
HAL Id: hal-01055279
https://hal.inria.fr/hal-01055279

Submitted on 12 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the Gap between Legacy Services and Web
Services

Tegawendé F. Bissyandé, Laurent Réveillère, Yérom-David Bromberg, Julia L.
Lawall, Gilles Muller

To cite this version:
Tegawendé F. Bissyandé, Laurent Réveillère, Yérom-David Bromberg, Julia L. Lawall, Gilles Muller.
Bridging the Gap between Legacy Services and Web Services. Middleware 2010 - ACM/IFIP/USENIX
11th International Middleware Conference, Nov 2010, Bangalore, India. pp.273-292, �10.1007/978-3-
642-16955-7_14�. �hal-01055279�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49604424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01055279
https://hal.archives-ouvertes.fr

Bridging the Gap between Legacy Services

and Web Services

Tegawendé F. Bissyandé1, Laurent Réveillère1, Yérom-David Bromberg1

Julia L. Lawall2,3, and Gilles Muller3

1 LaBRI, University of Bordeaux, France
2 DIKU, University of Copenhagen, Denmark

3 INRIA/Lip6, France

Abstract. Web Services is an increasingly used instantiation of Service-Oriented

Architectures (SOA) that relies on standard Internet protocols to produce services

that are highly interoperable. Other types of services, relying on legacy applica-

tion layer protocols, however, cannot be composed directly. A promising solution

is to implement wrappers to translate between the application layer protocols and

the WS protocol. Doing so manually, however, requires a high level of exper-

tise, in the relevant application layer protocols, in low-level network and system

programming, and in the Web Service paradigm itself.

In this paper, we introduce a generative language based approach for constructing

wrappers to facilitate the migration of legacy service functionalities to Web Ser-

vices. To this end, we have designed the Janus domain-specific language, which

provides developers with a high-level way to describe the operations that are re-

quired to encapsulate legacy service functionalities. We have successfully used

Janus to develop a number of wrappers, including wrappers for IMAP and SMTP

servers, for a RTSP-compliant media server and for UPnP service discovery.

Preliminary experiments show that Janus-based WS wrappers have performance

comparable to manually written wrappers.

1 Introduction

The Web Services (WS) instantiation of Service-Oriented Architectures has progres-

sively been adopted as a practical means to implement distributed applications [18]. WS

exploit the pervasive infrastructure of the World Wide Web to set up loosely coupled

software systems composed of a collection of services. Services rely on a set of stan-

dards and specifications4 to make their functionalities available according to platform-

independent interfaces, facilitating the construction of heterogeneous compositions.

Many services, however, continue to rely on legacy application layer protocols

(ALPs). Examples of such protocols include IMAP for retrieving mail, SMTP for send-

ing mail, RTSP for controlling media streaming, and UPnP for discovering networked

home appliances. These protocols are considered to be reliable and effective, but com-

plicate service composition. While WS can easily and safely be combined using widely

used standards, such as WS-BPEL [16] and WS-CDL [23], composing ALP-based ser-

vices requires integrating a protocol stack for each ALP in the client application.

4 A specification is a potential standard that has not yet been approved.

2

To provide ALP-based services with a uniform interface, to allow them to be more

easily combined to provide rich functionalities, one solution is to use wrappers to con-

vert them to Web Services. A wrapper is essentially a gateway that provides a WS inter-

face to the existing capabilities of an ALP-based service. It makes accessible, through

appropriate operations, the independent functionalities that the service provides, with-

out the complexity of reimplementing the service as a WS. Nevertheless, this approach

requires translating WS requests into ALP requests and ALP responses into WS res-

ponses. Implementing these translations safely and efficiently involves challenging pro-

gramming at both the network and systems level.

At the network level, the wrapper programmer must take into account the variety of

ALP definitions. For example, some ALPs are symmetric, relying on request-response

communication, while others are asymmetric, relying on message-based communica-

tion. An ALP may also support sessions or reliability, which must then be accounted

for at the WS level. WS are normally unicast; wrapping an ALP-based service relying

on a multicast ALP requires using UDP rather than HTTP, and a specific set of WS

standards. Finally, in practice, to ease the development of a WS client and improve effi-

ciency, it may be desirable to create a single WS operation that corresponds to a series

of ALP requests and responses.

At the systems level, expertise in thread, memory and socket management is nec-

essary to efficiently handle simultaneous requests, to dispatch responses to appropriate

endpoints and to keep track of established sessions. Furthermore, in order to avoid re-

quiring a wrapper to actively wait for asynchronous responses, the execution of a re-

quest handler must be stopped until corresponding responses arrive, then restarted to

process results. These processing tasks must not prevent the wrapper from handling

other synchronous and asynchronous requests. The complexity of such programming

tasks makes manual wrapper construction laborious and error prone. Naive implemen-

tations of such code can introduce severe performance bottlenecks.

This Paper. In this paper we propose a generative language-based approach for con-

structing wrappers to enable the migration of legacy service functionalities to Web Ser-

vices. This approach involves two domain-specific languages: z2z, which was devel-

oped in our previous work [2] for describing ALP message structures and behaviors,

and Janus, which is the main contribution of this work and targets the specific needs of

WS. Our approach targets programmers who are familiar with an ALP and with basic

Java programming. Its main benefit is to allow such developers to quickly and easily

develop efficient and safe WS wrappers. Our contributions are:

– We define the Janus domain-specific language that allows describing the interface

of a legacy service and its representation as a WS. A Janus description is expressed

at a high level that hides the low-level details of the WS paradigm and of the ALPs.

– We describe the translation of a Janus description into a wrapper implementation

compatible with a WS environment, and the Janus runtime system that supports the

execution of this wrapper. The translation and the runtime system together address

various network and systems programming issues, hiding this complexity from the

programmer.

– We show that the expressiveness of Janus is sufficient to describe the interface of a

number of ALP-based services and to generate the appropriate WS wrappers. Our

3

Email server

Asynchronous pullMails

Response:

IMAP login

IMAP select

IMAP fetch 1:*

IMAP fetch

IMAP logout

Unicast & synchronous

List of mails
Fault

WS wrapper

Fig. 1. IMAP service wrapper

case studies include well-known legacy services relying on ALPs such as IMAP,

SMTP, RTSP and UPnP.

– The experiments that we have carried out show that our approach produces wrap-

pers that have performance comparable to manually developed wrappers based on

existing WS and ALP stacks.

