
HAL Id: hal-01055656
https://hal.inria.fr/hal-01055656

Submitted on 13 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis for Extracting Permission Checks of a
Large Scale Framework: The Challenges And Solutions

for Analyzing Android
Alexandre Bartel, Jacques Klein, Martin Monperrus, Yves Le Traon

To cite this version:
Alexandre Bartel, Jacques Klein, Martin Monperrus, Yves Le Traon. Static Analysis for Extracting
Permission Checks of a Large Scale Framework: The Challenges And Solutions for Analyzing Android.
IEEE Transactions on Software Engineering, Institute of Electrical and Electronics Engineers, 2014,
40, pp.617-632. �10.1109/TSE.2014.2322867�. �hal-01055656�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49604103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01055656
https://hal.archives-ouvertes.fr

1

Static Analysis for Extracting Permission
Checks of a Large Scale Framework: The
Challenges And Solutions for Analyzing

Android
Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon

Abstract—A common security architecture is based on the protection of certain resources by permission checks (used e.g., in

Android and Blackberry). It has some limitations, for instance, when applications are granted more permissions than they actually

need, which facilitates all kinds of malicious usage (e.g., through code injection). The analysis of permission-based framework

requires a precise mapping between API methods of the framework and the permissions they require. In this paper, we show

that naive static analysis fails miserably when applied with off-the-shelf components on the Android framework. We then present

an advanced class-hierarchy and field-sensitive set of analyses to extract this mapping. Those static analyses are capable of

analyzing the Android framework. They use novel domain specific optimizations dedicated to Android.

Index Terms—large scale framework, permissions, call-graph, Android, security, Soot, Java, static analysis

✦

1 INTRODUCTION

THE security architecture of the mobile operating
systems Android and Blackberry as well as other

systems such as the Google Chrome browser exten-
sion system, use a similar security model called the
permission-based security model [4]. A permission-
based security model can be loosely defined as a
model in which 1) each application is associated with
a set of permissions that allows accessing certain
resources1; 2) permissions are explicitly accepted by
users during the installation process and 3) permis-
sions are checked at runtime when resources are
requested.

In Android, the permission model is embedded into
the “Android framework”. The framework exposes
an Application Programming Interface (API) that con-
tains classes and methods for developers to interact
with the system resources. For instance, the API con-
tains a method getGPSLocation2 which gives the
current GPS location of the smartphone, if available.
This API method, and many others, are sensitive
with respect to security or privacy. Consequently, in
response to a call to getGPSLocation, the frame-
work checks that the caller has been explicitly granted
the GPS permission. This permission model has an
impact on the development process of applications.
To write an application, developers must identify,
for each API method they use, the permissions that
must be declared for the application to work correctly.

1. Contrary to the traditional Unix permission system where
permissions are at the level of users, not applications.

2. simplified view of the API

They need a mapping between the API methods and
the required permissions. In the case of Android,
the mapping is given by the official documentation.
However, the documentation is not always up-to-
date or clear and, consequently, question-and-answers
website are full of questions regarding the use of per-
missions3. As a result, developers often either under-
or over-estimate the required permissions. Missing a
permission causes the application to crash. Adding
too many of them is not secure. In the latter case,
injected malware can use those declared, yet unused
permissions, to achieve malicious goals. We call those
unused permissions, “permission gap”. Any permis-
sion gap results in insecure, suspicious or unreliable
applications. To sum up, having a a clear and precise
mapping that links API methods and required permissions
is of great value in a permission-based system such as
Android. It enables developers to easily declare the
permissions they actually need: not more, not less.
To extract this map, we explore in this paper the use
of static analysis to extract the permission checks.
On a framework of the scale and sophistication of
Android, naive approaches using off-the-shelf static
analysis fail miserably. This paper discusses the build-
ing blocks that must be put together to extract a
valuable mapping between API methods and per-
missions with two kinds of analysis: the first kind
is based on class hierarchy (CHA) and the second
kind leverages a field-sensitive, Andersen [2] like
module called Spark [21]. Technically, we describe five
components required for extracting permission checks

3. e.g. http://stackoverflow.com/questions/2378607/what-permission-do-i-n

http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619

2

in Android. The first one is a generic String analysis,
yet essential for Android where permissions are not
static constants but dynamic strings. The remaining
ones are specific to Android. Of those four, the last
two components specifically target Spark. Service Redi-
rection redirects call to services to a properly initialized
service (Android specific). Service Identity Inversion
avoids analyzing irrelevant system calls to services
(Android specific). Service Initialization properly ini-
tializes services for overcoming null values (Spark
specific). Entry Points Initialization initializes all entry
point methods and their parameters (Spark specific).
The main difficulty of this research is that, due to the
scale and complexity of Android, no building-block
yields acceptable result in isolation. Eventually, we
show that Spark can produce a good mapping of API
methods to permissions, and we compare it against
the related work [13], [3]. To sum up, the contributions
of this paper are:

• the empirical demonstration that off-the-shelf
static analysis does not address the extraction of
permission checks for a framework of the caliber
of Android;

• three static analysis components (generic and
Android-specific) to be put together in order to
use Class Hierarchy Analysis (CHA) on Android;

• two static analysis components that allows one to
use field-sensitive static analysis (Spark [21]) for
analyzing Android’s permissions;

• a comparison of our results against PScout [3],
a static analysis designed concurrently with our
work and against Felt et al.’s results based on
dynamic analysis [13];

• an application of the extracted mapping on two
sets of 1421 real Android applications showing
that 129 (9%) applications suffer from a permis-
sion gap, i.e., they have more permissions that
necessary.

This paper is an extension of a short paper published
at the International Conference on Automated Soft-
ware Engineering [5]. Those results on this hot topic
have been obtained concurrently with other work [13],
[3] and explore different paths: Compared to Felt et
al. [13], we use static analysis instead of dynamic
analysis. Compared to PScout [3], we go beyond CHA
and show that a less naive field-sensitive analysis can
also be used. The reminder of this paper is organized
as follows. In Section 2 we explain why reducing the
attack surface is important and present a short study
supporting our intuition. In Section 3 we propose a
formalization for permission-based software. In Sec-
tion 4 we describe the Android system and its access
control mechanisms. Then, in Section 5 we extract the
permission map from the Android system using static
analysis. Experiments we conducted and results are
presented and discussed in Section 6. In Section 7 we
propose a generic methodology for deriving correct

application permission sets. We present the related
work in Section 8. Finally we conclude the paper and
discuss open research challenges in Section 9.

2 THE PERMISSION GAP PROBLEM

Let us now detail the permission gap problem intro-
duced in Section 1. We also present a short empirical
study showing that this problem actually happens in
practice.

2.1 Possible Consequence of a Permission Gap

Let us consider an Android application, appwrong,
which is able to communicate with external servers
since it is granted the INTERNET permission. More-
over, appwrong has declared permission CAMERA while
it does not use any code related to the camera. The
CAMERA permission allows the application to take
pictures without user intervention, i.e., the permission
gap consists of a single permission: CAMERA. Unfor-
tunately, appwrong uses a native library on which a
buffer-overflow exploit has recently been discovered.
As a result, an attacker can execute the code of its
choice in the process of appwrong by exploiting the
buffer-overflow vulnerability. The code executed by
the attacker in appwrong is granted all permissions
defined in appwrong, INTERNET but also CAMERA. This
effectively increases the attacker’s privileges. In this
particular example the attacker would be able to (1)
write code to use the camera, take a picture and
send the picture to a remote host on the Internet
and (2) execute this code in the target application by
exploiting the buffer overflow vulnerability. This kind
of attack is described in detail by Davi et al. [9]. On
the contrary, if appwrong does not declare CAMERA,
this attack would not have been possible, and the
consequences of the buffer-overflow exploit would
have been mitigated. As noted by Manadhata [22],
reducing the attack surface does not mean no risks,
but less risks. In order to show that this example
of misconfigured application is not artificial, we now
discuss a short empirical study on the declaration of
two permissions on 1,000+ Android applications.

2.2 Declaration and Usage of Permissions “cam-

era” and “record audio”

We conducted a short empirical study on 1000+
Android applications downloaded from the Free-
warelovers application market4. For permissions
CAMERA and RECORD_AUDIO, we grepped the source
code of the Android framework to approximate the
Then, we computed the list A of all the applications
which declare CAMERA or RECORD_AUDIO. Next, we
took each application app ∈ A individually and we
checked whether the application uses at least one

4. http://www.freewarelovers.com/android/

http://www.freewarelovers.com/android/

3

fa

fb fc fd

fe

e1 e2 e3 e4

The application
declares permissions
p1 and p2

f1 f2 f3

f4 f5

f6

f8

f9

ck1

ck2

p3

p2

p1

p1 p2

Application

Framework

Fig. 1. A Bird’s Eye View of An Application Written

on Top of a Permission-based Framework. (en are

entry points, fn are functions and methods and ckn
represent checks of permissions pn.)

method of If not, it means that app is not using the
corresponding permission. When this happened, we
modified the application manifest that declares the
permission and run the application again to make sure
that our grepping approximation did not yield false
positives. There are 7/82 applications that declare
CAMERA while not using it. Similarly, 3/35 applica-
tions declare but do not use RECORD_AUDIO . Those
results confirm our intuition: declared permission lists
are not always required, and permission gaps indeed
exist. Developers would benefit from a tool that au-
tomatically infers the set of required permissions and
approximates permission gaps.

