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Abstract

When do the visual rays associated with triplets of point

correspondences converge, that is, intersect in a common

point? Classical models of trinocular geometry based on

the fundamental matrices and trifocal tensor associated

with the corresponding cameras only provide partial an-

swers to this fundamental question, in large part because of

underlying, but seldom explicit, general configuration as-

sumptions. This paper uses elementary tools from projec-

tive line geometry to provide necessary and sufficient geo-

metric and analytical conditions for convergence in terms

of transversals to triplets of visual rays, without any such

assumptions. In turn, this yields a novel and simple min-

imal parameterization of trinocular geometry for cameras

with non-collinear or collinear pinholes.

1. Introduction

The images of points recorded by multiple cameras may

only match when the corresponding visual rays converge—

that is, intersect in a common point (Figure 1, left). For two

views, this condition is captured by the bilinear epipolar

constraint and the corresponding fundamental matrix [8, 9].

Three images can be characterized by both the pairwise

epipolar constraints associated with any two of the pic-

tures, and a set of trilinearities associated with all three

views and parameterized by the associated trifocal ten-

sor [5, 15, 16, 22]. For cameras with non-collinear pin-

holes, at least, the rays associated with three image points

that satisfy the corresponding epipolar constraints almost

always converge: The only exception is when the points

have been matched incorrectly, and all lie in the trifocal

plane spanned by the three pinholes (Figure 1, right). Inter-

estingly, Hartley and Zisserman state that the fundamental

matrices associated with three cameras with non-collinear

pinholes determine the corresponding trifocal tensor [6, Re-

sult 14.5], while Faugeras and Mourrain [3] and Ponce et

al. [12], for example, note that the rays associated with three

points only satisfying certain (and different) subsets of the

trilinearities alone must intersect. These claims contradict
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Figure 1. Left: Visual rays associated with three (correct) corre-

spondences. Right: Degenerate epipolar constraints associated

with three coplanar, but non-intersecting rays lying in the trifo-

cal plane τ (as in the rest of this presentation, the image planes are

omitted for clarity in this part of the figure). See text for details.

each other, since rays that satisfy epipolar constraints do

not always converge, but they are true under some general

configuration assumptions, rarely made explicit. It is thus

worth clarifying these assumptions, and understanding ex-

actly how much the trifocal constraints add to the epipolar

ones for point correspondences. This is the problem ad-

dressed in this paper, using elementary projective line ge-

ometry. In particular, our analysis shows that exploiting

both the epipolar constraints and one or two of the trinoc-

ular ones, depending on whether the camera pinholes are

collinear or not, always guarantees the convergence of the

corresponding visual rays. Our analysis also provides, in

both cases, a novel and simple minimal parameterization of

trinocular geometry.

1.1. Related Work

Geometric constraints involving multiple perspective

views of the same point (Figure 1, left) have been stud-

ied in computer vision since the seminal work of Longuet-

Higgins, who proposed in 1981 the essential matrix as a bi-

linear model of epipolar constraints between two calibrated

cameras [8]. Its uncalibrated counterpart, the fundamental

matrix, was introduced by Luong and Faugeras [9]. The tri-

linear constraints associated with three views of a straight

line were discovered by Spetsakis and Aloimonos [16] and

by Weng, Huang and Ahuja [22]. The uncalibrated case was

tackled by Shashua [15] and by Hartley [5], who coined the

term trifocal tensor. The quadrifocal tensor was introduced

by Triggs [20], and Faugeras and Mourrain gave a sim-
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Figure 2. Top: The possible configurations of three pairwise-

coplanar distinct lines, classified according to the way they inter-

sect. The three given lines are shown in black; the planes where

two of them intersect are shown in green; and the points where

two of the lines intersect are shown in red. Bottom: Transversals

to the three lines, shown in blue, and forming (1) a line bundle; (2)

a degenerate congruence; and (3) a line field.

ple characterization of all multilinear constraints associated

with multiple perspective images of a point [3]. The usual

formulation of the trilinear constraints associated with three

images of the same point are asymmetric, one of the images

playing a priviledged role. A simple and symmetric formu-

lation based on line geometry was introduced in [12]. A few

minimal parameterizations of trinocular geometry are also

available [1, 11, 14, 19]. From a historical point of view, it is

worth noting that epipolar constraints were already known

by photogrammeters long before they were (re)discovered

by Longuet-Higgins [8], as witnessed by the 1966 Manual

of Photogrammetry [17], but that this book does not men-

tion trilinear constraints, although it discusses higher-order

trinocular (scale-restraint condition equations).