The rest of this paper is organized as follows. Section 2 introduces the case studies

that we use to present the details of our approach and the issues that these case studies

entail. Section 3 presents the Janus language and Section 4 describes the generated

code. Section 5 demonstrates the efficiency of our approach. Section 6 discusses related

work. Finally, Section 7 concludes the paper.

2 Case Studies

A developer creating a WS wrapper for an ALP-based service by hand must first select

the functionalities that should be made available as WS operations and then describe

for each operation the corresponding WS interface and the structure of the operation’s

parameters and results. We present some of the issues confronting the developer in

creating such wrappers, and illustrate these issues using wrappers for IMAP and SMTP

mail services, for an RTSP-compliant media service and for UPnP service discovery.

Message granularity. ALPs are generally implemented directly on top of TCP, result-

ing in lightweight messages, and thus are able to provide fine-grained functionalities.

WS, on the other hand, are built on top of SOAP and either HTTP or UDP, resulting

in messages that are complex and verbose. Thus, in a WS environment, to reduce the

bandwidth consumption and to simplify the client implementation, it is often desirable

to provide higher-level operations. As an example of this granularity mismatch, we

consider a WS wrapper for an IMAP server, illustrated in Figure 1. The IMAP server

shown inside the oval on the right side of the figure allows a client to retrieve mail using

a sequence of synchronous exchanges of messages, for authentication, folder selection,

message listing, message fetching, etc. The WS wrapper, however, encapsulates this se-

quence of low-level IMAP requests and responses as a single WS operation, pullMails.

A WS wrapper for an SMTP server could be constructed similarly.

4

Message transmission synchrony. In the implementation of our IMAP wrapper, we have

chosen to make the WS operation asynchronous, even though the protocol used by the

service is synchronous. The management of this asynchrony must be implemented by

the wrapper developer.

Message return values. The result of the WS operation is the list of mails retrieved from

the server in case of success, or an error message otherwise. The wrapper programmer

has to be aware of the specific data types to be used in constructing WS error messages.

Session management. Our second case study involves the construction of a session-

based WS wrapper to remotely control a RTSP-compliant media server. Although RTSP

requests flow within different TCP streams, some requests need to be associated to

the same session. For instance, the play and stop requests include session information.

The wrapper developer must thus translate RTSP session management into WS session

management, through the use, for instance, of the WS-reliability specification.

Multiple ALPs. The media server case study also illustrates the case of a wrapper that

needs to process messages from several different ALPs. For instance, the media service

wrapper may need to process SDP messages describing multimedia session information

that are encapsulated in the body of RTSP responses.

Multicast. In a networked environment, UPnP-enabled clients discover the services

provided by available UPnP-compliant devices. To successfully discover existing ser-

vices, clients have to send UPnP search requests to a multicast group address. However,

supporting the multicast communication paradigm in the WS realm requires the use of

several WS specifications that are not part of the basic WS standards. Our implemen-

tation of the WS wrapper for UPnP relies on the specifications SOAP-Over-UDP [17]

and WS-Addressing [22]. The development of this wrapper is significantly different

from other traditional wrappers because SOAP messages are not encapsulated inside

HTTP messages but flow directly over UDP. Therefore, constructing such multicast

wrappers significantly raises the level of expertise required by the wrapper developer.

3 Wrapper Development

A WS wrapper converts a WS invocation into a sequence of ALP interactions, and then

converts the information collected by these ALP interactions into a WS result. Con-

structing such a wrapper requires information about the ALP behavior (e.g., whether

messages are transmitted by unicast or multicast, synchronously or asynchronously,

etc.), the structure of the WS and ALP messages, and the logic for translating between

them.

In previous work, we have developed the z2z language for constructing network pro-

tocol gateways [2]. A WS wrapper can be seen as a particular kind of gateway, dedicated

to the specific needs of WS. Z2z provides facilities for describing network protocol be-

haviors, message structures, and translation logics, and an optimized run-time system.

It is suitable for expressing the behaviors and message structures of protocols that are

5

.psl

Janus operation and

data type descriptions

Janus operation and

data type descriptions

Compiler

FTP serverFTP server

TV set
Email serverEmail server

Developer

WSDL

document

Janus Runtime System

Select an ALP-based

service

generation

specification

support

WS client

Invoke the Web

Service

2

3

Media serverMedia server

VoIP serverVoIP server

ALP-based services domainWeb Services realm

1

ALP specifications

.msl

z2z

WS wrapper

4

Fig. 2. Scenario for constructing wrappers with z2z and Janus

built directly on the transport protocols TCP and UDP, which is typically the case of

ALPs. WS, however, are at a higher level, being built on SOAP [24], which in turn is

built on HTTP or directly on top of UDP in the multicast case. Defining WS messages

and the WS-ALP translation logic using z2z would require expressing these features

in terms of SOAP/HTTP or SOAP/UDP messages, which would be extremely tedious

and require a high degree of WS expertise. We have thus developed a new language,

Janus, for describing WS messages and the translation between WS and ALP messages

directly, and a supporting runtime system that translates WS interactions to the lower

level SOAP and HTTP protocols. To fit with the expertise of the expected developer

community, Janus uses a Java-like syntax.

Based on z2z and Janus, we propose a generative language-based approach to WS

wrapper construction that relies on z2z for describing ALP behaviors and message

structures, and Janus for describing WS message structures and the translation between

WS messages and ALPs. Fig. 2 gives an overview of this approach. For each ALP

relevant to the functionalities that the developer has chosen to expose as WS opera-

tions, the developer provides a z2z specification, consisting of a protocol specification,

describing how the ALP interacts with the network, and a message specification, de-

scribing the structure of ALP requests and responses.5 The developer then uses Janus

to describe the desired WS interface to these functionalities, including the structure of

the WS operation arguments and return values and the translation of each WS oper-

ation to the corresponding ALP messages. The Janus compiler translates the z2z and

Janus specifications to an executable wrapper and a WSDL document that describes the

5 As shown in Fig. 2, a protocol specification is provided in a .psl file and a message specifi-

cation in a .msl file.

