†
0 E1 [x]/y}) | E = E0[E1]}

is an applicative bisimulation.

B.2 Proof of Soundness

Lemma 33. If [a]v0 ≈ [a]v1, then for all [b]t →∗
v u (b /∈ fn(t)), we have

u〈[a]v0〈[a]� t/a〉 �/b〉 ≈ u〈[a]v1〈[a]� t/a〉 �/b〉.

Proof. The relation {(u〈[a]v0〈[a]� t/a〉 �/b〉, u〈[a]v1〈[a]� t/a〉 �/b〉) | ∀u, [b]t →∗
v u}∪ ≈

is a bisimulation.

Lemma 34. If λx.t0 (≈•)c t1, then there exists t such that t0 ≈• t, fv(t) ⊆ {x}
and λx.t ≈ t1.

Proof. By induction on λx.t0 (≈•)c t1.

Lemma 35. If [a]t0 (≈•)c u1, then there exists a closed t such that t0 (≈•)c t
and [a]t ≈ u1.

Proof. By induction on [a]t0 (≈•)c u1.

Lemma 36. Let t0 (≈•)c t1, and a /∈ fn(t0) ∪ fn(t1).

– If [a]t0 →n u0, then [a]t1 →∗
n u1 and u0 (≈•)c u1.

– If t0 = λx.t′0, then [a]t1 →∗
n [a]λx.t′1 and for all t, b, v such that [b]t →∗

v [b]v
and b /∈ fn(t), we have

[a]t′0〈[a]� t/a〉{v〈[a]λx.t0〈[a]� t/a〉 �/b〉/x} (≈•)c

[a]t′1〈[a]� t/a〉{v〈[a]λx.t1〈[a]� t/a〉 �/b〉/x}

and for all v′ = λx.t′, we have

[a]t′{λx.t′0〈[a]v �/a〉/x} (≈•)c [a]t′{λx.t′1〈[a]v �/a〉/x}.

RR n° 8447

36 Biernacki & Lenglet

Proof. By induction on t0 (≈•)c t1. If t0 ≈ t1, then the result holds by bisimi-
larity. If t0 ≈• t ≈◦ t1, so that t is closed (using Lemma 13 if necessary), then
we can conclude with the induction hypothesis and the bisimilarity definition.

If t0 (̃≈•)c t1, then we have several cases to consider.
If t0 = λx.t′0 and t1 = λx.t′1 with t′0 ≈• t′1, we can prove the required result

because ≈• is substitutive. Suppose t0 = µb.u0 and t1 = µb.u1 with u0 (≈•)c

u1. We have [a]t0 →v u0〈[a]�/b〉, [a]t1 →v u1〈[a]�/b〉, and u0〈[a]�/b〉 (≈•)c

u1〈[a]�/b〉, hence the result holds.
Suppose t0 = t10 t

2
0, t1 = t11 t

2
1 with t10 (≈•)c t11 and t20 (≈•)c t21. We distinguish

three cases.

– If [b]t10 →v u0 (for some fresh b), then [a]t0 →v u0〈[a]� t20/b〉. By the in-
duction hypothesis, there exists u1 such that [b]t11 →∗

v u1 and u0 (≈•)c u1.
Consequently, we have [a]t1 →∗

v u1〈[a]� t21/b〉, and by definition of ≈•, we
have u0〈[a]� t20/b〉 (≈

•)c u1〈[a]� t21/b〉, as required.
– Suppose t10 = λx.t′0 and [b]t20 →v u0 for some fresh b; then we have [a]t0 →v

u0〈[a]λx.t
′
0 �/b〉. By the induction hypothesis, there exists u1 such that

[b]t21 →∗
v u1 and u0 (≈•)c u1. Because λx.t′0 (≈•)c t11, there exists a t

such that t′0 ≈• t and λx.t ≈ t11 by Lemma 34. From t′0 ≈• t, we deduce
[a]λx.t′0 � (≈•)c [a]λx.t〈[a]� t21/a〉 �, which implies u0〈[a]λx.t