3 DEFINITIONS

Permission-based software is conceptually divided in
three layers: 1) the core platform (the operating sys-
tem) which is able to access all system resources (e.g.,
change the network policy); 2) a middleware respon-
sible for providing a clean application programming
interface (API) to the OS resources and for checking
that applications have the right permissions when
they want accessing them; 3) applications built on top
of the middleware. They have to explicitly declare the
permissions they require. Layers #2 and #3 motivate
the generic label “permission-based software”. Since
the middleware also hides the OS complexity and
provides an API, it is sometimes called, as in the case
of Android, a “framework”. Let us now define those
terms.

Framework A framework F is a layer that enables
applications to access resources available on the plat-
form. We model it as a bi-partite graph where each
node in the set of API method nodes connects a node
in the set of resource nodes (this set also contains a
’no resource’ node).

Example: In Figure 1 the framework is composed
of nine methods (four of them being public). Ap-
plications access the framework through four API
methods. In the case of Android, F is the Android
4.0.1 Java Framework composed of 4,071 classes and
126,660 methods. To access a resource, an Android
application has to make a method call that goes
through F . Permission A permission is a token that
an application needs to access a specific resource.
Example: In Figure 1, the application declares two per-
missions. The framework defines three permissions
but only checks two. We make no assumptions on
permissions, and we consider them as independent
(neither grouped, nor hierarchical). Permission-based
system A permission-based system is composed of
at least one framework, a list of permissions and a
list of protected resources. Each protected resource
is associated with a fixed list of permissions. Entry
point An entry point of a framework is a method that
an application can use (e.g., public or documented).
Constructors are also considered as entry points. We
denote EntryF as the set of all entry points of F .
Example: In Figure 1, there are four entry points (e1
to e4). An application can call any public method of
the framework. Some methods accessing system re-
sources (like an account) are protected by one or more
permissions. In the case of Android 4.0.1, there are
50,029 entry points. Declared permission A declared
permission for an application app is a permission
which is in the permission list of app. The set of all
declared permission for an application app is noted
Pd(app).
Example: In Figure 1, the application declares p1 and
p2. In the case of Android, the permissions of an appli-
cation are declared in a file called manifest. Required
permission A required permission for an application
app is a permission associated with a resource that app
uses at least once. The set of all required permissions
for an application app is noted Preq(app).
Example: In Figure 1, the application requires permis-
sion p1. Inferred permission An inferred permission
for an application app is a permission that an analysis
technique found to be required for app.
Depending on the analysis technique used, the in-
ferred permission list may be either an over- or an
under- approximation of the required permission list.
When developers write manifests, they write Pd(app)
by trying to guess Preq(app) based on documentation
and trial-and-errors. In this paper, we propose to
automatically infer a permission list Pifrd(app) in
order to avoid this manual and error-prone activity.

4 OVERVIEW OF ANDROID

This section gives an overview of the architecture of
Android in Section 4.1. We focus on the parts related
to permissions in Sections 4.2 and 4.3. Other technical
details very important for static analysis are discussed
in Section 4.4.

4

4.1 Software Stack

Android is a system with different layers. It consists
of a modified Linux kernel, C/C++ libraries, a virtual
machine called Dalvik, a Java framework compiled
to Dalvik bytecode, and a set of applications. Appli-
cations for Android are written in Java and compiled
into Dalvik bytecode. Dalvik bytecode is optimized to
run on devices where memory and processing power
are scarce. An Android application is packaged into
an Android package file which contains the Dalvik
bytecode, data (pictures, sounds ...) and a metadata
file called the “manifest”.

4.2 Android Permissions

Application vendors define a set of permissions for
each application. For installing an application, the
user has to approve as a whole all the permissions
the application’s developer has declared in the ap-
plication manifest. If all permissions are approved,
the application is installed and receives group mem-
berships. The group memberships are used to check
the permissions at runtime. For instance, an applica-
tion Foo is given two group memberships net_bt

and inet when installed with permissions BLUE-

TOOTH and INTERNET, respectively. In other terms,
the standard Unix ACL is used as an implementa-
tion means for checking permissions. Android 2.2
defines 134 permissions in the android.Manifest-
$permission system class, whereas Android 4.0.1
defines 166 permissions. This gives us an upper-
bound on the number of permissions which can be
checked in the Android framework. Android has two
kinds of permissions: “high-level” and “low-level”
permissions. High-level permissions are only checked
at the framework level (that is, in the Java code of
the Android SDK). Android 2.2 declares eight low-
level permissions which are either checked in C/C++
native services (RECORD AUDIO for instance) or in the
kernel (e.g., when creating a socket). In this paper,
we focus on the high-level permissions that are only
checked in the Android Java framework.

4.3 Services and Permissions

An Android application is made of components which
can be: an Activity that is a user interface; a Service that
runs in background; a BroadcastReceiver (or Receiver)
that listens for “intents” (a kind of message for inter
process communication); a ContentProvider which is a
kind of database used to store and share data. Most
permissions are checked at the service level. Android
applications communicate with the operating system
using a special kind of service called system service.
System services are specific services running in a
specific scope (called the “system server”) and allow
applications to access system resources (ex: GPS co-
ordinates). Those resources may be protected by An-
droid permissions to prevent access by unauthorized

Application Code

r = getSystemService();
p = r.getPassword();

Service Call

Binder

getPassword() {
checkPermission();
return password;
}

Account System Service

1

2

3

4

5

goulli goulli!

Fig. 2. A Simplified Illustration of the Communication

between an Android Application and a Permission Pro-
tected Service through the so-called “Binder”.

applications. Permission checks associated to services
are mostly implemented in Java. Hence, the scope of
our paper consists of analyzing Android permissions
that are enforced in services in the Java framework. The
impact of this focus is discussed in Section 6. It is
important to understand the inner working of system
services to devise good static analyses (that will be
presented later in Section 5.2). We now describe how
the applications communicate with system services.
Applications synchronously communicate with sys-
tem services through a mechanism called Binder as
presented in Figure 2. The first step to communi-
cate with a remote service is to dynamically get a
reference (interface) to the service by calling Con-

text.getSystemService() (step 1 in Figure 2).
The next step is to call a method (method getPass-

word from the AccountManager Service in Figure 2)
from the interface on the object reference r (step 2 in
Figure 2). A special component, called “binder” is re-
sponsible for intercepting and redirecting that service
calls to the remote service that performs the actual
computation (steps 3 in Figure 2). The system service
is responsible for enforcing permission checks (step
4 in Figure 2). To check that the caller’s application
declares the permission in its manifest (Section 4.1),
the service calls one of the methods listed in Table
1 with the permission to be checked as parameter
(not shown in the Figure). This specific point in the
program is called Permission Enforcement Point or
PEP. In Figure 2, if the application has the correct
permission, the password is returned to the calling
application (step 5).

4.4 Technical Details on Android

We describe technical details of the Android system.
We leverage this knowledge during static analysis in
Section 5.

4.4.1 Android Boot Process

We describe how Android boots up and what kinds of
processes are launched. It is important to know how

5

to initialize system services when performing precise
static analysis with Spark (Section 5.3). If services are
not properly initialized, the analysis may be incom-
plete. The first program to run on the device is the
bootloader which provides support for loading, recov-
ering or updating system images. The early startup
code for loading the Linux kernel is very hardware
dependent: it first initializes the environment and
only then starts the architecture-independent Linux
Kernel C code by jumping to the start_kernel()

function. Then, high-level kernel subsystems are ini-
tialized (scheduler, system calls, process and thread
operations ...) the root filesystem is mounted and
the init process is started. The init process creates
mountpoints and mount filesystems, sets up filesys-
tem permissions and starts daemons such as the
network daemon, the zygote or the service manager.
The zygote is a core process from which new Android
processes are forked. The initialization of zygote starts
the system server which in turn initializes system
services and managers. System services include the
input manager service and the wifi service. Managers
include the activity manager which handles user in-
terfaces (activities). Android’s boot process indicates
that system services and managers are instantiated
and initialized at boot time.

4.4.2 Android Communication

Components communicate with one another through
the binder, the Android-specific Inter Process Com-
munication (IPC) mechanism, and Remote Method
Invocation (RMI) system. Components do not com-
municate with the binder directly but instead rely
on three high-level abstractions of communication
called intent, query and proxy. Figure 3 focuses on
those communications at the Java level of the Android
framework. It shows that an application communicate
with the system server (and thus system services)
through proxies and stubs (abstraction on top of
the binder). Intent. Intents describe operations to be
performed. They are used to start a new user interface
screen (Activity), trigger a component which listens
to intents (BroadcastReceiver) or communicate with
services. Query/Uri. Queries are used to communicate
with content provider components (which share data
for instance through a database). Queries use Uni-
form Resource Identifier (URI) to indicate the target
provider component on which the query must be
performed. Proxy/Stub. System services extend stub
classes which describe methods they must imple-
ment. System services are mainly used by application
to access system resources. They are accessed by
other components through their public interface called
proxy. System services are running in the system
server and are registered to the service manager. An
application can get a reference to a registered service

int checkPermission (String, int, int)

int checkCallingPermission (String)

int checkCallingOrSelfPermission (String)

void enforcePermission (String, int, int, String)

void enforceCallingPermission (String, String)

void enforceCallingOrSelfPermission (String, String)

TABLE 1
List of Permission Check Methods of the

android.content.Context Class (since Android

1.0 / API Level 1)

Binder

Activity—Service—Provider—Receiver

Service Manager

System Server
Android Application

Intent Query Proxy/Stub

Fig. 3. Android Communication Overview.

through the service manager and can then communi-
cate with the service through its proxy (which uses
the binder).