6

1 protocol rtsp {
2 int cseq number;
3 attributes { transport = tcp/554; mode = sync; }
4 start { cseq number = 1; }
5 request req {
6 response DESCRIBE when req.method == "DESCRIBE";
7 response PLAY when req.method == "PLAY";
8 . . .
9 }

10 sending request req { req.cseq = cseq number++; }
11 flow = { cseq }
12 tcp { void tcp connect(); }
13 }

a) RTSP protocol specification

1 read {
2 mandatory public fragment code;
3 mandatory public fragment line;
4 }

b) IMAP request message view

1 request template response getMail {
2 magic = "SEP";
3 newline ="\r\n";
4 public int id;
5 private int tag;
6 −−SEP

7 <%tag%> fetch <%id%> body[text]
8 −−SEP

9 }

c) IMAP request template

Fig. 3. Z2z protocol behavior and message structure descriptions

generated WS. The wrapper is then linked with a runtime system that provides various

optimized systems functionalities.

In the rest of this section, we present the use of z2z for describing ALPs and the

Janus language for describing WS messages and operations.

3.1 Z2z protocol behavior and message structure descriptions

The first step of our approach uses z2z to describe how the relevant ALPs interact with

the network, as illustrated for the RTSP protocol in Fig. 3a. A z2z protocol specification

first declares any needed local variables, such as cseq number in line 2, and then con-

tains a collection of blocks describing various properties of the interaction with the net-

work. The attributes block specifies the transport protocol used, whether requests

are sent in unicast or multicast, and whether ALP responses are received synchronously

or asynchronously (line 3). The start block initializes the local variables (line 4). The

request block specifies how to dispatch a received request to a specific handler for

processing (lines 5-9). The sending block specifies some default information for each

request or response, such as the cseq number for an RTSP message (line 10). The

flow block indicates the message information that a wrapper must use to match asyn-

chronous requests to their subsequent responses (line 11). A similar session flow

block is used to recognize messages that are associated with a particular session, when

the protocol supports sessions. Finally, the tcp block specifies a handler for opening

connections on a socket (line 12).

A WS wrapper must also be aware of the structure of ALP messages. These mes-

sages are also described using z2z. A z2z message view defines the information to be

extracted from incoming messages (Fig. 3b). Similarly, z2z templates (Fig. 3c) describe

the structure of new ALP messages to be created by the wrapper. Both message views

and templates may contain fields declared as private that are handled automatically

by the runtime system and fields declared as public that must be managed by the

Janus message translation logic. For example, the tag field is declared as private

7

in Figure 3c (line 5) because its value is automatically generated for each constructed

IMAP request message. This is also the case of the cseq field for RTSP, which, as

illustrated in Figure 3a (line 10), is filled in by the sending block of the RTSP pro-

tocol specification. Whenever a RTSP request is sent, the value of the cseq field is

automatically incremented by the runtime system.

3.2 Janus service operation descriptions

The second step of our approach uses the Janus domain-specific language to describe

how to invoke the chosen functionalities of the ALP-based service. Janus has been

designed according to requirements that we have identified as critical to ease WS de-

velopment and to enforce good practices in WS design. For instance, Janus follows a

contract-first strategy in the implementation of a WS. That is, an abstract description

of a WS (e.g., WSDL) is made available before the actual production of the WS. By

design, Janus supports stateful Web Services by enabling side-effects. While present-

ing a Java-like syntax (see Fig. 4), with which programmers are familiar, Janus limits

the functionalities to what is needed for WS development. The only objects available

are data structures which only have a default constructor, for initializing their different

fields, and a default method (send), for forwarding them in the network. Finally, Janus

enables the creation of robust wrappers by encapsulating subtle and error-prone code

such as code for network message processing. For example, it provides the send op-

erator for sending messages on the network and the structure field notation for easily

accessing message fields. These features are provided within a language, rather than in a

library as done in Java, allowing the complete code to be checked for various coherence

properties. For example, the Janus compiler checks that the code is type safe, that all

variables are initialized before they are used, and that all message fields are initialized

before the message is sent.

In Janus, the wrapper functionalities are described in a service definition. As shown

in Fig. 5, a Janus service is defined by the keyword service (line 3), followed by the

name of the service being defined. The service is parametrized by the hostname and port

number of the machine that hosts the WS wrapper. These values are set when invoking

the Janus compiler. A Janus service defines data types to describe the parameters and

return value of a WS operation, and a set of methods to specify the series of ALP

messages that need to be exchanged with the service to define each WS operation.

The ALP attributes previously defined with z2z are imported through the #import

directive at the beginning of the file. Other utilities’ interfaces can also be referred to

using this directive.

Data types A WS operation typically has some arguments and return values, of various

data types. The wrapper must know the structure of these data types so that it can extract

information from the arguments in order to construct the corresponding ALP requests,

and so that it can construct the return values from the ALP responses. Janus data types

are either primitive or complex. Primitive types are strings and integers. A complex

type is defined by a Java-like class containing only fields. Such a class also defines an

implicit constructor that takes as arguments the initial values of the fields in the order

8

program ::= external import∗ service def

external import ::= #import interface id ;

| #import protocol.protocol id ;

service def ::= [qualifier] service (service params) { datatype def∗ operation+ }
service params ::= COMMA LIST(primitive type datatype id)
datatype def ::= class complex type id [extends complex type id] { nested data∗ }
nested data ::= primitive type COMMA LIST(var) ;

operation ::= datatype operation id ([operation params]) { statement+ }
datatype ::= primitive type | complex type

| List<datatype>

operation params ::= COMMA LIST(datatype datatype id)
primitive type ::= String | int

complex type ::= complex type id

qualifier ::= multicast

statement ::= decl stmt | affect stmt | if stmt | for stmt | except stmt | return stmt | {statement+}
decl stmt ::= datatype COMMA LIST(var) ;

| request<protocol id> COMMA LIST(var) ;

| response<protocol id> COMMA LIST(var) ;

affect stmt ::= var = data ; | datatype var = data ;

data ::= new complex type ([COMMA LIST(primitive type id)])
| data.field | data.send() | function(data)

if stmt ::= if (boolean expr) statement+

for stmt ::= for (datatype var : list var) { statement∗}
except stmt ::= throw data ;

return stmt ::= return data ;

boolean expr ::= data | boolean

COMMA LIST(elem) ::= elem (, elem)∗

Fig. 4. Janus language grammar

1 import protocol.rtsp.*;
2

3 service mediaPlayer (String hostname, int port) {
4 /* Data type definitions */

5 class MediaRequest { String resource; }
6 class PlayRequest extends MediaRequest { . . . }
7 class PauseRequest extends MediaRequest { . . . }
8 class StopRequest extends MediaRequest { . . . }
9

10 . . .
11 /* Operation descriptions */

12 Media PLAY (PlayRequest req) { . . . }
13 . . .
14 }

Fig. 5. Janus service for RTSP Media service

in which they appear in the class definition. Janus provides an inheritance mechanism

that enables one data type to be defined as an extension of another. This is useful when

data types share a number of fields, as in the case of the invocation parameters of the

PLAY, PAUSE, and STOP operations defined by the media service wrapper (Fig. 5).