The direct derivation of trifocal constraints for point cor-

respondences typically amounts to writing that all 4×4 mi-

nors of some k × 4 matrix are zero, thus guaranteeing that

the three lines intersect [3, 12]. These determinants are then

rewritten as linear combinations of reduced minors that are

bilinear or trilinear functions of the image point coordinates.

The whole difficulty lies in selecting an appropriate subset

of reduced minors that will always guarantee that the rays

intersect. We have already observed that the bilinear epipo-

lar constraints, alone, are not sufficient. We are not aware

of any fixed set of four trilinearities that, alone, guarantee

convergence in all cases. This suggests seeking instead ap-

propriate combinations of bilinear and trilinear constraints,

which is the approach taken in this presentation.

1.2. Problem Statement and Proposed Approach

As noted earlier, the goal of this paper is to understand

exactly how much the trifocal constraints add to the epipo-

lar ones for point correspondences. Since both types of

constraints model incidence relationships among the light

rays joining the cameras’ pinholes to observed points, we

address this problem using the tools of projective geome-

try [21] in general, and line geometry [13] in particular. As

noted earlier, the trifocal tensor was originally invented to

characterize the fact that three image lines δ1, δ2, and δ3
are the projections of the same scene line δ [15, 16, 22]

(Figure 1, left). The trilinearities associated with three im-

age points y
1
, y

2
, and y

3
were then obtained by construct-

ing lines δ1, δ2, and δ3 passing through these points, and

whose preimage is a line δ passing through the correspond-

ing scene point x. By construction, this line is a transversal

to the three rays ξ
1
, ξ

2
, and ξ

3
, that is, it intersects them. It

is therefore not surprising that much of the presentation will

be dedicated to the characterization of the set of transversals

to a triplet of lines.

In particular, we have already seen that the fact that three

lines intersect pairwise is necessary, but not sufficient for

these lines to intersect. We will show in the rest of this pre-

sentation that a necessary and sufficient condition for three

lines to converge is in fact that they be pairwise coplanar

and admit a well defined family of transversals. We will

also give a simple geometric and analytical characterization

of these transversals under various assumptions. When ap-

plied to camera systems, it will provide in turn a new and

simple minimal parameterization of trinocular geometry.

Contributions

• We give a new geometric characterization of triplets of

converging lines in terms of transversals to these lines

(Proposition 1).

• We provide a novel and simple analytical characterization

of triplets of converging lines (Lemma 3 and Proposition 2),

that does not rely on the assumptions of general configura-

tion implicit in [12].

• We show by applying these results to camera geometry

that the three epipolar constraints and one of the trifocal

ones (two if the pinholes are collinear) are necessary and

sufficient for the corresponding optical rays to converge

(Propositions 3 and 4).

• We introduce a new analytical parameterization of epipo-

lar and trifocal constraints, leading to a minimal parameter-

ization of trinocular geometry (Propositions 5 and 6).

2. Converging Triplets of Lines

2.1. Geometric Point of View

All lines considered from now on are assumed to be dif-

ferent from each other. A transversal to some family of

lines is a line intersecting every element of this family. We
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Figure 3. Top: The possible configurations of three distinct, non-

pairwise-coplanar lines, classified according to the way they in-

tersect. Bottom: Transversals to the three lines, forming (4) two

pencils of lines having one of the input lines (in black) in common

(5) two pencils of lines having one line (in red) in common; and

(6) a non-degenerate regulus. See text for details.

prove in this section the following main result.

Proposition 1. A necessary and sufficient condition for

three lines to converge is that they be pairwise coplanar,

and that they admit a transversal not contained in the planes

defined by any two of them.

To prove Proposition 1, we need two intermediate re-

sults. In projective geometry, two straight lines are either

skew to each other or coplanar, in which case they inter-

sect in exactly one point. Our first lemma enumerates the

possible incidence relationships among three lines.