5 STATIC ANALYSES FOR ANDROID

Our goal is to define static analyses for extracting per-
mission checks. In essence, each analysis constructs a
call graph from the bytecode, finds permission check
methods and extracts permission names. Obtaining
a meaningful call graph is challenging. We ran the
default Soot’s CHA-Naive (Class Hierarchy Analy-
sis) on Android 4.0.1. It takes more than one week
and outputs 31, 458/50, 029 (64%) methods with no
permissions, one method with a single permission5

and 18, 381/50, 029 (36%) entry points (methods) that
each needs more than 100 high-level permissions. This
is not meaningful. The reason is that Android has
been implemented using the object-oriented paradigm
and there are many subclasses of the core classes
(e.g., of Service6 , Activity7, etc.). By construction,
CHA outputs that all clients of those classes call all
their subclasses. This results in an explosion of edges
in the call graph and consequently an explosion of
required permissions. The main challenge for defining
static analyses for extracting permission checks is to get
a precise call graph. We still aim at using CHA, but
we need to customize it for Android. We also aim

5. This is the INTERNET permission checked in class an-

droid.webkit.WebSettings.

6. https://developer.android.com/reference/android/app/Service.html
7. https://developer.android.com/reference/android/app/Activity.html

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/Activity.html

6

API Bytecode Entry Points
Generation

Section 5.1.4

Entry Points
Initialization

Section 5.3.2

Framework
Bytecode

Service
Redirection

Section 5.1.2

Service Identity
Inversion

Section 5.1.3

Bytecode
Cleaning

Section 5.3.2

Services
Initialization

Section 5.3.2

Manager
Initialization

Section 5.3.2

Necessary steps before running CHA Android

Necessary steps before running Spark Android

Fig. 4. Bytecode Processing Before CHA-Android/Spark-Android Analyses. Entry points are generated using
methods from the Android SDK API bytecode. Bytecode from the framework is transformed to redirect call to

services to actual service classes, bypassing the ICC glue code. CHA-Android requires entry point generation,
service redirection and service identity. Spark-Android is more precise thus requires proper entry points,

services, and managers initialization.

at using Soot’s Spark [21], an Andersen-like points-
to analysis. Our motivations for running CHA are as
follows. First, it enables us to identify key Android-
specific analysis components. Those components can
be reused with benefits in more sophisticated analyses
such as Spark. Second, it gives us a baseline for
assessing the improvements given by Spark. Third, it
gives a list of API methods with no permission which
do not require to be analyzed by Spark. Eventually,
the best-of-breed of Android specific analysis compo-
nents and Spark enable us to obtain a fairly precise
permission map. Figure 4 represents Android-specific
components that manipulate the framework byte-
code, and generate and initialize entry points. CHA-
Android, the customized version of CHA for Android,
requires generation of the entry point, presented in
Section 5.1.4, service redirection, described in Sec-
tion 5.1.2, and service identity inversion, detailed
in Section 5.1.3. In addition to those components,
Spark-Android, the customized version of Spark for
Android, requires proper entry point initialization as
well as services and managers initialization. Those
components are described in Section 5.3.2. In our
experiments, the call graphs are generated from the
50,029 entry points found in the Android API version
4.0.1. All the analyses use Soot [20], a widely used
framework for the static analysis of Java programs.
The experiments run on a Intel(R) Xeon(R) CPU E5620
@ 2.40 GHz running GNU/Linux Debian 3.11; the Java
virtual machine 1.7.0 is given 4 Gb of heap memory.
The Android version used in the experiments is 4.0.1
unless otherwise specified. Section 5.1 presents the
different components to modify the bytecode and to
extract permissions from the call graph. Section 5.2
describes the CHA-Android analysis and Section 5.3
the Spark-Android analysis.

5.1 Common Components for CHA and Spark

In this section we present three techniques that are
required for both CHA and Spark. String analysis
is used to extract the permission names from the
call graph. Service redirection enables the call graph
construction algorithm to link the service caller to the
service itself by bypassing the ICC glue code. Finally,
service identity inversion removes code from the call
graph which is executed as a system service itself and
thus is not relevant from the entry point caller’s point
of view.

5.1.1 String Analysis for Extracting Permissions from
Permission Enforcement Points

A basic call graph can only give the number of
permission checks but not the actual names of the
checked permissions because of the lack of string anal-
ysis to extract permission names from the bytecode.
As explained in Section 4.3, Permission Enforcement
Points (PEPs) are method calls to 6 methods of classes
Context and ContextWrapper (see Table 1 for a
list of PEPs). Those method calls can be resolved
statically. However, the actual permission(s) that are
checked are dynamically set by a String parameter or
sometimes, an array of strings. Thus, when a check
permission method is found in the call graph, a basic
analysis is only able to tell that a permission check
occurs, but not which precise permission is checked
because a call graph does not handle literal and
variable resolution by itself. To overcome this issue,
we have implemented a String analysis as a Soot
plugin whose pseudo code is shown in Algorithm 1.
Once PEPs are found, it extracts the corresponding
permission(s) (line 5). This plugin performs an intra-
method analysis and manages the following scenarios:
either (1) the permission is directly given as a literal
parameter, or (2) the permission value is initialized

7

Algorithm 1: Concrete Permissions Names Extrac-
tion (String Analysis).

Input: Method Call Stack, Target Method, Target
Method Parameter

Result: Set of Permission Strings
1 stack ← Method Call Stack;
2 tm ← Target Method;
3 tp ← Target Parameter;
4 pSet ← set ();
5 pSet ← findPermission (tm, tp);
6 if pSet is empty then
7 tp ← getCurrentMethodParameter ();
8 N ← size(stack)− 1;
9 r ← StringAnalysis (stack[1...N], stack[N], tp);

10 pSet ← pSet ∪ r;

11 return pSet;

in a variable which is given as a parameter, or (3)
an array is initialized with several permissions and is
given as a parameter. In every case we do a backward
analysis of the method’s bytecode using Soot’s unit
graphs which describe relations among statements of
a method. In the case where only a single permission
is given to the method, statements in the unit graph
containing a reference to a valid Android permission
String are extracted and the permissions added to
the list of the permissions needed by the method
under analysis. In case of an array, all permissions of
references to Android permission Strings are added
to the list. It can happen that the permission string
cannot be found in the current method Mi’s body. This
happens when it is referenced from a local variable
initialized with one of the current method’s parameter
P. The solution is for the analysis to go one method
down in the method call-stack (lines 6-10). At this
point the analysis goes through the statements of Mi−1

looking for a call to M. When a call is found the
parameter P is extracted and the string analysis starts
again from there.

At this point, we have a component to extract
permission strings from the call graph. In the next
section, we present how to handle service redirection
to avoid having imprecise permission sets.

5.1.2 Service Redirection: Handling Binder-based

Communication

Permission Size Explosion. A call to a service method
usually goes through a manager which gets a refer-
ence to a system service called proxy. It is always
a method call on a proxy which results in data
marshaling from the proxy through the binder to
the stub on top of which lays the real system service
method. All data transfers between the proxy and stub
go through the transact() method which calls the
onTransact() method. This method calls the right
method on the system service side according to an

API
methods

Binder
transact

method

Services
onTransact

methods

Services
target

methods

ApiS1.1

S1

Sg

Sh

Si
.
.
.

S1m1 p0

S1m2 p0

S1m3 p1

S1m4 −
S1m5 p2

S1m6 p0

S2m1 p3.
.
.

S3m1 p6.
.
.

.

.

.

Fig. 5. The number of edges explodes when an
API method reaches the transact method of the

Binder class. This node leads to an explosion in the

number of permission since it reaches all services’
onTransact methods and each of those reaches all

methods of their service. Those methods check for
different permissions. Solving this problem boils down

to short-circuit the low level transact and onTrans-

act methods to directly reach the method of inter-
est. The solution is represented by the dashed arrow

which directly links an API method to its corresponding

method in the right service. Thus, the API method is not
mapped to permissions {p0, p1, p2, p3, p6, ...} but only to

permission p0.

integer value. This integer value is not determined
when doing a static analysis. Thus, as illustrated in
Figure 5, all methods of system services are added
as edges in the call graph. Moreover, as all system
services implement a stub, when constructing the
call graph using CHA, all system services stubs’
onTransact() methods are potential method calls
from every method call on a proxy object and are
thus added to the graph. A consequence of this is
the explosion of the permission set size we observe
when running CHA. In short, when doing a naive
analysis from the point of view of services, any system
service method call does have edges to all methods
of every system service. Service Redirection. Figure
2 illustrates a communication between an application
and a service. The communication is done through
the binder. As explained in the previous paragraph,
the problem is that analyzing binder based commu-
nications leads to an explosion in the number of
permission. The solution, illustrated Figure 5, is to
bypass the binder (proxy/stub) mechanism by di-
rectly connecting a call to a service method to the
corresponding method within the remote service. In
Figure 2 edges from method r.getPassword() to

8

the binder and from the binder to service method
getPassword() are removed. Only the direct edge
from the calling method to the called method (not
shown in the Figure) is kept. As presented in Figure
4 this is the first transformation done on the bytecode
of the Android framework.