For each of these operations, the parameter includes a Resource field that defines the

URI of the media being served. Therefore, the corresponding Janus classes extend the

MediaRequest class that contains this Resource field.

Operation descriptions A WS operation is described in Janus as a method whose ar-

guments and return values correspond to the input and output parameters of the WS

9

1 List<Mail> pullMails(String login, String passwd, String folder) {
2 /* operation pullMails retrieves unread mails from an IMAP server */

3 request<imap> req;
4 response<imap> resp;
5 List<Mail> mails = new List<Mail>();
6 List<int> ids = new List<int>();
7 Mail m;
8

9 req = new Login(login, passwd); resp = req.send();
10 if (resp.code == "error")
11 throw new ServiceFault("[login]", "server failed");
12

13 req = new selectFolder(folder); resp = req.send(); . . .
14 req = new listMessage(); resp = req.send(); . . .
15

16 ids = List.parse2int (resp.line, " ");
17 for (int id : ids) {
18 req = new getMail(id); resp = req.send(); . . .
19 m = new Mail(id, resp.line);
20 List.add (m, mails);
21 }
22

23 req = new Logout(); resp = req.send(); . . .
24 return mails;
25 }

Fig. 6. IMAP pullMails service operation

operation. The main function of such a method is to translate between WS and ALP

messages. Nevertheless, Janus also provides abstractions to support sessions and mul-

ticast services. Using the example of the pullMails operation defined in Fig. 6 for our

IMAP server case study, we illustrate how the interface to a functionality of an ALP-

based service is expressed using Janus.

A Janus method exchanges a sequence of ALP messages with a service in order to

provide the requested functionality to the WS client. To create an ALP message, the

Janus code uses the constructor implicitly associated with the corresponding z2z tem-

plate (line 9). This constructor takes as arguments the values for the template’s public

fields in the order in which they appear in the template definition. A template also pro-

vides a method send for sending a created message into the network (line 9). The

Janus compiler translates a use of the send method into an invocation of the z2z send

operator. This operator transparently handles the difference between sends with syn-

chronous and asynchronous responses, freeing the developer from the need to manage

this complexity. To extract information from an ALP response, the Janus code uses the

standard field access notation (line 10), as in Java. Any field that is qualified as public

in the corresponding z2z message view is accessible in this manner.

As in Java, the return keyword indicates the value returned by a method to its

caller (line 24). In Janus, the returned value of a method is represented by a complex

data type and must be created by the Janus code using the data type’s associated con-

structor. To send the returned value back to the WS client, the Janus compiler generates

code to serialize and encapsulate this value as a WS compliant message.

Janus also supports a mechanism for error management. For example, if the login

to the IMAP server fails (line 10), a fault message has to be sent back to the WS client.

10

1 import protocol.rtsp.*;
2

3 service mediaPlayer (String hostname, int port) {
4 String SESSION ID;
5 . . .
6 Media PLAY (PlayRequest preq) {
7 . . .
8 req = new Setup(. . .); resp = req.send(); . . .
9 /* Save the session ID returned by setup */

10 SESSION ID = resp.sessionId;
11 . . .
12 }
13 Media STOP (StopRequest sreq) {
14 . . .
15 /* Use the session ID previously saved */

16 req = new Teardown(hostname, sreq.resource,
17 SESSION ID);
18 . . .
19 }
20 . . .
21 }

a) Excerpt of the RTSP PLAY service operation

1 import protocol.ssdp.*;
2

3 multicast service controlPoint () {
4 class UPnPService { . . . }
5 . . .
6 List<UPnPService> SEARCH(SearchRequest sreq){
7 . . .
8 }
9 . . .

10 }

b) Excerpt of the UPnP control point

wrapper description

Fig. 7. Janus descriptions

As in Java, a Janus exception is raised using the keyword throw (line 11), aborting the

method execution. Unlike in Java, Janus exceptions cannot be caught by the program-

mer and are only used to report unexpected situations to the WS client. A fault message

can be created using the constructor of the default ServiceFault data type (line 11)

or of a defined data type that extends this one.

When an ALP uses sessions and the requests within a session are associated with

different WS operations, then the WS wrapper must manage sessions as well. For ex-

ample, as described in Section 2, the media service wrapper needs to manage a session

that has been set up by the media service. As shown in the Janus implementation in

Fig. 7a, to process a WS STOP operation, an ALP Teardown request must be sent with

the session information (line 16) that was previously returned by the ALP Setup request

(line 10). However, these ALP requests are sent within different WS operations. Janus

implements sessions using the WS-Reliability [15] specification. The Janus code can

then declare global variables that are visible within a session. For example, line 4 of

Fig. 7a declares a global variable SESSION ID that maintains the ALP session identi-

fier across multiple WS requests. Such a variable can be set (line 10) and read (line 16)

like a local variable. The Janus compiler automatically generates the code to manage

session information in the WS realm.

In the excerpt of Fig. 7b, the Janus description of the wrapper for UPnP service

discovery is declared with the keyword multicast (line 3), indicating that the implemen-

tation must be multicast-compliant. Janus then produces a wrapper that can process

SOAP messages carried by UDP instead of HTTP. All information that is carried by

HTTP in the unicast case, including the client endpoint reference to which WS res-

ponses must be returned, is now encapsulated in the SOAP message using the WS-

Addressing specification.

11

.c

.wsdl

Janus

compiler

z2z compiler

Janus description

ALP specifications

.mtl

z2z

.msl

z2z

.c

.psl

z2z

.msl

z2z

Parser

.c
.c

Wrapper

.c

Fig. 8. Overview of the generated code

4 Code Generation

Based on the z2z descriptions of ALP behaviors and message structures and the Janus

descriptions of WS message structures and the translation between WS messages and

ALPs, the Janus compiler generates various documents, specifications and program

code, as shown in Fig. 8, to create a complete wrapper implementation. In this section

we describe the generation of these artifacts.