Lemma 1. Three distinct lines can be found in exactly six

configurations (Figures 2 and 3, top): (1) the three lines are

not all coplanar and intersect in exactly one point; (2) they

are coplanar and intersect in exactly one point; (3) they are

coplanar and intersect pairwise in three different points; (4)

exactly two pairs of them are coplanar (or, equivalently, in-

tersect); (5) exactly two of them are coplanar; or (6) they

are pairwise skew.

The proof is by enumeration. Lemma 1 has an immedi-

ate, important corrolary—that is, when three lines are pair-

wise coplanar, either they are not coplanar and intersect in

one point (case 1); they are coplanar and intersect in one

point (case 2); or they are coplanar, and intersect pairwise

in three different points (case 3). In particular, epipolar

constraints are satisfied for triplets of (incorrect) correspon-

dences associated with images of points in the trifocal plane

containing the pinholes of three non-collinear cameras.

To go further, it is useful to introduce a notion of linear

(in)dependence among lines. The geometric definition of

independence of lines matches the usual algebraic definition

of linear independence, in which, given a coordinate sys-

tem, a necessary and sufficient for k lines to be linearly de-

pendent is that some nontrivial linear combination of their

Plücker coordinate vectors (Section 2.2.1) be the zero vector

of R6. Geometrically, the lines linearly dependent on three

skew lines form a regulus [21]. A regulus is either a line

field, formed by all lines in a plane; a line bundle, formed

by all lines passing through some point; the union of all

lines belonging to two flat pencils lying in different planes

but sharing one line; or a non-degenerate regulus formed by

one of the two sets of lines ruling a hyperboloid of one sheet

or a hyperbolic paraboloid. Linear (in)dependence of four

or more lines can be defined recursively. Armed with these

definitions, we obtain an important corollary of Lemma 1.

Lemma 2. Three distinct lines always admit an infinity of

transversals, that can be found in exactly six configurations

(Figures 2 and 3, bottom): (1) the transversals form a bun-

dle of lines; (2) they form a degenerate congruence consist-

ing of a line field and of a bundle of lines; (3) they form a

line field; (4) they form two pencils of lines having one of

the input lines in common; (5) they form two pencils of lines

having a line passing through the intersection of two of the

input lines in common; or (6) they form a non-degenerate

regulus, with the three input lines in the same ruling, and

the transversals in the other one.

Lemma 2 should not come as a surprise since the

transversals to three given lines satisfy three linear con-

straints and thus form in general a rank-3 family (the de-

generate congruence is a rank-4 exception [21]). Without

additional assumptions, not much more can be said in gen-

eral, since Lemma 2 tells us that any three distinct lines

admit an infinity of transversals. When the lines are, in ad-

dition, pairwise coplanar, cases 4 to 6 in Lemmma 2 are

eliminated, and we obtain Proposition 1 as an immediate

corollary of this lemma.

2.2. The Analytical Point of View

2.2.1 Preliminaries

To translate the geometric results of the previous section

into analytical ones, it is necessary to recall a few basic

facts about projective geometry in general, and line geome-

try in particular. Readers familiar with Plücker coordinates,

the join operator, etc., may safely proceed to Section 2.2.2.

Given some choice of coordinate system for some two-

dimensional projective space P
2, points and lines in P

2 can

be identified with their homogeneous coordinate vectors in

R
3. In addition, if x and y are two distinct points on a line

ξ in P
2, we have ξ = x × y. A necessary and sufficient

condition for a point x to lie on a line ξ is ξ · x = 0, and

two lines intersect in exactly one point or coincide. A nec-



essary and sufficient conditions for three lines to intersect is

that they be linearly dependent, or Det(ξ
1
, ξ

2
, ξ

3
) = 0.

In three dimensions, given any choice of coordinate sys-

tem for a three-dimensional projective space P
3, we can

identify any line in P
3 with its Plücker coordinate vector

ξ = (u;v) in R
6, where u and v are vectors of R3, and we

use a semicolon to indicate that the coordinates of u and v

have been stacked onto each other to form a vector in R
6.

In addition, if x and y are two distinct points on some line

ξ = (u;v) in P
3, we have

u =

[

x4y1 − x1y4
x4y2 − x2y4
x4y3 − x3y4

]

, and v =

[

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

]

. (1)

A Plücker coordinate vector is only defined up to scale,

and its u and v components are by construction orthoganal

to each other—this is sometimes known as the Klein con-

straint u · v = 0. Let us consider the symmetric bilinear

form R
6 × R

6 → R associating with two elements λ =
(a; b) and µ = (c;d) of R6 the scalar (λ|µ) = a ·d+b ·c.