′
0 �/b〉 (≈•)c

u1〈[a]λx.t〈[a]� t
2
1/a〉 �/b〉. Because λx.t ≈ t11, there exists v1 such that [a]t11 →∗

v

[a]v1, and we have [a]λx.t ≈ [a]v1. By Lemma 33, u1〈[a]λx.t〈[a]� t
2
1/a〉 �/b〉 ≈

u1〈[a]v1〈[a]� t
2
1/a〉 �/b〉 holds, so u0〈[a]λx.t

′
0 �/b〉 (≈•)c u1〈[a]v1〈[a]� t

2
1/a〉 �/b〉 holds

as well. Besides, we have [a]t1 →∗
v u1〈[a]v1〈[a]� t

2
1/a〉 �/b〉, hence we have the

required result.
– If t10 = λx.t′0 and t20 = λy.t′′0 , then [a]t0 →v [a]t′0{λx.t

′′
0/x}. By Lemma 34,

there exist closed t, t′ such that t′0 (≈•)c t, λx.t ≈ t11, t′′0 (≈•)c t′, and
λy.t′ ≈ t21. From t′0 (≈•)c t, we deduce t′0 (≈•)c t〈[a]� t21/a〉, and from
t′′0 (≈•)c t′, we deduce λy.t′′0 (≈•)c λy.t′〈[a]λx.t〈[a]� t

2
1/a〉 �/a〉. Consequently,

we have [a]t′0{λy.t
′′
0/x} (≈•)c [a]t〈[a]� t21/a〉{λy.t

′〈[a]λx.t〈[a]� t
2
1/a〉 �/a〉/x}.

From λy.t′ ≈ t21, by bisimilarity, there exists v1 such that [a]t21 →∗
v [a]v1,

and

[a]t〈[a]� t21/a〉{λy.t
′〈[a]λx.t〈[a]� t

2
1/a〉 �/a〉/x}

≈ [a]t〈[a]� t21/a〉{v1〈[a]λx.t〈[a]� t
2
1/a〉 �/a〉/x}

holds (clause 2). From λx.t ≈ t11, by bisimilarity, there exists t1 such that
[a]t11 →∗

v [a]λx.t1, and

[a]t〈[a]� t21/a〉{v1〈[a]λx.t〈[a]� t
2
1/a〉 �/a〉/x}

≈ [a]t1〈[a]� t21/a〉{v1〈[a]λx.t1〈[a]� t
2
1/a〉 �/a〉/x}

holds (clause 1). Finally, we have

[a]t′0{λy.t
′′
0/x} (≈•)c [a]t1〈[a]� t21/a〉{v1〈[a]λx.t1〈[a]� t

2
1/a〉 �/a〉/x},

and because [a]t1 →∗
v [a]t1〈[a]� t21/a〉{v1〈[a]λx.t1〈[a]� t

2
1/a〉 �/a〉/x}, we have

the required result.

Inria

Sound and Complete Bisimilarities for the λµ-Calculus 37

Suppose t0 = t′0〈E0/b〉, t1 = t′1〈E1/b〉 with t′0 (≈•)c t′1, E0 (≈•)c E1. If
[a]t0 →v u0, then in fact [a]t′0 →v u′

0 with u0 = u′
0〈E0/b〉. By the induction

hypothesis, there exists u′
1 such that [a]t′1 →∗

v u′
1 and u′

0 (≈•)c u′
1. Consequently,

we have [a]t1 →∗
v u′

1〈E1/b〉, and u′
0〈E0/b〉 (≈

•)c u′
1〈E1/b〉 holds, as wished. If [a]t0

is a named value, then in fact t′0 = λx.t′′′0 and t0 = λx.t′′′0 〈E0/b〉. The result holds
by using the induction hypothesis (and with some renaming of b into a fresh c
to avoid name clashes).

Lemma 37. The relation (≈•)c is an applicative simulation.

Proof. Let u0 (≈•)c u1; we prove the simulation clause by induction on u0 (≈•)c

u1.

If u0 ≈ u1, then the result holds by bisimilarity. If u0 ≈• u ≈◦ u1, then we
can conclude using the induction hypothesis and the bisimilarity definition.

If u0 (̃≈•)c u1, then we have two cases. Suppose u0 = [a]t0 and u1 = [a]t1
with t0 (≈•)c t1. If a /∈ fn(t0) ∪ fn(t1), then we can apply Lemma 36 directly
to get the required result. Otherwise, let b /∈ fn(t0) ∪ fn(t1). If u0 →v u′

0, then
[b]t0 →v u′′

0 and u′
0 = u′

0〈[a]�/b〉. We can apply Lemma 36 to [b]t0 and [b]t1, and
then rename b into a.

Suppose u0 = u′
0〈E0/a〉, u1 = u′

1〈E1/a〉 with u′
0 (≈•)c u′

1 and E0 (≈•)c E1.

If u0 is a named value, then we use the induction hypothesis, with some
renaming (as in the call-by-name case) to avoid some name clashes.

