
HAL Id: hal-01057048
https://hal.inria.fr/hal-01057048

Submitted on 21 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composite interests’ exploration thanks to on-the-fly
linked data spreading activation

Nicolas Marie, Olivier Corby, Fabien Gandon, Ribière Myriam

To cite this version:
Nicolas Marie, Olivier Corby, Fabien Gandon, Ribière Myriam. Composite interests’ exploration
thanks to on-the-fly linked data spreading activation. 24th ACM Conference on Hypertext and Social
Media, May 2014, Paris, France. pp.31-40. �hal-01057048�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49602937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01057048
https://hal.archives-ouvertes.fr

Composite interests’ exploration thanks to on-the-f ly
linked data spreading activation

Nicolas Marie

INRIA Sophia-Antipolis
Alcatel-Lucent Bell Labs

France
nicolas.marie@inria.fr

Olivier Corby, Fabien Gandon

INRIA Sophia-Antipolis
2004 route des Lucioles

06902 Sophia Antipolis, France
firstname.surname@inria.fr

Myriam Ribière

Alcatel-Lucent Bell Labs
Route de Villejust

91620, Nozay, France
myriam.ribiere@alcatel-lucent.com

ABSTRACT
Exploratory search systems are built specifically to help the user
in his cognitive consuming search tasks like learning or topic
investigation. Some of these systems are built on the top of linked
data and use semantics to provide cognitively-optimized search
experiences. Thanks to their richness and to their connected nature
linked data datasets can serve as a ground for advanced
exploratory search. We propose to address the case of mixed
interests’ exploration in the form of composite queries (several
unitary interests combined) e.g. exploring results and make
discoveries related to both The Beatles and Ken Loach. . The main
contribution of this paper is the proposition of a novel method that
processes linked-data for exploratory search purpose. It makes use
of a semantic spreading activation algorithm coupled with a
sampling technique. Its particularity is to not require any results
preprocessing. Consequently this method offers a high level of
flexibility for querying and allows, among others, the expression
of composite interests’ queries on remote linked data sources.
This paper also details the analysis of the algorithm behavior over
DBpedia and describes an implementation: the Discovery Hub
application. It is an exploratory search engine that notably
supports composite queries. Finally the results of a user evaluation
are presented.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph Theory – Graph
algorithms; E.1 [Data]: Data Structures – Graphs and networks

General Terms
Algorithms, experimentation

Keywords
Semantic web, linked data, DBpedia, spreading activation,
semantic spreading activation, exploratory search system,
discovery engine, composite interest query.

1. INTRODUCTION
In 2006, Gary Marchionini [18] stressed the distinction between
lookup and exploratory search tasks. Lookup tasks refer to search
tasks when the user looks for something in particular (e.g. known
item search, question answering, fact checking). During lookup
tasks the search keywords are well-defined and consequently the

number of results is often limited and they are easy to understand.

Exploratory search [18] refers to expensive cognitive search
tasks when the search objective is fuzzy (e.g. learning or topic
investigation). In this case the users manipulate iteratively an
evolving set of keywords and have to synthesize an important
amount of information coming from a changing results space.
According to Gary Marchionini the actual search engines are not
very efficient for the exploratory search tasks due to their
keyword-based search paradigm [18]. He proposed to complete
the existing solutions with new approaches that are cognitively
optimized for exploratory tasks.

To optimize the search experience some exploratory search
systems are built on the top of knowledge bases. Some of them
make use of semantic knowledge sources including the linked
open data1 datasets. Linked data-based approaches involve the use
of (1) the semantic web technologies where the semantic web is
the web augmentation by formal metadata giving to software the
access to some semantic facets of information. The semantic web
data are expressed according to ontologies. An ontology is a
partial representation of a world’s conceptualization [9] or in
others words the conceptual vocabulary of a domain. The main
semantic web standards include RDF [14], a graph model with
XML syntax to describe resources, SPARQL language [22]
allowing querying an RDF base, RDFS [3] and OWL [19] for
modeling ontologies. They also use (2) linked open data cloud
(LOD) dataset(s) where the LOD is a web of interconnected
public datasets published in RDF. Among all the LOD datasets
DBpedia [1] is the most popular and used one. DBpedia results
from the extraction of data from Wikipedia2 then published in
RDF following the LOD principles3. As it is extracted from an
encyclopedia DBpedia contains in a single graph a vast amount of
highly heterogeneous resources of various types (e.g. persons,
places) belonging to diverse domains (e.g. art, fashion, science,
sport).