A necessary and sufficient for a nonzero vector ξ in R
6 to

represent a line is that (ξ|ξ) = 0, and a necessary and suf-

ficient condition for two lines λ and µ to be coplanar (or,

equivalently, to intersect) is that (λ|µ) = 0.

Let us denote the basis points of some arbitrary pro-

jective coordinate system by x0 to x4, with coordinates

x0 = (0, 0, 0, 1)T , x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T ,

x3 = (0, 0, 1, 0)T , and x4 = (1, 1, 1, 1)T . Points x0 to

x3 are called the fundamental points. The point x4 is the

unit point. Let us also define four fundamental planes pj

(j = 0, 1, 2, 3) whose coordinate vectors are the same as

those of the fundamental points. The unique line joining

two distinct points is called the join of these points and it is

denoted by x ∨ y. Likewise, the unique plane defined by a

line ξ = (u;v) and some point x not lying on this line is

called the join of ξ and x, and it is denoted by ξ ∨ x. Al-

gebraically, we have ξ ∨ x = [ξ
∨
]x, where [ξ

∨
] is the join

matrix defined by

[ξ
∨
] =

[

[u×] v

−vT 0

]

. (2)

A necessary and sufficient condition for a point x to lie on

a line ξ is that ξ ∨ x = 0.

2.2.2 Back to Transversals

Let us translate some of the geometric incidence constraints

derived in the previous section into algebraic ones. We

assume that some projective coordinate system is given,

and identify points, planes, and lines with their homoge-

neous coordinate vectors. Let us consider three distinct

lines ξj = (ξ1j , . . . , ξ6j)
T (j = 1, 2, 3) and define

Dijk =
ξi1 ξi2 ξi3
ξj1 ξj2 ξj3
ξk1 ξk2 ξk3

(3)

to be the 3 × 3 minor of the 6 × 3 matrix [ξ
1
, ξ

2
, ξ

3
] cor-

responding to its rows i, j, and k. A necessary and suffi-

cient condition for this matrix to have rank 2, and thus for

the three lines to form a flat pencil (Section 2.1), is that

all the minors T0 = D456, T1 = D234, T2 = D315, and

T3 = D126 be equal to zero.

Lemma 3. Given some integer j in {0, 1, 2, 3}, a neces-

sary and sufficient condition for ξ
1
, ξ

2
, and ξ

3
to admit a

transversal passing through xj is that Tj = 0.

Proof. Let us prove the result in the case j = 0. The

proofs for the other cases are similarA necessary and suf-

ficient condition for a line δ = (u;v) to pass through x0 is

that v = 0 (this follows from the form of the join matrix).

Thus a necessary and sufficient condition for the existence

of a line δ passing through x0 and intersecting the lines

ξj = (uj ;vj) is that there exists a vector u 6= 0 such that

(ξj |δ) = vj · u = 0 for j = 1, 2, 3, or, equivalently, that

the determinant T0 = D456 = |v1,v2,v3| be zero.

Combining Proposition 2 and Lemma 3 now yields the

following important result.

Proposition 2. A necessary and sufficient condition for

three lines ξ
1
, ξ

2
, and ξ

3
to converge is that (ξi|ξj) = 0 for

all i 6= j in {1, 2, 3}, and that Tj = 0 for all j in {0, 1, 2, 3}.

Proof. The condition is clearly necessary. To show that is is

sufficient, note that since the three lines are pairwise copla-

nar, they either intersect in exactly one point (cases 1 and

2 of Lemma 2), or are all coplanar, intersecting pairwise in

three distinct points, with all their transversals in the same

plane (case 3). But the latter case is ruled out by Lemma 3

and the condition Tj = 0 for j = 0, 1, 2, 3 since the funda-

mental points xj are by construction not all coplanar, and at

least one of them (and thus the corresponding transversal)

does not lie in the plane containing the three lines.