If u0 →v, then again we distinguish several cases. First, suppose u′
0 →v

u′′
0 ; then u0 →v u′′

0〈E0/a〉. By the induction hypothesis, there exists u′′
1 such

that u′
1 →∗

v u′′
1 and u′′

0 (≈•)c u′′
1 . Then u1 →∗

v u′′
1〈E1/a〉 and u′′

0〈E0/a〉 (≈•)c

u′′
1〈E1/a〉, hence the result holds.

Second, assume u′
0 = [a]λx.t0, E0 = E′

0[� v0] and u0 →v E′
0[t0〈E0/a〉{v0/x}].

By Lemma 35, there exists t such that λx.t0 (≈•)c t and [a]t ≈ u′
1. By Lemma 34,

there exists t′ such that t0 ≈• t′ and λx.t′ ≈ t. We can prove by induction on
E0 (≈•)c E1 that E1 = E′

1[� t′1] with E′
0 (≈•)c E′

1 and v0 (≈•)c t′1. Suppose
v0 = λx.t′0. By Lemma 34, there exists s such that t′0 ≈• s and λx.s ≈ t′1.
Let E′′

i , s′, t′′i be E′
i, s, and t′i with a renamed into a fresh c. From t0 (≈•)c t′,

λx.t′′0 (≈•)c t′′1 , and λx.t′′0 (≈•)c λx.s′, we deduce

[a]t0〈[a]� λx.t
′′
0/a〉{λx.t′′0/x} (≈•)c [a]t′〈[a]� t

′′
1/a〉{λx.s′/x}.

Because λx.s′ ≈ t′′1 , there exists v′1 such that [b]t′′1 →∗
v [b]v′1 (for a fresh b),

and [a]t′〈[a]� t′′1/a〉{λx.s′/x} ≈ [a]t′〈[a]� t′′1/a〉{v′1〈[a]λx.t
′〈[a]� t

′′
1/a〉 �/b〉/x} (using

the second item of the value case of the bisimulation definition). Because λx.t′ ≈
t, there exists t′′ such that [a]t →∗

v [a]λx.t′′ and

[a]t′〈[a]� t
′′
1/a〉{v′1〈[a]λx.t

′〈[a]� t
′′
1/a〉 �/b〉/x}

≈ [a]t′′〈[a]� t
′′
1/a〉{v′1〈[a]λx.t

′′〈[a]� t
′′
1/a〉 �/b〉/x}

RR n° 8447

38 Biernacki & Lenglet

(by clause 1). Because [a]λx.t′ ≈ u′
1, there exists t1 such that u′

1 →∗
v [a]λx.t1

and we have also

[a]t′′〈[a]� t
′′
1/a〉{v′1〈[a]λx.t

′′〈[a]� t
′′
1/a〉 �/b〉/x}

≈ [a]t1〈[a]� t
′′
1/a〉{v′1〈[a]λx.t1〈[a]� t

′′
1/a〉 �/b〉/x}

by clause 1. Finally, we obtain

[a]t0〈[a]� λx.t
′′
0/a〉{λx.t′′0/x} (≈•)c [a]t1〈[a]� t

′′
1/a〉{v′1〈[a]λx.t1〈[a]� t

′′
1/a〉 �/b〉/x}

by transitivity of ≈ and definition of ≈•, from which we can deduce

E′′
0 [t0〈E

′′
0 [� λx.t

′′
0]/a〉{λx.t′′0/x}]

(≈•)c E′′
1 [t1〈E

′′
1 [� t

′′
1]/a〉{v′1〈E

′′
1 [λx.t1〈E

′′
1 [� t

′′
1]/a〉 �]/b〉/x}].

Renaming c back into a, we get

E′
0[t0〈E

′
0[� λx.t

′
0]/a〉{λx.t′0/x}]

(≈•)c E′
1[t1〈E

′
1[� t

′
1]/a〉{v1〈E

′
1[λx.t1〈E

′
1[� t

′
1]/a〉 �]/b〉/x}]

(assuming v1 is the result of renaming c into a in v′1), which is the same as

E′
0[t0〈E0/a〉{λx.t′0/x}] (≈

•)c E′
1[t1〈E1/a〉{v1〈E

′
1[λx.t1〈E1/a〉 �]/b〉/x}].

One can check that u1 →∗
v E′

1[t1〈E1/a〉{v1〈E
′
1[λx.t1〈E1/a〉 �]/b〉/x}], hence the result

holds.
Finally, the last case is u′

0 = [a]v0, E0 = E′
0[λx.t0 �], which give u0 →v

E′
0[t0{v0〈E0/a〉/x}]. This case is similar to the previous one and is left to the

reader.

Inria

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