We now know how to redirect system services prop-
erly. However, it may happen that system services
execute code on their behalf and not on the behalf
of the original caller. The next section explains how
we remove this code from the call graph.

5.1.3 Service Identity Inversion

In Android, services can call other services either
with the identity of the initial caller (by default) or
with the identity of the service itself. In the later
case, remote calls are within clearIdentity() and
restoreIdentity() method calls. When using the
service’s own identity, permission checks are not done
against the caller’s declared permissions, but against
the service’s declared permissions. Since our goal is
to compute the permission gap of an application (and
not of system services), we can safely discard all per-
mission checks that occur between calls to clearI-

dentity() and restoreIdentity(). For instance,
let us assume that service S requires and declares
permission θ which is not declared by application
A. If A calls S, the code of S is executed with the
identity of A itself which would require A to declare
θ. To avoid this, the portion of code requiring θ is
executed with S’s identity. When we encounter calls
to clearIdentity() or restoreIdentity(), we
use an intra-procedural flow-sensitive analysis to dis-
card permission checks that occur between those calls.
Figure 4 shows that the Service Identity Inversion step
is done after the Service Redirection transformation.

Sections 5.1.2 and 5.1.3 explain how to construct a
call graph taking into account specificities of the An-
droid system. As we do analyze a framework and not
a traditonnal application, the call graph construction
starts from entry points of the framework and not
from a main method. The next section explains how
we construct a call graph from entry points.

5.1.4 Entry Points Handling for CHA

In the case of an API (such as the Android API),
the problem is that there is no “main” but N classes
totalizing M entry point methods. Our solution is
to build one call graph per public method of the
Android API by creating one fake method mclassi

(i ∈ (1, . . . , N)) per public class of the framework
(for Android, android.* and com.android.*). The
role of method mclassi is to create an instance o of
classi and to call all methods of classi on o. We
also build a unique artificial main calling all mclassi

methods. This main method is the unique start point
of the analysis. As presented in Figure 4, entry points
are constructed using methods from the Android API.

Section 5.2 presents CHA-Android which leverages
the service redirection, service identity inversion and
entry point construction components.

5.2 CHA-Android

We perform the map construction with CHA for three
reasons. First, it enables us to identify key Android-
specific analysis components that can be reused with
benefits in more sophisticated analyses such as Spark.
Then, it gives us a baseline for assessing the improve-
ments given by Spark. Finally, it gives a list of more
than 30k API methods with no permission which do
not require to be analyzed by Spark. CHA-Android is
a CHA-based static analysis for extracting permission
checks on the Android framework. It uses the string
analysis presented in Section 5.1.1, the service redirec-
tion (Binder) of Section 5.1.2, and the service identity
inversion explained in Section 5.1.3. We enrich it with
an optimization that we now describe.

5.2.1 Call Graph Search Optimization

Section 5.1.1 describes how to extract permission
names. This Section explains how permission names
are propagated through the graph from PEPs. Al-
gorithm 2 propagates permission sets through the
graph. It proceeds in three steps. The first step (line
2) traverses the graph using depth first search and
keeps track of the methods already visited. During
the traversal it finds where permissions are checked
and extracts the permission names (see string analysis
above). This first step makes the analysis much faster
than the naive approach since no method is analyzed
more than once. Steps two and three make sure that
permissions of already analyzed method are propa-
gated in the graph. During the second step (lines 3-
4) we use Tarjan’s algorithm [32] to replace Strongly
Connected Components (SCC) from the graph by
a single node. This essentially removes loops from
the graph and simplifies the propagation of permis-
sion names. During this step one has to be careful
not to remove essential parts of the graph such as
methods that check permissions since permissions are
not propagated at this stage. Concretely, if a check
permission method is part of an SCC it must not
be removed from it otherwise permissions mapped
to this method would not be propagated and thus
be lost. The third and last step (line 5) propagates
permissions throughout the graph. This algorithm has
a linear complexity in the number of nodes and edges.
During the first step the graph is searched using
depth-first search and methods are never analyzed
twice: this step is bound linear in the number of edges
and nodes. Tarjan’s algorithm is bound linear in the
number of nodes and edges. The last step propagates
permissions through a depth first search of the graph
where SCCs are replaced.

9

Algorithm 2: Permissions Extraction and Propaga-
tion.
Input: Call Graph
Result: Set of Methods with their Permission Sets

1 g1 ← Call Graph;
2 DephtFirstSearchAndPermissionExtraction (g1);
3 SCC ← TarjanFindSCC (g1);
4 g2 ← ReplaceSCC (g1, SCC);
5 PropagatePermissions (g2);

Total # analyses 1,516 (100.00%)

String found

total 1,502 (99.08%)
with 1 permissions 1,393 (91.89%)
with 2 permissions 109 (7.19%)
with only direct strings 1,262 (83.25%)
with flow analysis 183 (12.07%)
with strings in array 57 (3.76%)

String not found

total 14 (0.92%)
with URI read perm. 6 (0.40%)
with URI write perm. 6 (0.40%)
with read from parcel 2 (0.13%)

TABLE 2

The Kinds of Permission Specification as Found by

Our String Extraction Analysis.

5.2.2 Empirical Results

Permission Strings Resolution. Let us now analyze
the efficiency of the string analysis. The distribu-
tion of the results of string analysis is presented in
Table 2. We observe that 91.89% of the permission
string analyses only check a single permission and
that 83.25% of the analysis the permission string
can directly be determined as a literal parameter.
Hence, it is a common practice in the Java code-
base of Android to (1) protect a method with only
one or two permissions and (2) to make reference
to permission strings and call the check permission
method in the same method body. Those results show
that for 99.08% of permission checks the permission
string is found using a string analysis. Sometimes
(0.92%), it is not possible to resolve permission strings:
in 12 cases permissions are related to URIs; in two
cases permissions are read from the Binder (Parcel).
Execution time. On Android, CHA-Android analyzes
50,029 entry points in 4 minutes user time or 10
minutes real time. This shows that CHA-Android is
able to scale on a large scale real world Framework.
Entry Point Permission Sets. Running CHA-Android
yields Table 3 which shows the permission set size for
the entry points. As CHA-Android correctly models
system service communications, the number of entry
points requiring no permissions increases from 64%
to 65.1% (31,458 to 32,429) (some service methods
are not protected by permissions). The number of

Permission Set # entry points

with 0 permissions 32,924 (65.8%)
with 1 permissions 39 (0.08%)
with 2 permissions 55 (0.12%)
with > 65 permissions 17,011 (34.0%)

50,029 (100%)

TABLE 3

CHA-Android Permission Sets.

entry points with one and two permissions increases
from less than 0.01% to 0.08% (1 to 39) and from
0% to 0.12% (0 to 55) respectively (service method
redirection avoids explosion in the number of edges
in the call graph and thus the number of permissions).
Nevertheless, 34% (17,011) of entry points still have an
over-approximated permission set. This is caused by
the imprecision of the points-to set of CHA. This re-
sults in an explosion in the number of permissions. An
improvement would be to develop other domain spe-
cific optimizations: handling other Android specific
points (e.g. content providers, handlers and messages)
is similar to handling service communications and
would not have an impact on the contributions of this
paper. The following Section 5.3 presents the Spark
based analysis. The analysis tackles Spark specific
issues such as entry point initialization or Android
specific issues such as service initialization.

5.3 Spark-Android

We run Spark in context-insensitive, path-insensitive,
flow-insensitive, field-sensitive mode to generate the
call graph. In context-insensitive mode, every call to
the same method is merged to a single edge inde-
pendently of the context (receiver and parameters
values). A path-insensitive analysis ignores condi-
tional branching hence takes into account all paths of
method bodies. The call graph construction is flow-
insensitive since it does not consider the order of exe-
cutions of instructions. It is also field-sensitive because
it differentiates the points-to solution associated with
different named object fields. We first run a naive
version of Spark-Android in Section 5.3.1 to illustrate
the need to correctly initializing objects on which API
methods are called as well as method’s parameters.
Section 5.3.2 describes how we initialize entry points.
It also explain another Spark subtlety: why and how
system services must be initialized.

5.3.1 Naive Usage of Spark

As for CHA, we “naively” run off-the-shelf Spark
to get a first understanding of the main problems
that occur when analyzing the Android API. This
gives us a key insight, Spark discards 96% of the
API methods to be analyzed. The reason is that Spark
does not work on receiver objects whose value is
null (i.e. methods called on references initialized by

10

default with null do not appear in the graph). The
four percents of analyzed methods are Java static
methods which can be called without instantiating
their classes. This means it is not possible to run
a Spark based analysis without correctly initializing
entry points. Even with key Android-specific static
analyses of CHA, a naive usage of Spark completely
fails. Consequently, we need Spark specific analysis
components.