3. Converging Triplets of Visual Rays

3.1. Bilinearities or Trilinearities?

Let us now turn our attention from general systems of

lines to the visual rays associated with three cameras. As

noted earlier, it follows from Lemma 1 that the epipolar

constraints alone do not ensure that the corresponding view-

ing rays intersect (Figure 1, right). On the other hand, the

only case where they do not is when the corresponding rays

lie in the trifocal plane when the camera pinholes are not
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Figure 4. Degenerate epipolar constraints associated with three im-

ages when the three pinholes are collinear and the rays are copla-

nar but don’t intersect in a common point.

collinear, or in any plane containting the line joining the

three pinholes when they are (Figure 4).

Contrary to the claim of [12, Appendix], the trilinear

conditions Tj = 0 (j = 0, 1, 2, 3) associated with three vi-

sual rays do not guarantee, on their own, that the rays inter-

sect: In fact, one can in general construct a two-dimensional

family of triplets of non-intersecting visual rays passing

through three given non-collinear pinholes and satisfying

these constraints. Likewise, although one can show that

some set of trilinearities can always be chosen to ensure the

convergence of the corresponding visual rays, we are not

aware of any fixed set of trilinearities with the same guaran-

tees, which in turns appears to contradict [3, Sec. 4.2.2]

(also the discussion in [7]). This apparent contradiction

stems from the fact that both Faugeras and Mourrain [3]

and Ponce et al. [12] characterize the convergence of visual

rays by the vanishing of certain trilinear reduced minors of

a k × 4 matrix, and have to (implicitly at times) resort to

general configuration assumptions to select a representative

set of minors. Characterizing the convergence of triplets of

lines directly in terms of both binocular and trinocular con-

straints, as in Proposition 2, avoids this difficulty.

3.2. Bilinearities and Trilinearities

By definition, for any choice of projective coordinate

system, the four fundamental points xj (j = 0, 1, 2, 3) are

not coplanar. When the three pinholes are not collinear, it is

thus always possible to choose a projective coordinate sys-

tem such that one of the fundamental points, say x0, does

not lie in the trifocal plane, and we obtain the following im-

mediate corollary of Proposition 2.

Proposition 3. Gven three cameras with non-collinear pin-

holes c1, c2, and c3, and any projective coordinate sys-

tem such that x0 does not belong to the trifocal plane, a

necessary and sufficient for the three rays ξj = cj ∨ yj

(j = 1, 2, 3) to converge is that is that (ξi|ξj) = 0 for all

i 6= j in {1, 2, 3}, and T0 = 0.

When the three pinholes are collinear (but of course dis-

β
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c
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β

x
0

c
1

2

Figure 5. For collinear pinholes, there exists a single scene plane

π0 in the pencil passing through the baseline β that containts x0

and for which the condition T0 = 0 is ambiguous.

tinct), the three cameras admit a single pencil of epipolar

planes, and three rays in epipolar correspondence are in fact

always coplanar (Figure 4). The trifocal constraints are nec-

essary in this case to ensure that the three lines intersect

in exactly one point. Note that, given three cameras with

collinear pinholes, one can always choose a projective co-

ordinate system such that the two fundamental points x0

and xj (for any j in {1, 2, 3}) and the baseline joining the

three pinholes are not coplanar. The following result char-

acterizes the fact that visual rays intersect in this setting.

Proposition 4. Given three cameras with collinear pin-

holes c1, c2, and c3, and any projective coordinate system

such that the fundamental points x0 and x1 and the base-

line β joining the pinholes are not coplanar, a necessary

and sufficient condition for the three rays ξj = cj ∨ yj

(j = 1, 2, 3) to intersect is that is that (ξi|ξj) = 0 for all

i 6= j in {1, 2, 3}, and T0 = Tj = 0 for some j 6= 0.

Proof. The condition is clearly necessary. Because of the

epipolar constraints, the three rays must be coplanar, and

either intersect in three distinct points with all their transver-

sals in the same plane, intersect in a single point, or coincide

with the baseline. Unless the point x0 lies in the plane π0

that contains the rays (Figure 5), the first case is ruled out

by the condition T0 = 0. If x0 lies in π0, xj does not (by

construction), and the first case is ruled out by Tj = 0.

3.3. Minimal Parameterizations

3.3.1 Non-Collinear Pinholes

We assume in this section that the three pinholes are not

aligned. In this case, we can always choose a projective

coordinate system such that the three fundamental points

distinct from x0 are the three camera centers—that is, cj =
xj for j = 1, 2, 3, and x0 does not lie in the trifocal plane.