4.1 WS framework

From a WS wrapper specification written in Janus, the compiler generates code for

publishing the service operations in a WS framework and for processing WS messages.

Publishing the service operations. In the WS framework, a WS is accompanied by

a WSDL document that makes information about the operations provided by the WS

available in a machine-readable form. A WSDL document also specifies concrete bind-

ings that describe how the abstract service description is mapped to a specific service

access protocol. Nevertheless, WSDL, as a machine-readable format, is not well suited

to being written by hand, especially for a service that defines multiple operations.

Based on the Janus service operation descriptions and compiler arguments indi-

cating the endpoint where the service is to be deployed, the Janus compiler creates

the WSDL description of the wrapper. The generated WSDL document includes types,

which are data type definitions specified using the XML Schema language, messages,

which are typed definitions of the data to communicate, and operations, which are ab-

stract descriptions of the actions supported by the service. Furthermore, the WSDL

12

1 message soap {
2 read {
3 mandatory public fragment subject;
4 mandatory public fragment from;
5 . . .
6 mandatory public int smtpPort;
7 }
8 . . .
9 }

a) message view for a SMTP message

1 #include "msg_soap.h"

2 . . .
3 void xml data(void * d, const char * data, int l) {
4 struct IGDdatas * datas = (struct IGDdatas *)d;
5 char buf[l];
6 if (!z2z strcmp(datas−>elt name, "subject")){
7 sprintf(buf, "%.*s",l, data);
8 msg soap view set subject(datas−>view,
9 make string(buf));

10 }
11 . . .
12 }

b) Excerpt of the SOAP parser for SMTP

Fig. 9. Generation of a SOAP message view and the associated parser

1 import protocol.imap.*;
2 service ImapServer(String hostname, int port) {
3 . . .
4 serverResponse imapCreateFolder(String login,
5 String passwd, String folderName) {
6 response<imap> resp; request<imap> req;
7 . . .
8 req = new createFolder(folderName);
9 resp = req.send();

10 . . .
11 return new serverResponse(resp.line);
12 }
13 }

a) imapCreateFolder operation with Janus

1 template createFolderResponse {
2 magic = "SEP"; newline ="\r\n";
3 public fragment serverResponseLine;
4 −−SEP

5 <soapenv:Envelope . . .>
6 . . .
7 <cli:createFolderResponse>

8 <resp><%serverResponseLine%></resp>

9 </cli:createFolderResponse>

10 . . .
11 </soapenv:Envelope>

12 −−SEP

13 }

b) z2z generated template

Fig. 10. Message template generation

document specifies the endpoint address where the service is available as well as the

protocol (e.g., SOAP) to be used for invoking the service. The Janus compiler also in-

cludes in the WSDL document the WS specifications that are required by the wrapper.

Once created, the WSDL document is made available via a web server, thus allowing

client programs to call any of the operations that are listed.

WS message structures and processors. Once the wrapper is exposed to potential WS

clients, it may begin to receive WS messages. It must parse these messages and may

need to construct WS messages to send in response. The structure of these messages is

determined by the parameter and return type specifications in the signatures of the Janus

operation descriptions and the associated Janus data type specifications. To provide sup-

port for processing received WS messages, the Janus compiler generates a z2z message

view and a dedicated SOAP parser from the data types representing the parameters of

each WS operation. The message view contains all the fields of the data type, including

those of any data type it inherits. The SOAP parser is a C program that extracts invo-

cation parameter values from an XML document, embedded inside an incoming HTTP

message or on top of UDP, and uses these values to initialize the message view fields

listed in Fig. 9 (a). Fig. 9 (b) shows an excerpt of a generated parser that recovers the

13

subject to use in a sendMail operation from a WS message. For each data type that is

used to describe a WS operation return value, as in the example of Fig.10a (line 11),

the Janus compiler generates a z2z SOAP template whose public fields correspond to

the primitive types that compose the return data type (Fig.10b). This template is used to

create a SOAP message that carries the operation result.

4.2 Wrapper implementation

The wrapper implementation is based on the z2z specifications of protocol behaviors

and message structures, and the Janus operation descriptions. These are translated by

the Janus compiler into the corresponding lower level z2z message translation logic

code, which is then translated into C code by the z2z compiler. Furthermore, the Janus

compiler adds into the translation logic of the operation descriptions the code necessary

for taking into account any WS specifications that are used to address issues that are

supported by Janus, but are not handled by the basic WS standards. Developers need

not be aware of the details of these specifications.

To support client sessions, Janus relies on the WS-Reliability [15] specification.

Using this specification, a WS message is identified by a message ID, consisting of a

group ID and a sequence number. In our design, a WS wrapper recognizes messages

from the same session by the shared message group ID. Based on this information,

the wrapper code has access to the values of the global variables corresponding to the

session, which it can then use to construct ALP messages containing appropriate session

identifiers. The Janus compiler automatically detects the use of ALP sessions in the

operation descriptions and generates the corresponding code to manage WS sessions.

When a Janus service is declared as multicast, the Janus compiler generates

code to parse and create SOAP messages directly over UDP. This generated wrap-

per code uses the SOAP-over-UDP [17] and WS-Addressing [22] specifications. The

wrapper listens to a multicast group address and does not include HTTP processing

capabilities.

The C code generated by the composition of the Janus and z2z compilers is sup-

ported by a dedicated runtime system. Janus relies on a enhanced version of the z2z

runtime system that provides a framework for processing SOAP messages and currently

supports the WS specifications WS-Reliability, SOAP-over-UDP and WS-Addressing.