5.3.2 Spark Specific Analysis Components

Processing Time. Our first experiments show that
Spark does not scale to the size of the Android frame-
work. As we experience that Spark is time consuming
when processing some entry points, we empty specific
methods of certain classes to be able to compute
permissions sets in a realistic amount of time (i.e.,
less than one day). Analyzing time consuming entry
points always leads to the windowing system classes.
The windowing system is at the heart of Android
components such as activities. It is responsible for the
GUI (Graphical User Interface) management, and has
relationships with numerous GUI abstractions such
buttons or text fields and methods to start Android
components such as other activities. When the call
graphs hits a component of the windowing system
it can grow in such huge proportion, because of the
imprecision in the points-to sets, that the search in
it triggers a timeout. We make the hypothesis that
classes responsible for GUI rendering and the win-
dowing system management do not link to any per-
mission check. Thus, we remove code of their meth-
ods and launch the experiments again. Removing the
code means that (1) Spark does not construct the call
graph for this code and thus that (2) the traversal of
the call graph is much faster. With those modifica-
tions, the computation time of the permission map
is much faster, terminates in less than 11 hours and
does not trigger any timeout. Entry Points Handling
for Spark. Spark-Android leverages artificial methods
generated for CHA (see Section 5.1.4). However, it
must initialize parameters of the 50,029 entry point
methods of the Android API. Each receiver object o
on which to call Android API methods as well as
every method parameter p are initialized by calling
generateo() and generatep(), respectively. This
tailor made method generates all possible instances
of type P (i.e., over-approximation). Parameter ini-
tialization is necessary since one does not know a
priori the effect of parameters on permission checks.
Since Spark is field-sensitive, non-initialized param-
eters result in missing edges in the call graph. Im-
portance of Service Initialization for Spark. A Spark
based approach does require proper initialization of
the analyzed modules of the Android framework.
The reason is that, as presented in Figures 6 and 7,
skipping the initialization phase may result in impor-
tant fields, containing references to system services

AccountManager m = getSystemService("account");

m.getPassword(a);

public class AccountManager {

IAccountManager mServ;

public String getPassword(Account a) {

// the callgraph stops here because

// mService is null (see Figure 4)

return mServ.getPassword(a);

}

}

Application code API/System code

Fig. 6. How Spark Discards Call Graph Edges Be-
cause of ”null” Objects.

AccountManager m = getSystemService("account");

public class ContextImpl {

public Object getSystemService(String ts) {

if (ts.equals("account") {

return getAccountManager();

} else ...

}

private AccountManager getAccountManager() {

IBinder b; IAccountManager mServ;

// returns null

b = ServiceManager.getService("account");

// returns null because b is null

mServ = IAccountManager.Stub.asInterface(b);

// is null

return new AccountManager(this, mServ);

}

}

public class ServiceManager {

// sCache initialized at boot time

HashMap<String, IBinder> sCache;

public static IBinder getService(String name) {

// statically, getService() returns null

return sCache.get(name);

}

}

Application code API/System code

Fig. 7. How Spark Propagates ”null” Due to Initializa-

tion that is not Statically Visible.

for instance, to only point-to null. Spark does not
generate edges for method calls on references which
can only point to null. Figure 6 represents a code
snippet which retrieves an AccountManager object
and calls method getPassword() on it. At this point
AccountManager’s service reference mServ can only
point to null. Thus, mServ.getPassword() cannot
be executed and would not be represented in a field-
sensitive call graph. In other words, Spark generates
an edge for the AccountManager object but not for
the service method call within it because the service
reference (mServ) points to null.

This AccountManager object is created by the
Context class as described in Figure 7. To simplify,
only AccountManager objects are created in get-

SystemService(). To create an AccountManager

object a reference to the AccountManagerService is
required. This reference is fetched through a call to

11

getService(). However, since ServiceManager

has not been initialized, ServiceManager’s sCache
map is empty. So, getService() always returns
null. Service Initialization for Static Analysis As
detailed in Section 4.4, system services are initialized
in the SystemServer class. Methods from this class
are not present in the call graph generated from entry
points of the Android API since they are only called
at system boot time. To simulate system services
initialization we create a static object and an initializa-
tion method for each concrete system service. Those
objects are initialized by adding edges to the service
initialization methods to the call graph. Moreover,
the original bytecode is modified to replace calls to
getService by a reference to the newly created
static objects. Manager Initialization for Static Anal-
ysis Android applications have two possibilities to
communicate with system services

• The first possibility is to directly get a reference
to the service8 through the service manager and
then to call remote procedures of the service

• The other possibility is to use another interface
called Manager. The manager is created from the
system Context class and has itself a reference to
the service to directly communicate with it and
acts as a proxy for the application (as show in
Figure 6).

Managers are wrappers to ease communication with
system services. We redirect calls to getSystemSer-

vice(String s) to our own methods. To be able to
do that, we used string analysis to compute a map-
ping between strings given to getSystemService

and the code which initializes the corresponding man-
ager. Each call to getSystemService is analyzed to
extract the string parameter to know to which method
it must be redirected. To each string corresponds
one Manager and thus one method whose role is to
initialize the manager.

We also provide our own getService() method
that returns properly initialized services as presented
in Section 5.3.2. All calls to the original getSer-

vice() are redirected to our own methods. Method
getSystemService returns a manager whereas
method getService() returns an interface to a ser-
vice. The original bytecode of the Android framework
is modified to reflect services and managers initializa-
tion. The resulting bytecode can be analyzed by any
static analysis tool and is not specific to Soot.

5.3.3 Empirical Results

Spark-Android runs in 11 hours. Permission set sizes
for entry points when running Spark-Android are
described in Table 4. The number of entry points
with a single permission is 471. Furthermore, 48 entry
points have a permission set of two, 10 of 3 and three
have more than three permissions. The total number

8. also called a binder to the service

of entry points is less than the one for CHA since
abstract classes cannot be initialized with Spark. No
method associated with those classes is represented
in the set of entry point methods.

Permission Set # entry points

with 0 permissions 42,895 (98.77%)
with 1 permissions 471 (1.08%)
with 2 permissions 48 (0.11%)
with 3 permissions 10 (0.02%)
with ¿ 3 permissions 3 (¡ 0.01%)

43,427 (100%)

TABLE 4

Spark-Android Permission Sets.

5.4 Recapitulation

We have presented the core technical issues we
encountered while implementing our approach. We
think that those problems may arise in other
permission-based platforms than Android, and that
identifying them and their solutions can be of great
help for future work. Last not but not least, those
points are crucial for replication of our results. Section
6 evaluates the CHA and Spark based analyses.

6 DISCUSSION

In Section 5 we have presented three analyses: CHA-
naive, CHA-Android and Spark-Android. CHA-naive
is the default analysis provided by Soot. CHA-
Android takes into account specificities of the An-
droid system such as service redirection and system
identity inversion. Spark-Android also take into ac-
count those specificities but leverages a more precise,
field-sensitive call graph construction algorithm. How
do those three analyses perform compared to others?
What are their limitations? This section answers those
questions.

6.1 CHA versus Spark

Figure 8 is a cumulative plot of the number of entry
points function of their permission set size. By cu-
mulative we mean that at each permission set size
the number of methods is added to the number of
methods at the previous permission set size. It first
shows that the more precise an analysis is, the bigger
the set of entry points with zero permission will be.
This result reflects the fact that with precision, ”false
positive” edges are removed from the graph. Then,
the plot (Spark-Android) highlights that, when only
system services communication are handled, Spark
yields the best results as it finds more methods with
a permission set of one, two or three than all other
analyses. Moreover, Spark never finds an entry point
with more permission than CHA. It finds the same
permission set (with one or more permission) than
with CHA for 91 entry points. Spark finds a smaller
permission set for 428 entry points.

12

0 1 2 3

35,000

40,000

of permissions

#
o

f
en

tr
y

p
o

in
t

m
et

h
o

d
s

CHA-Naive

CHA-Android

Spark-Android

Fig. 8. Cumulative Plot of the Number of Methods per

Permission Set Size (The higher, the better).

Permission set Number of
Methods

#API Methods in PScout 593
#API Methods in Spark and PScout 468 (100%)
Identical 289 (61.75%)
we find more precise permission checks 176 (37.60%)
we find more permission checks 3 (0.64%)

TABLE 5
Comparison between Our Results (Spark-based

analysis) and Pscout’s ones [3] (CHA-based analysis)

using Android 4.0.1.