With our choice of coordinate system, and the notation

yj = (y1j , y2j , y3j , y4j)
T , the three epipolar constraints



can be written as

(x1 ∨ y
1
|x2 ∨ y

2
) = 0

(x1 ∨ y
1
|x3 ∨ y

3
) = 0

(x2 ∨ y
2
|x3 ∨ y

3
) = 0

⇐⇒
y41y32 = y31y42
y41y23 = y21y43
y42y13 = y12y43

. (4)

Given these constraints, we know from Proposition 2 that

a necessary and sufficient conditions for the three visual

rays to intersect is that T0 = 0 (the other three trilinearities

are trivially satisfied with our choice of coordinate system),

which is easily rewritten in our case as

y21y32y13 = y31y12y23. (5)

Note that y4j = 0 if and only if yj lies in p
0
, which is

also the trifocal plane in our case. As expected, it follows

immediately from Eqs. (4) and (5) that, unless y41 = y42 =
y43 = 0, that is, the observed point lies in the trifocal plane,

the epipolar constraints imply the trifocal ones. We now

need to translate Eqs. (4-5) to the corresponding equations

in image coordinates. Let us denote by Πj (j = 1, 2, 3)

the 4 × 3 matrix formed by the coordinate vectors of the

basis points for the retinal plane of camera number j. The

position of an image point with coordinate vector uj in that

basis is thus yj = Πjuj . Let us denote by πT
ij the ith row

of the matrix Πj , and use superscripts to index coordinates,

i.e., for k = 1, 2, 3, πk
ij denotes the kth coordinate of πij .

Proposition 5. Given three cameras with non-collinear

pinholes and hypothetical point correspondences u1, u2,

and u3, a necessary and sufficient condition for the three

corresponding rays to converge is that

uT
1
F12u2 = 0

uT
1
F13u3 = 0

uT
2
F23u3 = 0

where

F12 = π41π
T
32

− π31π
T
42

F13 = π41π
T
23

− π21π
T
43

F23 = π42π
T
13

− π12π
T
43

, and

(6)

(π21·u1)(π32·u2)(π13·u3) = (π31·u1)(π12·u2)(π23·u3),
(7)

where the vectors π1 = (π21;π31;π41), π2 =
(π12;π32;π42), and π3 = (π13;π23;π43), satisfy the 6

homogeneous constraints

π1

21
= 0,

π2

31
= π3

41
,

π2

32
= 0,

π3

12
= π1

42
,

π3

13
= 0,

π1

23
= π2

43
,

(8)

and are thus defined by three groups of 7 coefficients, each

one uniquely determined up to a separate scale. This is a

minimal, 18dof parameterization of trinocular geometry.

Proof. Equations (6) and (7) are obtained immediately by

substitution in Eqs. (4) and (5). Together, they provide a

24dof parameterization of the trifocal geometry by the three

vectors πj = (π1j ;π2j ;π3j) (j = 1, 2, 3), each defined up

to scale in R
9 by 8 independent parameters. Locating the

camera pinholes at the fundamental points xj (j = 1, 2, 3)

freezes 9 of the 15 degrees of freedom of the projective am-

biguity of projective structure from motion. It is possible to

exploit the remaining 6 degrees of freedom, and to impose

the constraints of Eq. (8) on the vectors πj .

Indeed, the general form of a projective transform Q

mapping the three fundamental points xj onto themselves

has 7 coefficients defined up to scale. Applying such a

transform to the matrices Πj (j = 1, 2, 3) defined in some

arbitrary projective coordinate system, and writing that the

matrices QΠj must satisfy the constraints of Eq. (8) yields

a system of 6 homogeneous equations in the 7 nonzero en-

tries of Q. Note that we can generate many different sets of

homogeneous constraints by choosing different sets of en-

tries of the vectors π1, π2, and π3. It can be shown that

there is always some choice for which the system defining

Q admits a unique solution defined up to scale, and that this

solution is nonsingular, thus defining a valid change of co-

ordinates. Together, Eqs. (6), (7) and (8) provide us with a

minimal, 18dof parameterization of the trinocular geometry

by the three vectors π1, π2 and π3 now each defined up to

scale in R
9 by only 6 independent parameters.