5 Assessment

To assess our approach, we have implemented wrappers for the various ALP-based

service functionalities described in the case studies of Section 2. For each considered

case study, Figure 11 compares how many lines of source code the developer needs

to manually write against how many lines of source code are generated by the Janus

compiler. Among our examples, only 204 (SMTP) to 582 (RTSP) lines of source code,

including ALP specifications (z2z), operation descriptions (Janus) and ALP parsers (C),

need to be written by hand to implement the WS wrapper. Using only z2z, but not Janus,

the WS wrapper for SMTP requires 642 lines of source code, including SOAP parsers,

WSDL documents, and z2z specifications, and the WS wrapper for RTSP requires 882

14

Developer code (lines of code) Generated code

ALP Janus ALP z2z specifications SOAP parsers WSDL document Wrapper source code WS wrapper (size in KB)

specifications descriptions Parsers (lines of z2z code) (lines of C code) (lines of code) (lines of C code) Wrapper Runtime System Total

IMAP Server

wrapper
IMAP 161 79 102 370 208 102 1861 44 80 124

SMTP Server

wrapper
SMTP 129 48 27 216 222 75 918 24 80 104

Media Server RTSP 193
97

153
297 227 122 2488 48 80 128

wrapper SDP 41 98

UPnP

service

discovery

UPnP 58 13 304 115 312 113 1877 32 80 112

Fig. 11. The size of specifications and the generated WS wrapper

lines of source code. This comparison of code size furthermore does not fully take

into account the amount of WS and network expertise that is required to implement a

wrapper without using Janus. Compared to the final generated C code, excluding the

runtime system, the Janus compiler provides around 77% of the code. Moreover, as

illustrated in Figure 11, the size of the wrappers does not exceed 128KB, including

80KB for the runtime system. Thus, Janus wrappers can be embedded in constrained

devices.

To fully evaluate the performance of Janus generated wrappers, we have carried out

three experiments involving an IMAP and an SMTP service, a UPnP service, and an

ALP-based echo protocol. Our experiments were carried out on a 2GHz Intel Core 2

duo with 4GB of RAM. In each case, to reduce the impact of the network latency on

the response time, the client, the wrapper, and the service are all collocated on the same

machine and interact using the loopback interface.

WS wrappers for IMAP and SMTP services. We evaluate the capacity of wrappers to

manage both WS to IMAP and WS to SMTP translations under stress tests. To this

end, several WS clients simultaneously invoke either a WS pullMails operation on a

user folder to retrieve two mails, or a WS sendMail operation to send five mails to a

remote mailbox. The IMAP wrapper translates WS invocations into IMAP messages,

that are sent to a Dovecot IMAP server (http://www.dovecot.org) The SMTP wrapper

similarly translates WS invocations into SMTP messages that are sent to a POSTFIX

SMTP server (http://www.postfix.org).

Figures 12 and 13 compare, respectively, the performance of the Janus IMAP wrap-

per with that of a manually developed IMAP wrapper, and the Janus SMTP wrapper

with that of a manually developed SMTP wrapper. The handmade wrappers, using nei-

ther Janus nor z2z, are implemented in Java with the JAX-WS Reference implemen-

tation and Tomcat. The execution time is measured from the time when the wrapper

receives a WS invocation to the time when the corresponding response is sent back to

the WS client. The performance is expressed in terms of CPU cycles, to be independent

of the CPU frequency.

In our experiments, two parameters may impact the performance: (i) the number

of simultaneous clients, and (ii) the number of simultaneous invocations performed by

each client. Consequently, our test procedure involves several simultaneous clients and

consists of a set of rounds, successively increasing the stress on the wrapper in each

round. In the first round each client fetches or sends all mails once, resulting in two

15

0
25
50

100

250

500

600

 0 5 10 15 20 25 30

P
ro

ce
ss

in
g

tim
e

 in
 M

ill
io

ns
 o

f c
pu

 c
yc

le
s

Number of simultaneous invocations

Tomcat-15_clients-2_emails
Tomcat-5_clients-2_emails
Janus-15_clients-2_emails

Janus-5_clients-2_emails

Fig. 12. IMAP server wrapper

0
25
50

100

250

500

600

 0 5 10 15 20 25 30

P
ro

ce
ss

in
g

tim
e

 in
 M

ill
io

ns
 o

f c
pu

 c
yc

le
s

Number of simultaneous invocations

Tomcat-15_clients-2_emails
Tomcat-5_clients-2_emails
Janus-15_clients-2_emails

Janus-5_clients-2_emails

Fig. 13. SMTP server wrapper

16

or five simultaneous requests per client for the IMAP or SMTP tests respectively. In

the second round each client fetches or sends all mails twice, resulting in four or ten

simultaneous requests per client. This pattern continues until the thirtieth round where

each client fetches or sends all mails 30 times, resulting in 60 or 150 simultaneous

requests per client. The test procedure is undertaken 30 times. Figures 12 and 13 show

only median values.

As expected, the graphs show that the higher the number of simultaneous clients

(i.e., 5 or 15 clients for IMAP and SMTP wrappers), the higher the response times.

Janus wrappers perform better than the wrappers developed by hand, because the Janus

wrappers can rely on a fine grained runtime support that includes generated code that is

dedicated to mapping IMAP and SMTP messages into SOAP messages and vice versa.

Specifically, Janus wrappers include a WS stack stripped down to the bare essentials

according to the Janus description given to the Janus compiler. In contrast, handmade

wrappers use a general-purpose WS stack and runtime that offer no particular optimiza-

tions for wrappers.

WS wrapper for UPnP service. The Janus-generated wrapper for UPnP service relies on

multicast addressing both in the WS realm, requiring support of extra WS-* standards,

and in the UPnP native domain. We have therefore carried out an experiment to estimate

the overhead introduced by the wrapper processing layers. To evaluate the Janus UPnP

wrapper, we compare the response time required by a WS client to discover a UPnP

service with the time required for a UPnP client to discover a UPnP service. In both

cases, we measure, at the client side, the time taken between an initial discovery request

and the corresponding successful response. Any standard WS toolkit can be used to

generate the WS client from the WSDL Document published by with Janus wrapper.

We have chosen the gSOAP6 toolkit for its efficiency, as it is developed in C. The UPnP

client and the service are developed with the C implementation of the CyberLink7 stack.

In our experiment, the response time of the native UPnP client reaches 1220 mil-

lion CPU cycles whereas for the WS wrapper client it takes 1805 million CPU cycles,

amounting to a slowdown of 50%. This slowdown results from the cost of the various

steps of the translation logic. The Janus wrapper needs to: (i) listen on a multicast group

address, dedicated to the WS realm, to intercept incoming SOAP-over-UDP requests,

(ii) deserialize received SOAP requests to generate the corresponding UPnP requests,

(iii) forward the newly generated UPnP requests and listen for potential UPnP responses

from the multicast group address dedicated to UPnP, and (iv) transform UPnP responses

to SOAP messages to send them back to the WS client. In comparison, the UPnP client

interacts directly with the UPnP service, it does not need to listen on two different mul-

ticast group addresses, and it does not need to serialize and deserialize SOAP messages.