6.2 Comparison with PScout

PScout [3] relies on a CHA based approach and
generates a permission list for classes in the An-
droid framework. We only consider classes of the
Android 4.0.1 API. There are 593 methods in the
results of PScout that have more than one permission
and 468 methods that are both in PScout and Spark.
Among those 468 methods, 289 (61.75%) have the
same permission size in both PScout and Spark and
176 (37.60%) have a smaller permission set size with
our approach. For instance, for method exitKey-

guardSecurely(...) of class KeyguardManager,
PScout finds five permissions whereas Spark only
one, DISABLE_KEYGUARD. The official documenta-
tion confirms that only one permission is required
as well as the runtime data from Felt [13]. Spark
also misses a permission for method AudioMan-

ager.setMicrophoneMute(boolean). It is be-
cause we do not handle C/C++ native code where this
permission check is done. Table 5 summarizes the re-
sults of this comparison. Our analysis yields more precise
results than a pure CHA-based approach. Interestingly
we also find three methods (0.64%) for which our
Spark approach finds more permissions than PScout’s
approach. We manually checked the Vibrator class

Permission set Number of
Methods

#Methods analyzed in [13] 1282
#Methods with HL perm. only 673
Identical 552 (82.3%)
we find more permission checks 119 (17.7%)

one more 118 (17.6%)
two more 1 (0.1%)

we find less permission checks 0 (0%)

TABLE 6
Comparison between Our Results and Felt et al.’s

ones [13] (Based on Testing) using Android 2.2. Only

methods with high-level permissions are considered.

where the involved methods are defined and there is
a path to a method checking permission WAKE_LOCK.
PScout probably did not correctly link those specific
entry point methods to all methods they can reach,
thus missing the WAKE_LOCK permission.

6.3 Comparison with Felt et al.

Let us now compare our results obtained with static
analysis [5] with the results of Felt et al. obtained
through testing [13]. Both extract a list of required
permissions for each method of the Android 2.2
framework. Android 2.2 features 134 permissions,
eight of them being low-level permissions that we
do not analyze. Felt et al.’s results contain 673 meth-
ods mapped to high-level permissions. We analyze
only 671 methods because 2 methods are related
with application-specific objects provided in Felt’s
approach that are not available in our static analysis
approach. For a given method, we either find the
same permission set, or a larger one. Our method
never misses a permission that Felt et al. describe.
More precisely, we infer the same permission set per
method signature for 552 methods (82.3% of com-
monly analyzed methods). There is one additional
permission for 119 methods (1 additional permission
for 118 methods, 2 for 1 method). There is no method
for which we miss a permission, Table 6 summarizes
those results. Let us now discuss the discrepancy
between our results.

The additional permissions are due to either ana-
lyzing irrelevant code or to missing input data in Felt
et al.’s approach. In the latter case, we are able to find
permissions that are checked within specific contexts
that were not taken into account by the generated
tests of Felt et al. For instance, MOUNT_UNMOUNT-
_FILESYSTEMS is only checked for method Mount-

Service.shutdown() if the media (storage device)
is “present not mounted and shared via USB mass storage”
(from the API documentation). Another permission,
READ_PHONE_STATE is needed for method Caller-

Info.getCallerId() only if the phone number
passed in parameter is the voice mail number. Those
test cases were not generated by Felt’s testing ap-
proach. In real applications, test generation techniques

13

cannot guarantee a comprehensive exploration of the
input space. To us, these findings are typical when
comparing a static analysis approach against a testing
one: static analysis sometimes suffers from analyzing
all code (including debugging and dead code, or
code run in specific runtime environments), but is
strong at abstracting over input data. On the other
hand, testing must simulate as close as possible the
production environment, but is cursed to always miss
very specific usage scenarios. Those results highlight
the complementarity between static analysis and test-
ing in the context of permission inference. We think
that the static analysis approach is complementary
to the testing approach. Indeed, the testing approach
yields an under-approximation which misses some
permission checks whereas the static analysis ap-
proach yields an over-approximation in which those
missing permission checks are found. Using both
approaches in conjunction would enable developers to
obtain a lower and an upper bound of the permission
gap. In particular, for a given Android applications, if
both testing and static analysis approaches yield the
same list of permissions, this strongly suggests that
this list is the “correct” list of required permissions.
As testing could miss permissions and static analysis
may not model all Android specificities this cannot be
a strong claim.

6.4 Soundness

We have shown in this paper that the Android frame-
work has many specificities that may threaten the
soundness of static analysis. In this context, soundness
refers to having no false negatives (no missed permis-
sion checks). Furthermore, the concept of soundness
refers to a specific scope: in our cases, checks of
high-level permissions inside Android services. For
CHA and Spark-based analysis, such as PScout, CHA-
Android or Spark-Android, the manipulation of the
call graph based on domain-specific knowledge (such
as the bytecode redirection, and windowing system
methods emptying) is sound if and only if all cases
are envisioned. Given the complexity and scale of
a framework such as Android, this completeness is
hard to prove. For Spark-based analysis, the analysis
is sound if and only if the object and static fields
are correctly initialized. Hence the analysis may be
sound for some entry-points and unsound for others.
For a framework such as Android, there is no oracle
for formally answering those questions. However, for
those entry points when the CHA-based results and
the Spark-based results are identical it is a strong piece
of evidence of soundness. For the rest, comparison
with documentation or runtime data is required. Fi-
nally, our results hold as far as there is no serious
bug in the implementation of any part of the static
analyses (e.g., entry point initialization and bytecode
redirection), as well as in the glue and measurement
code we wrote.

6.5 The Impact of Service Identity Inversion

A legitimate question to ask is whether or not service
identity inversion has an impact on the resulting
permission set. To answer that, we ran Spark-Android
with and without activating service identity inversion.
Within the set of entry points which did not time
out, two have a bigger permission set when service
identity inversion is turned off. For instance, method
<android.net.ConnectivityManager boolean

requestRouteToHost(int,int)> has one more
permission CONNECTIVITY_INTERNAL when service
inversion is disabled. This permission is not required
for the entry point according to the official documen-
tation9 which validates the usefulness of the service
identity inversion building block. Service inversion
may only impact a few entry points but not taking
it into account leads to wrong permission sets.

6.6 Limitations

6.6.1 Native Code

The Android framework is a real-world large-scale
framework, featuring heterogeneous layers written
in different languages. For Android 2.2 most An-
droid permissions (126/134) are checked in the
Android Java framework only. Our approach is
complete for these 126 permissions, but incom-
plete for the eight permissions checked in na-
tive C/C++ code. These eight permissions are:
BLUETOOTH_ADMIN, BLUETOOTH, INTERNET, CAM-
ERA, READ_LOGS, WRITE_EXTERNAL_STORAGE, AC-
CESS_CACHE_FILESYSTEM and DIAGNOSTIC.

6.6.2 Reflection in the Framework

If the framework uses reflection, then the call graph
construction is incomplete by construction. Fortu-
nately, the Android framework uses reflection in only
7 classes. We manually analyzed their source code.
Five of those classes are debugging classes. The View
class uses reflection for handling animations. Finally,
the VCardComposer uses reflection in a branch that
is only executed for testing purpose. In all cases,
the code is not related to system resources hence
no permission checks are done at all. This does not
impact the static analysis of the Android framework.

6.6.3 Dynamic Class Loading

The Java language has the possibility to load classes
dynamically. Static analysis cannot deal with this since
the loaded classes are only known at runtime. We
found that eight classes of the Android system are us-
ing the loadClass method. After manual check, six
of them are system management classes and are either
not linked to permission checks (ex: instrumenting an
application) or have to be accessed through a service.
Two are related to the webkit package. They are

9. http://developer.android.com/reference/android/net/ConnectivityMana

http://developer.android.com/reference/android/net/ConnectivityManager.html

14

used in the LoadFile and PluginManager classes.
In both cases, permissions are checked before loading
classes, and not inside the loaded classes. Thus, there
is no missed permission enforcement point either.

6.6.4 Spark

Our model of the Android framework focuses on
services and missed the initialization of other Android
components (e.g., content providers). In other words,
Spark is sound with regards with our model of An-
droid components.

7 COMPUTING PERMISSION GAPS

We now have static analyses to compute the mapping
between Android API methods and their required
permissions. This section first presents a method to ef-
ficiently compute the required permission set and the
corresponding permission gap (permissions declared
but not used), if any. Then we present the results of an
empirical study that show the existence of permission
gaps in the wild.

7.1 A Calculus for Permission Analysis

This section describes the permission gap inference as
a calculus on top of a boolean matrix algebra. Permis-
sion inference is at heart a reachability analysis (does
the application reach a permission check?), the goal of
this calculus is to ”factorize” the static analysis, so as
to be much more efficient. Let app be an application.
The access vector for app is a boolean vector AVapp

representing the entry points of the framework under
study. Thus, the length of vector AV is the number
of entry points of framework F . An element of the
vector is set to true if the corresponding entry point is
called by the application. Otherwise it is set to false.
Let us consider a framework with four entry points
(e1, e2, e3, e4), and an application foo that reached e1,
e2 and e3 but not e4. AVapp reads:

AVfoo = (1, 1, 1, 0)

We define the permission access matrix M as a boolean
matrix which represents the relation between entry
points of the framework and permissions. The rows
represent entry points of the framework and the
columns represent permissions. A cell Mi,j is set
to true if the corresponding entry point (at row i)
accesses a resource protected by the permission rep-
resented by column j. Otherwise it is set to false. For
a framework with four entry points (e1, e2, e3 and e4)

and three permissions (p1, p2 and p3), the permission
access matrix reads:

M =

p1 p2 p3

e1 1 0 0
e2 1 0 0
e3 0 0 0
e4 0 1 0

. . . meaning that e1 and e2 require permission p1, e3
requires no permission and e4 requires permission p2.
Let app and F be an application and a framework
respectively. The inferred permissions vector, IPapp,
is a boolean vector representing the set of inferred
permissions for application app. By using the boolean
operators AND and OR instead of arithmetic multipli-
cation and addition in the matrix calculus, we have:

IPapp = AVapp ×M

A cell IPapp(k) equals to true means that the permis-
sion at index k is required by app. Using AVapp and M
from the previous examples, the inferred permissions
vector for app is:

IPapp =
(

1 1 1 0
)

·

1 0 0
1 0 0
0 0 0
0 1 0

IPapp =
(

1 0 0
)

. . . meaning that the application should declare and
only declare permissions p1.