To the best of our knowledge, the minimal parameteriza-

tion of trinocular geometry proposed by Papadopoulo and

Faugeras [11] is the only other one known so far to be one-

to-one and parametric (other minimal ones, e.g., [1, 19], im-

pose algebraic constraints). Contrary to [11], our parame-

terization does not require the use of a computer algebra

system to impose rank constraints (see [11] for details). In

addition, our parameterization is symmetric, none of the

cameras playing a priviledged role.

Let us close this section by noting that Eq. (7) has an

interesting geometric interpretation: Any point with coordi-

nate vector u1 in the first image that matches points with co-

ordinate vectors u2 and u3 in the other two, must satisfy (7)

and thus belong to the “trinocular line” (our terminology):

τ 1 = [(π32 ·u2)(π13 ·u3)]π21− [(π12 ·u2)(π23 ·u3)]π31.

(9)

This should not come as a surprise since classical trifocal

geometry is defined in terms of line correspondences, and

Eq. (7) merely expresses the fact that the image point y
1

lies on the projection τ 1 of the line τ 0 passing through x0

that intersects the rays passing through the other two image

points, y
2

and y
3
. What is less well known is that the lines

τ 1 belong to the pencil generated by the lines π21 and π31,

which intersect at the point z1 = π21 × π31 of the first

image. The same reasoning applies to the other two images.

3.3.2 Collinear Pinholes

Let us now assume that the three pinholes are collinear (as

noted in [10], this case may be important in practice, in

aerial photography for example). Let us position the two



pinholes c1, c2 in x1 and x2, and the third pinhole, c3,

in x1 + x2. We are free to do this since this amounts to

choosing c1 and c2 as the fundamental points of the base-

line joining the three pinholes, and c3 as its unit point. From

Eq. (4):

y41y32 = y31y42, y41y33 = y31y43, y42y33 = y32y43,

(10)

and write T0 = 0 and T3 = 0 respectively as

y31y32(y23 − y13) + y33(y31y12 − y21y32) = 0,
y41y42(y23 − y13) + y43(y41y12 − y21y42) = 0.

(11)

The other two minors T1 and T2 are zero with our choice of

coordinate system.

We can rewrite as before Eqs. (10) and (11) in terms of

the rows of the matrices Πj (j = 1, 2, 3). Given the special

role of y23 − y13 in Eq. (11), it is convenient to introduce

the vector ω3 = π23 − π13, and we obtain the following

characterization of the trinocular geometry.

Proposition 6. Given three cameras with collinear pin-

holes and hypothetical point correspondences u1, u2, and

u3, a necessary and sufficient condition for the three corre-

sponding rays to converge is that

uT
1
F12u2 = 0

uT
1
F13u3 = 0

uT
2
F23u3 = 0

where

F12 = π41π
T
32

− π31π
T
42

F13 = π41π
T
33

− π31π
T
43

F23 = π42π
T
33

− π32π
T
43

,

(12)
0 = (π31 · u1)(π32 · u2)(ω3 · u3)+
(π33 · u3)[(π31 · u1)(π12 · u2)− (π21 · u1)(π32 · u2)],
0 = (π41 · u1)(π42 · u2)(ω3 · u3)+
(π43 · u3)[(π41 · u1)(π12 · u2)− (π21 · u1)(π42 · u2)],

(13)

where the vectors π1 = (π21;π31;π41), π2 =
(π12;π32;π42) and π3 = (ω3;π33;π43) satisfy the 8 ho-

mogeneous constraints

π1

21
= 0, π2

31
= 0, π1

12
= 0, π2

42
= 0,

π3

31
= π3

21
, π3

32
= π3

42
, ω1

3
= ω2

3
= ω3

3
,

(14)

and are thus defined by three groups of, respectively, 6, 6,

and 7 independent coefficients, each uniquely determined

up to a separate scale, for a total of 16 independent param-

eters. This is a minimal, 16dof trinocular parameterization.