WS wrapper for an ALP-based echo service. We have implemented a micro bench-

mark to evaluate the performance of the SOAP serialization/deserialization performed

by Janus wrappers. The experiment involves a Janus wrapper for an ALP-based echo

service that echoes primitive data types such as integers and strings. In this case, a

6 http://www.cs.fsu.edu/˜engelen/soap.html
7 http://www.cybergarage.org/cgi-bin/twiki/view/Main/CyberLinkForC

17

WS client, generated by the gSOAP compiler from the Janus WSDL document, sends

SOAP primitive data types to a Janus wrapper that extracts the data value to forward it,

without any XML tags, to an echo service. Messages from the echo service are simi-

larly encapsulated into SOAP messages by the Janus wrapper and are sent back to the

WS client. The micro benchmark measures the execution time from when the wrapper

receives a WS invocation to when the corresponding response is sent back to the WS

client. We consider the median time over 50 executions. We find that with serialization

and deserialization, this takes around 1.1 million CPU cycles for an integer value, and

around 1.4 million CPU cycles for a string of 50 characters. Without serialization and

deserialization, we find that the time is around 0.3 million CPU cycles for an integer

value and around 0.5 million CPU cycles for a string of 50 characters. Although these

results show that the cost of serialization is high, they represent a worst case due to the

simplicity of the echo server. Normally the total treatment time would be dominated by

the server computations.

6 Related Work

Alternative forms of Web Services This paper has focused on the SOAP/WS-* stack

for Web Services. In the last decade, RESTful Web Services [8] have been increas-

ingly used. RESTful Web Services are praised for the simplicity of their design and

implementation, in comparison with WS-* standards which are increasingly complex

and often not implemented. Nevertheless, as extensively discussed by Pautasso et al [19],

SOAP/WS-* remains the most appropriate choice in many contexts. Our goal is to pro-

vide interoperability between existing services. The use of SOAP/WS-* allows these

services to remain outside the Web; the web is only used as a message enchange inter-

face. On the other hand, RESTful Web Services exist only within the Web, requiring

more reengineering and preventing other kinds of accesses. Furthermore, contrary to

REST, SOAP/WS-* technology comes with a fairly robust body of standards for QoS.

Thus, when advanced functionalities, such as multicast, are needed, existing WS-* stan-

dards can deliver the appropriate capabilities. RESTful WS would have to be extended

to support these capabilities in an ad hoc manner [19]. Finally, the variety of formats

that can be used to represent a RESTful WS can hinder interoperability, as WS clients

may not be able to process all types of payloads. In the rest of this section, WS refers to

web services constructed with the SOAP/WS-* stack.

WS implementation. As WS technologies mature, many research projects [5,7,10] have

focused on devising methods and tools that help with WS development, testing and

deployment. Kelly et al. have analysed existing programming languages and develop-

ment environments used by SOA programmers and have identified a number of limi-

tations [10]. For instance, they point out that since object-oriented and scripting lan-

guages were originally designed for standalone environments, the extra functionalities

that have been added to them for network and distributed processing fail to provide a

simple means for designing and implementing services that are invoked remotely. They

stress that a good language for WS development should support static typing, so that

WSDL definitions can be automatically generated from function definitions. In addi-

18

tion, all data should be serializable so that it can be sent within SOAP messages. The

Janus language meets these requirements.

Kelly et al. also propose the GridXSLT execution engine for exposing programs as

WS. GridXSLT relies on a language that extends the XSLT programming language for

specifying WS operations. GridXSLT only supports functions that are side-effect free,

meaning that a service may not maintain state. This constraint makes impossible to im-

plement WS wrappers that involve sessions, such as our RTSP media service wrapper.

Janus does not place any restrictions on the type of applications that can be wrapped.

Legacy services migration. Several companies have succeeding in re-packaging their

legacy services as WS so as to enable better integration of Web information. For in-

stance, in 2002, Amazon.com released a WS interface (http://aws.amazon.com) linked

to their existing query engine to provide to computer programs the same service that

their primary keyword-based search interface has been offering to humans. Google Web

APIs are another example of the migration of human-oriented Web Site interfaces to

web services. Lately, many researchers have proposed tools for extracting from web

documents information that can then be requested by WS clients [9,13].

The idea of migrating a legacy service to WS has been explored in the litera-

ture [3,4,11,21]. Almoanaies et al. have recently published a survey of the various ex-

isting approaches [1]. Attempts to move legacy services to the SOA environment have

been motivated by issues ranging from software reuse and maintenance to interoper-

ability. Our work is dedicated to migrating services built on top of incompatible ALPs

to WS so as to benefit from the many features provided by SOA.

Migration solutions that are close to our work have been proposed by Sneed [20] and

by Canfora et al. [3,4]. Sneed has designed a tool for extracting and wrapping individual

functions from legacy code. Canfora et al. have devised a method for constructing a

wrapper that interprets a Finite State Automaton that models the interaction between the

client and the legacy system. In our approach, a wrapper developer is allowed to adjust

the characteristics of this interaction so as to fulfill other requirements. For instance, in

the case of IMAP server case study, we have designed a WS wrapper with asynchronous

operations while messages are sent synchronously in IMAP. Thus the WS client is not

required to actively wait while all mail is collected from the server.

Other projects have re-designed and re-implemented ALP-based application func-

tionalities using WS standards. Though such re-engineering solutions can provide flex-

ibility in design and ensure performance, their invasive aspect prevents their wide adop-

tion. WSEmail [14] replaces the existing protocols for email (i.e., SMTP, POP, IMAP,

S/MIME) with protocols based on SOAP, WSDL, and other XML-based formats. How-

ever, WSEmail does not fully exploit existing email infrastructures and thus fails to

recover the logic perfectly [25]. Similarly, Chou et al. [6] have proposed an entirely

WS-based protocol, WIP, to replace SIP in their WSIP [12] endpoint for converged

multimedia/multimodal communication over IP. All communicating entities, however,

must support the new protocol.

A compromise approach to legacy service migration is to provide wrappers that in-

terface different parts of a service. The legacy service is thus broken up to several parts,

each implementing one or more functionalities. This approach avoids reimplementing

these functionalities in the WS, and thus yields practical and less invasive solutions.

19

Zhang and Yang [25] have presented a service-oriented approach that uses a hierarchi-

cal algorithm to understand the legacy code and extract independent services from it.