7.2 Extraction of M and AV

The permission access matrix M is based on a static
analysis of framework F . As shown in Section 5,
we first compute a call graph for every entry point
of the framework and then detect whether or not
permission checks are present in the call graph. A
permission enforcement point (PEP) is a vertex of a
call graph whose signature corresponds to a system
method that checks permission(s). Each PEP is asso-
ciated with a list of required permissions permsPEP .
Matrix M is constructed as follows: it is a matrix of
size (—entry points— × —high level permissions—);
all elements of M are initialized to false; for each ei
that reaches one or more PEP, and for each permission
j in permsPEP , M(i, j) = true. In other terms, M is
a condensed version of the reachability information that
is latent in call graphs. Let us take the example of
Figure 1 in Section 3. It shows a framework with
four entry points (e1, e2, e3, e4), and three permissions
(p1, p2, p3). For every of those entry points a call graph
is constructed. Three of those call graphs have a PEP
node: e1 and e2 have PEP ck1 which checks permission
p1 and e4 has PEP ck2 which checks permission p2. On
the figure a dashed arrow connects each PEP to the
permission(s) it checks. The framework matrix is then
matrix M presented above (see Section 7.1). Extracting

15

AV simply means listing the list of entry points of
a framework F called by an application app. The
application example in Figure 1 uses a single entry
point, and AVex = (1, 1, 1, 0).

7.3 Computing the Permission Gap

The permission gap is the difference between the
permissions extracted from IPapp and the declared
permissions Pd(app). In Figure 1, using matrix Mex

and vector AVex of the example framework and ap-
plication, we obtain a list of inferred permissions only
containing p1. If the application declares p1 and p2,
the permission gap is {p2}. We ran our tool on two
datasets of Android applications. The first comes from
an alternative Android Market10 and contains 1329
android applications. For the second one, we consider
the top 50 downloaded applications of all 34 top-
level categories of the Official Android Market, as
well as the top 500 of all applications and the top 500
of new applications (on February, 23rd 2012). After
removal of duplicates (the applications appearing in
several rankings), the second dataset contains 2057
applications.

Alternative Android Market: We discard 587 ap-
plications that use reflection and/or class loading. Of
the 742 remaining applications, 94 are declaring one
or more permissions which they do not use. Con-
sequently, we identify a permission gap for 94 Android
applications. We define the “area of the attack surface”
with respect to permission gaps, as the number of
unnecessary permission. In all, among applications
suffering from a permission gap, 76.6% have an attack
surface of 1 permission, 19.2% have an attack surface
of 2 permissions, 2,1% of 3 permissions and also
2,1% of 4 permissions. Official Android Market: We
discard 1378 applications that use reflection and/or
class loading. On the 679 remaining applications, 124
are declaring one or more permissions which they do
not use. In all, among applications suffering from a
permission gap, 64.5% have an attack surface of 1
permission, 23.4% have an attack surface of 2 per-
missions, 12.1% of 3 or more permissions. To sum
up, those results show that permission gaps exists,
and that our approach allows developers to fix the
declared permission list in order to reduce the attack
surface of permission-based software.

8 RELATED WORK

We have presented an approach to reduce the attack
surface of permission-based software. The concept
of “attack surface” was introduced by Manadhata
and colleagues [22], it describes all manners in which
an adversary can enter the system and potentially cause
damage. This paper describes a method to identify
the attack surface of Android applications, which

10. http://www.freewarelovers.com/android

is an important research challenge given the sheer
popularity of the Android platform. In the context of
Android, reducing the attack surface is adhering to
the principle of least privileges introduced by Saltzer
[30].

8.1 On the Java Permission Model

While the Android permission model is different from
the one implemented in Java, the following pieces of
research present related and relevant points to put our
contribution in perspective. Koved and al. described
a new static analysis [19] to generate a permission list
for a Java2 program (in the Java permission model).
Geay et al. [16] presented an improved methodology.
We also use static analysis but in the context of
Android which differs from a Java environment espe-
cially with respect to the binder mechanism linking
Android API to services. As shown in our evaluation,
the binder prevents off-the-shelf Java static analysis
tools to resolve remote call to a service.
Pistoia et al. [28] presented a static analysis to iden-
tify portions of the code which should be made
privileged. This issue does not arise in the Android
framework since code is not privileged per se, the
access control is instead done at entry points. This
means that the Android framework designers must
be careful of creating unique entry points protected by
permission enforcement points, but does not impact
our static analysis.
Centonze et al. [7] analyzed role-based access con-
trol (RBAC) mechanisms using static analysis. When
a protected operation manipulates data, this data
should not be directly or indirectly accessible by a
path not defined in the policy. If not, the operation
is said to be location-inconsistent. The tool they de-
veloped can check whether or not an RBAC policy
for JavaEE programs is location consistent or present
some flaws. The Android system defines permissions
which protect operation which in turn manipulate
protected data. Our goal consists of computing per-
mission gaps which may reveal a violation of the prin-
ciple of least privilege. Whether Android protected
operations are location consistent is out of scope of
this paper.
Also related to role-based access control, Pistoia et
al. [27] formally model RBAC and statically check
the consistency of a JavaEE based RBAC system. We
check that permission lists of Android applications
respect the principle of least privilege. The concepts
are the same (Android permissions could be approxi-
mated to roles, and we check which roles are needed
at every point of the Android framework) but the
target systems are not. Interestingly, we use a similar
approach for solving the Binder problem as they do
for solving the remote method invocation problem:
instead of statically analyzing the Binder/RMI code
which would not resolve the method, a mapping

http://www.freewarelovers.com/android

16

is computed from the call to a remote method to
the remote method itself. A major difference though
is that in the case of Android system services and
context must be initialized beforehand to simulate a
correct system state.

8.2 On the Android Permission Model

The Android security model has been described as
much in the gray literature [12], [31] as in the official
documentation [1]. Different kinds of issues have
been studied such as social engineering attacks [18],
collusion attacks [23], privacy leaks [17] and privilege
escalation attacks [15], [9]. In contrast, this paper
does not describe a particular weakness but rather
a software engineering approach to reduce potential
vulnerabilities.
However, we are not describing a new security model
for Android as done by [25], [26], [10], [8], [6]. For
instance, Quire [10] maintains at runtime the call chain
and data provenance of requests to prevent certain
kinds of attacks. In this paper, we do not modify the
existing Android security model and we devise an
approach to mitigate its intrinsic problems.
Also, different authors empirically explored the usage
of the Android model. For instance, Barrera et al. [4]
presented an empirical study on how permissions are
used. In particular, they used visualizing techniques
such as self-organizing maps to identify patterns of
permissions depending on the application domain,
and patterns of permission grouping. Other empirical
studies include Felt’s one [14] on the effectiveness
of the permission model, and Roesner’s one [29] on
how users react to permission-based systems. While
our paper also contains an empirical part, it is also
operational because we devise an operational soft-
ware engineering approach to tame permission-based
security models in general and Android’s one in
particular.
Enck et al [11] presented an approach to detect dan-
gerous permissions and malicious permission groups.
They devised a language to express rules which
are expressed by security experts. Rules that do not
hold at installation time indicate a potential security
problem hence a high attack surface. Our goal is
different: we don’t aim at identifying risks identified
from experts, but to identify the gap between the
application’s permission specification and the actual
usage of platform resources and services. Contrary to
[11], our approach is fully automated and does not
involve an expert in the process.
PScout [3] is a static analysis designed concurrently
with our work. It also uses Soot but only relies on
CHA and does not use Spark. Our works compares
and validates part of their results in Section 6.2.
Finally, Felt et al. [13] concurrently worked on the
same topic as this paper. They published a very first
version of the map between developer’s resources

(e.g., API calls) and permissions. Interestingly, we
took two completely different approaches to iden-
tify the map: while they use testing, we use static
analysis. As a result, our work validates most of
their results although we found several discrepancies
that we discussed in details in Section 6.3. But the
key difference is that our approach is fully auto-
mated while theirs requires manually providing test-
ing “seeds” (such as input values). However, in the
presence of reflection, their approach works better
if the tests are appropriate. Hence, we consider that
both approaches are complementary, both at the con-
ceptual level for permission-based architectures, and
concretely for reverse-engineering and documenting
Android permissions. Mustafa et al. [24] worked on
the analysis of system services. Their approach is
to extract a sub call graph using a context-sensitive
backward slicing method starting from permission
check methods. Their analysis is more precise since
they capture conditions under which permissions are
checked. However, they only consider independent
system services and do not handle RPC. We, on the
other hand, start the analysis from the Android API
entry points and handle services RPC links.