Proof. Equations (12) and (13) are obtained immediately

by substitution in Eqs. (10) and (11). Together they provide

a 24dof parameterization of the trifocal geometry by the

three vectors πj (j = 1, 2, 3), each defined up to scale in R
9

by 8 independent parameters. Locating the camera pinholes

in x1, x2, and x1 + x2 freezes 7 of the 15 degrees of free-

dom of the projective ambiguity of projective structure from

motion. Similar to the proof of Proposition 5, the remaining

8 degrees of freedom can be used to impose the constraints

Figure 6. (Top) Example trinocular lines recovered from corre-

spondences in three images; (Bottom) Estimated epipolar lines

(two sets per image). Note that the two families of epipolar lines

associated with an image typically contain (near) degenerate pairs

that can be disambiguated using trilinearities.

of Eq. (14) on the vectors πj . Together, Eqs. (12), (13) and

(14) provide us with a minimal, 16dof parameterization of

the trinocular geometry by the three vectors π1, π2 and π3

now each defined up to scale in R
9 by only 5, 5, and 6 inde-

pendent parameters.

3.4. Preliminary Implementation

Proposition 5 can be used to estimate the vectors πj

associated with three cameras with non-collinear pinholes

from at least six correspondences between three images:

Initial values for these vectors are easily obtained from

the corresponding projection matrices, estimated from six

triplets of matching points using an affine or projective

model [2, 18]. The vectors πj are then refined by minimiz-

ing the mean-squared distance between all data points and

the corresponding epipolar and trinocular lines. We have

constructed a preliminary implementation of this method,

and Figure 6 shows an example with 38 correspondences

between three images, and the corresponding epipolar and

trinocular lines (data courtesy of B. Boufama and R. Mohr).

Table 1 shows the average distances between the data points

and these lines. The mean distance to epipolar lines is on the

order of 1pixel, and comparable to that obtained by classical

techniques for estimating the fundamental matrix from pairs

of images on the same data [4, Ch. 8]. Our method, on the

other hand, is by construction robust to degeneracies with

points lying near the trifocal plane. Further experiments

and comparisons with other minimal parameterizations of

the trinocular geometry [1, 11, 14, 19] are of course needed

to truly assess the promise of our approach.

4. Discussion

We have characterized both geometrically and analyt-

ically the role of point trilinearities in multi-view geom-



Init. E12 E13 E23 E21 E31 E32 T1 T2 T3

Aff. 1.0 1.0 0.9 1.0 0.9 0.9 6.3 0.9 0.8

Proj. 2.0 1.6 1.3 1.9 1.5 1.2 7.7 1.7 1.1

Table 1. Quantitative results for the dataset of Figure 6 and

affine [18] and projective [2] initializations. Here, “Eij” refers

to the distance between points in image i and the corresponding

epipolar lines associated with image j, and “Tj” refers to the dis-

tance between points in image j and the corresponding trinocular

line associated with the other two images.

etry. Although the nature of our presentation has been

mainly theoretical (what are trifocal constraints really for?),

our analysis has led to a new minimal parameterization

of trinocular geometry for both non-collinear and collinear

pinholes, and we have presented a preliminary implementa-

tion in the non-collinear case. A full-fledged experimental

evaluation of this implementation and its extension to the

collinear case is next on our agenda.

One may of course wonder whether the fact that four

lines intersect in exactly one point can also be character-

ized geometrically or analytically. Indeed, there exists a

quadrifocal tensor expressing the corresponding four-view

constraints [20], and it has been shown to be redundant with

the epipolar and trifocal constraints. In retrospect, it is geo-

metrically obvious that a necessary and sufficient condition

for four lines to intersect in exactly one point is that any

two triplets of lines among them also does: This follows

immediately from the fact that these triplets have two lines

in common, so the point where these two lines intersect is

aso the point where all four lines intersect.

In other words, there is no need to write any equation

to realize that considering four lines together instead of a

set of triplets does not add anything to the geometric pic-

ture in this case. On the other hand, the natural algebraic

constraints to write among four lines is that they be linearly

dependent, which is equivalent to writing that all 4× 4 mi-

nors of the 6× 4 matrix formed by their Plücker coordinate

vectors be zero. This yields a set of quadrilinear constraints

similar to the quadrifocal ones. However, the elements of a

rank-3 family of lines do not necessarily intersect in a single

point: Instead they form a regulus, in one of the configura-

tions shown in Figure 3, which of course includes bundles.

Thus quadrilinearities, on their own, are neither necessary

(which was already known), nor sufficient, to characterize

the fact that the corresponding visual rays intersect. This is

intriguing, and perhaps a step toward future work.
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