Janus on the other hand lets the developer choose the granularity of the functionalities

to expose.

7 Conclusion

In this paper, we have introduced an approach for migrating ALP-based service func-

tionalities to Web Services using wrappers. To this end, we have designed the Janus

language, which provides dedicated constructions and operations to hide low-level ALP

and WS details from the wrapper programmer. We have also developed a compiler for

Janus that automatically generates the corresponding wrapper code in C and the wrap-

per’s associated WSDL service description. Finally, we provide a Janus runtime system

that is to be linked with the generated wrappers and that encapsulates the required low-

level networking and systems code.

We have successfully used Janus to develop a number of wrappers, including wrap-

pers for IMAP and SMTP servers, for a RTSP-compliant media server and for UPnP

service discovery. Our experience in using Janus for wrapper construction shows that

our approach drastically reduces the level of expertise required. By freeing the wrapper

developer from manually managing both WS details and ALP-based communication

issues, Janus bridges the gap between the WS realm and ALP-based services.

Preliminary experiments show that Janus-based WS wrappers have performance

comparable to manually written wrappers. Furthermore, the size of the executable code

of our Janus-based wrappers, including the runtime system, is small, not exceeding

128KB, which is acceptable in contexts where code size must be minimized, as in some

embedded systems. We are currently extending the Janus approach to support WS spec-

ifications such as WS-Notification, WS-Eventing, and WS-Security. We are also devel-

oping Janus wrappers for other application domains such as network supervision.

Availability: The source code of z2z is available at http://www.labri.fr/perso/reveille/

projects/z2z/. The source code for Janus is available on request.

References

1. Almonaies, A.A., Cordy, J.R., Dean, T.R.: Legacy system evolution towards service-oriented

architecture. In: SOAME 2010: International Workshop on SOA Migration and Evolution.

pp. 53–62. Madrid, Spain (March 2010)

2. Bromberg, Y.D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic generation of network

protocol gateways. In: Middleware ’09: Proceedings of the 10th ACM/IFIP/USENIX Inter-

national Conference on Middleware. pp. 21–41. Urbana Champaign, IL, USA (2009)

3. Canfora, G., Fasolino, A., Frattolillo, G., Tramontana, P.: Migrating interactive legacy sys-

tems to Web services. In: 10th European Conference on Software Maintenance and Reengi-

neering. pp. 10 pp.–36 (Mar 2006)

4. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: A wrapping approach for mi-

grating legacy system interactive functionalities to Service Oriented Architectures. Journal

of Systems and Software 81(4), 463–480 (2008)

20

5. Cho, E., Chung, S., Zimmerman, D., Muppa, M.: Automatic web services generation. In:

HICSS ’09: Proceedings of the 42nd Hawaii International Conference on System Sciences.

pp. 1–8 (2009)

6. Chou, W., Li, L., Liu, F.: WIP: Web service initiation protocol for multimedia and voice

communication over IP. In: ICWS ’06: Proceedings of the IEEE International Conference

on Web Services. pp. 515–522. Chicago, IL, USA (2006)

7. Feuerlicht, G., Meesathit, S.: Towards software development methodology for web services.

In: Proceeding of the 2005 conference on New Trends in Software Methodologies, Tools and

Techniques. pp. 263–277. Tokyo, Japan (2005)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-

tures. Ph.D. thesis, University of California, Irvine (2000)

9. Han, H., Kotake, Y., Tokuda, T.: An efficient method for quick construction of web services.

In: Proceeding of the 2009 conference on Information Modelling and Knowledge Bases XX.

pp. 180–193. Amsterdam, The Netherlands, The Netherlands (2009)

10. Kelly, P.M., Coddington, P.D., Wendelborn, A.L.: A simplified approach to web service de-

velopment. In: ACSW Frontiers ’06: Proceedings of the 2006 Australasian workshops on

Grid computing and e-research. pp. 79–88. Darlinghurst, Australia (2006)

11. Lewis, G., Morris, E., Smith, D., O’Brien, L.: Service-oriented migration and reuse technique

(SMART). In: STEP ’05: Proceedings of the 13th IEEE International Workshop on Software

Technology and Engineering Practice. pp. 222–229. Budapest, Hungary (2005)

12. Liu, F., Chou, W., Li, L., Li, J.: WSIP - web service SIP endpoint for converged multime-

dia/multimodal communication over IP. In: ICWS ’04: Proceedings of the IEEE International

Conference on Web Services. p. 690. San Diego, CA, USA (2004)

13. Lu, Y.H., Hong, Y., Varia, J., Lee, D.: Pollock: automatic generation of virtual web services

from web sites. In: SAC ’05: Proceedings of the 2005 ACM symposium on Applied comput-

ing. pp. 1650–1655. Santa Fe, NM, USA (2005)

14. Lux, K.D., J. May, M., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure internet messaging

based on Web services. In: ICWS ’05: Proceedings of the IEEE International Conference on

Web Services. pp. 75–82. Orlando, FL, USA (2005)

15. OASIS: Web Services Reliable Messaging TC. WS-Reliability 1.1 (Nov 2004)

16. OASIS: Web Services Business Process Execution Language Version 2.0 (Apr 2007)

17. OASIS: SOAP-over-UDP version 1.1 (Jul 2009)

18. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, technologies and

research issues. The VLDB Journal 16(3), 389–415 (2007)

19. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. ”Big”’ Web Wer-

vices: Making the Right Architectural Decision. In: Proceedings of the 17th International

World Wide Web Conference. pp. 805–814. Beijing, China (2008)

20. Sneed, H.M.: Wrapping legacy COBOL programs behind an XML-interface. In: WCRE ’01:

Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE’01). p. 189.

Stuttgart, Germany (2001)

21. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In: CSMR ’06:

Proceedings of the Conference on Software Maintenance and Reengineering. pp. 3–14. Bari,

Italy (2006)

22. W3C: Web Services Addressing (WS-Addressing) - W3C submission (Aug 2004)

23. W3C: Web Services Choreography Description Language Version 1.0 (Nov 2005)

24. Walsh, A.E. (ed.): UDDI, SOAP, and WSDL: The Web Services Specification Reference

Book (2002)

25. Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural migration. In:

APSEC ’04: Proceedings of the 11th Asia-Pacific Software Engineering Conference. pp.

196–203. Busan, Korea (2004)

	Bridging the Gap between Legacy Servicesand Web Services