9 CONCLUSION

In this paper, we have empirically demonstrated that
off-the-shelf static analysis can not address the ex-
traction of permissions in Android. At least three
static analysis components must be put together in
order to use Class Hierarchy Analysis (CHA) and
field-sensitive static analysis (Spark) for analyzing
Android’s permissions. Those are (1) a string analysis,
(2) service identity inversion and (3) entry point and
service initialization for Spark.

We have compared our work with PScout [3] and
Felt [13]. We show that our approach confirms re-
sults from concurrent work and that static analysis
is complementary to dynamic analysis. Moreover, we
have presented a generic approach to reduce the
attack surface of permission-based software11 . We
have extensively discussed the problematic conse-
quences of having more permissions than necessary
and showed that the problem can be mitigated using
static analysis. The approach has been fully imple-
mented for Android, a permission-based platform for
mobile devices. For end-user applications, our eval-
uation revealed that 94/742 and 35/679 applications
crawled from Android application stores indeed suf-
fer from permission gaps. The security architecture
of permission based software in general and Android
in particular is complex. In this paper, we abstracted
over several characteristics of the platform such as
low-level permissions. We are now working on a
modular approach that would be able to analyze na-
tive code and bytecode in concert and to combine the

11. details at http://www.abartel.net/permissionmap/

http://www.abartel.net/permissionmap/

17

permission information from both. Furthermore, we
are exploring how to express permission enforcement
as a cross cutting concern, in order to automatically
add or remove permission enforcement points at the
level of application or the framework, according to a
security specification.

REFERENCES

[1] The android developer’s guide, last-accessed: 2011-09.
http://developer.android.com/guide/index.html.

[2] L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, University of Cophenhagen,
1994.

[3] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
analyzing the android permission specification. In Proceedings
of the 2012 ACM conference on Computer and communications
security, pages 217–228. ACM, 2012.

[4] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji.
A methodology for empirical analysis of permission-based
security models and its application to android. In ACM Con-
ference on Computer and Communications Security (CCS 2010),
pages 73–84, Chicago, Illinois, USA, October 4-8, 2010.

[5] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon. Auto-
matically securing permission-based software by reducing the
attack surface: An application to android. In Proceedings of the
27th IEEE/ACM International Conference On Automated Software
Engineering, 2012.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi.
Xmandroid: A new android evolution to mitigate privilege
escalation attacks. Technical Report TR-2011-04, Technische
Universität Darmstadt, Apr 2011.

[7] P. Centonze, G. Naumovich, S. J. Fink, and M. Pistoia. Role-
based access control consistency validation. In ISSTA 2006,
pages 121–132.

[8] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe: context-
related policy enforcement for android. In Proceedings of the
13th International Conference on Information security, 2011.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Privilege escalation attacks on android. In Information Security,
pages 346–360. Springer, 2011.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
Quire: Lightweight provenance for smart phone operating
systems. In 20th USENIX Security Symposium, Aug. 2011.

[11] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile
phone application certification. In Proceedings of the 16th ACM
CCS, pages 235–245, New York, NY, USA, 2009.

[12] W. Enck, M. Ongtang, and P. McDaniel. Understanding
android security. IEEE Security and Privacy, 2009.

[13] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In ACM CCS 2011.

[14] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness
of application permissions. In Proceedings of the 2nd USENIX
conference on Web application development, WebApps’11, pages
7–7, Berkeley, CA, USA, 2011. USENIX Association.

[15] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In Proceedings
of the 20th USENIX Security Symposium, 2011.

[16] E. Geay, M. Pistoia, T. Tateishi, B. G. Ryder, and J. Dolby.
Modular string-sensitive permission analysis with demand-
driven precision. In ICSE, pages 177–187. IEEE, 2009.

[17] C. Gibler, J. Crussel, J. Erickson, and H. Chen. Androidleaks
detecting privacy leaks in android applications. Technical
report, UC Davis, 2011.

[18] S. Hoffman. Zeus banking trojan variant attacks android
smartphones. CRN, 2011. http://goo.gl/xAEGr.

[19] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for Java. ACM SIGPLAN Notices, 37(11):359–372, Nov.
2002.

[20] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot
framework for Java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), Oct.
2011.

[21] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In 12th International Conference on Compiler
Construction, 2003.

[22] P. Manadhata and J. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371 –386, may-june
2011.

[23] C. Marforio, A. Francillon, and S. Čapkun. Application
collusion attack on the permission-based security model and
its implications for modern smartphone systems. Technical
Report 724, ETH Zurich, April 2011.

[24] T. Mustafa and K. Sohr. Understanding the implemented
access control policy of android system services with slicing
and extended static checking. Technical report, University of
Bremen, 2012.

[25] M. Nauman, S. Khan, and X. Zhang. Apex: extending android
permission model and enforcement with user-defined runtime
constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, 2010.

[26] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Se-
mantically rich application-centric security in android. Journal
of Security and Communication Networks, 2011.

[27] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav. When role
models have flaws: Static validation of enterprise security
policies. In ICSE, 2007.

[28] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. Inter-
procedural analysis for privileged code placement and tainted
variable detection. In ECOOP, 2005.

[29] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. Technical Report MSR-
TR-2011-91, Microsoft Research, 2011.

[30] J. H. Saltzer and M. D. Schroeder. The protection of informa-
tion in computer systems. In Proceedings of the IEEE, 1975.

[31] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev.
Google android: A state-of-the-art review of security mecha-
nisms. CoRR, abs/0912.5101, 2009.

[32] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal of Computing, 1(2):146 – 160, 1972.

10 ACKNOWLEDGMENTS

This research is supported by the National Research
Fund, Luxembourg (AFR grant 1081630). We also
would like to thank Eric Bodden for his help in using
the Soot analysis toolkit.

Alexandre Bartel Alexandre Bartel is a PhD
candidate in Software Engineering at the
University of Luxembourg at the Interdisci-
plinary Center for Security Reliability and
Trust (SnT) / Serval Team. He received a
M.S. degree in Computer Engineering from
INPG-Esisar, France in 2010 and a M.S. from
KTH, Sweden in 2010. His current research
focuses on analyzing permission-based soft-
ware and bytecode monitoring for in-vivo
smartphone security.

Jacques Klein Jacques Klein is research
scientist at the University of Luxembourg
and at the Interdisciplinary Centre for Se-
curity, Reliability and Trust (SnT). He re-
ceived a Ph.D. degree in Computer Sci-
ence from the University of Rennes, France
in 2006. His main areas of expertise are:
Software Security by applying software engi-
neering to security; Model-Driven Engineer-
ing, with a focus on model composition and
model@runtime; Software Testing, and Soft-

ware Product Lines.

http://developer.android.com/guide/index.html
http://goo.gl/xAEGr

18

Martin Monperrus Martin Monperrus has
been an associate professor at the University
of Lille since 2011. He was previously with
the Darmstadt University of Technology as a
research associate. He received a Ph.D. from
the University of Rennes in 2008 and a Mas-
ter’s degree from the Compiègne University
of Technology in 2004.

Yves Le Traon Yves Le Traon is professor at
the University of Luxembourg, in the domain
of software engineering, reliability, testing
and security. His current research interests
include and combine Software Product Line
re-engineering and testing, Android secu-
rity, mutation testing, model-driven security,
and SBSE. He received a Ph.D. degree in
Computer Science at the “Institut National
Polytechnique” in Grenoble, France, in 1997.
He was associate professor in France at the

University of Rennes, and then full professor at Telecom Bretagne
until he reaches Luxembourg in 2009. He is currently the head of
the CSC Research Unit (Department of Computer Science) and an
active member of the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), where he leads the SERVAL group (SEcuRity
design and VALidation). He has been on the program, steering,
or organization committees of many international IEEE software
engineering conferences. He also belongs to the steering committee
of IEEE ICST. He is a member of the IEEE Computer Society.

	Introduction
	The Permission Gap Problem
	Possible Consequence of a Permission Gap
	Declaration and Usage of Permissions ``camera'' and ``record audio''

	Definitions
	Overview of Android
	Software Stack
	Android Permissions
	Services and Permissions
	Technical Details on Android
	Android Boot Process
	Android Communication

	Static Analyses for Android
	Common Components for CHA and Spark
	String Analysis for Extracting Permissions from Permission Enforcement Points
	Service Redirection: Handling Binder-based Communication
	Service Identity Inversion
	Entry Points Handling for CHA

	CHA-Android
	Call Graph Search Optimization
	Empirical Results

	Spark-Android
	Naive Usage of Spark
	Spark Specific Analysis Components
	Empirical Results

	Recapitulation

	Discussion
	CHA versus Spark
	Comparison with PScout
	Comparison with Felt et al.
	Soundness
	The Impact of Service Identity Inversion
	Limitations
	Native Code
	Reflection in the Framework
	Dynamic Class Loading
	Spark

	Computing Permission Gaps
	A Calculus for Permission Analysis
	Extraction of M and AV
	Computing the Permission Gap

	Related Work
	On the Java Permission Model
	On the Android Permission Model

	Conclusion
	References
	Acknowledgments
	Biographies
	Alexandre Bartel
	Jacques Klein
	Martin Monperrus
	Yves Le Traon