The graph structure of the LOD datasets like DBpedia offers a
great potential to enable composite interests explorations on the
following form “knowing my interest for X, Y and Z what can I
discover/learn which is related to all these resources?”. Using the
linked data knowledge to solve such queries gives the possibility
to identify complex, indirect, non-trivial paths between the
combined interests. It can give a new perspective compared to the
keyword-based search engines results which retrieve the web
pages containing both strings. The composite queries can be used
to get a fast summary of the connections between several
resources (e.g. a journalist writing on the relations between

1 http://linkeddata.org
2 http://wikipedia.org
3 http://www.w3.org/DesignIssues/LinkedData.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
24th ACM Conference on Hypertext and Social Media
1–3 May 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1967-6/13/05 ... $15.00

31

Winston Churchill and Charles De Gaulle) or to unveil hidden
connections (e.g. a fan of Ken Loach and The Beatles searching
for cultural content related to both). It can also be used in some
applications to be run without user intervention in order to provide
content exploratory search features. In others’ words, not all the
inputs need to be query; they can also be context, preferences, etc.

The combined inputs are potentially heterogeneous, having
diverse types and/or belonging to different domains. An
illustration of the power of DBpedia to identify paths between two
very different resources is the “everything is connected”
application [28].

In this paper we propose a method allowing composite interests
explorations exploiting the knowledge of the LOD. This paper is
organized as follows. The section 2 presents the related works.
The section 3 details our formal proposition. The section 4
describes the implementation we built on top of DBpedia. It also
presents the algorithm behavior analysis’ results and motivates the
choices of the parameters. The Section 5 presents the hypotheses,
the protocols and the results of a user’s evaluations. Finally the
section 6 concludes. We illustrate our proposition with a query
combining The Beatles and Kean Loach. It was the first composite
query entered by a user on the Discovery Hub prototype.

2. RELATED WORK
We present in this part the related works concerning linked data
based knowledge exploration and discovery. The applications
presented below belong to the broad category of semantic search
systems. Semantic search can be defined as “search approaches
that broadly speaking, use semantics to improve the search
experience” [27]. These approaches are always based on an
explicit semantic processing but they vary a lot in the tackled
information needs, the information resources’ representation, the
query’s representation and the results’ computation. For an
extensive survey about semantic search, the readers may refer to
[27]. We focus on the works sharing the following properties:

- Fuzzy information need for knowledge exploration and
discovery in learning or leisure situations. We focus on two
categories of systems that are the recommenders and the
exploratory search systems.

- Graph-based inputs: such systems take one or several
resource(s) as input(s) and retrieve others related and
meaningful resources. After the computation, the result-
resources are rendered and constitute the output or serve to
identify the final content that is retrieved.

- Linked data based processing: such systems use LOD
graphs, mainly DBpedia, as the primary material for the
processing.

Seevl4 [21] is a band recommender helping the discovery of
musical content and artists on Youtube5 thanks to a
recommendation algorithm and a faceted browsing functionality.
The ranking is processed offline. MORE [8] is a DBpedia-based
film recommender accessible in the form of a Facebook6
application7. It uses a semantic adaptation of the vector space
model called sSVM. The more features two movies share the
more similar they are. They can be linked through direct
properties (e.g. “subsequentWork”) or be the subject of triples

4 http://seevl.net/
5 http://youtube.com
6 http://www.facebook.com
7 http://apps.facebook.com/new-more/

having the same property and object (“starring” “ Robert de
Niro”). The system accepts several films as inputs and retrieves
the union of the unitary results. The ranking is also processed
offline. These two firsts systems are limited to a defined domains
and to defined resource types.

Several cross-domain recommendation systems are based on
linked data. In [26] the authors propose to use DBpedia in order to
identify new potential collaborators. The objective is to solve
industrial problems in an innovative way. A set of entities is first
extracted from the description of the targeted problem. Then the
hyProximity algorithm tries to find experts coming from others
domains that might suggest innovative and unexpected solutions
to the initial problem. [26] takes several resources as inputs and
performs a cross-domain processing. [11] proposes a
recommendation method starting from a defined domain, with a
defined type, which retrieves recommendations in another domain
with another defined type. The authors tested it over DBpedia
using the scenario of musical recommendations starting from
tourists’ attractions (e.g. “Vienna State Opera”). The
recommendation process is operated offline using a weighted
spreading activation algorithm. The positive evaluation of their
experimentation confirmed the high potential of Linked data for
cross-domain and cross-type recommendations.

Others systems take advantage of linked data semantics to support
exploratory search tasks. Aemoo8 [20] is an exploratory search
system offering a filtered view on the DBpedia graph and giving
Wikipedia-based explanations on the resources shown to the user.
Yovisto9 [29] is a video platform offering an exploratory search
feature that proposes a ranked list of topics related to the search
results. It is also noticeable that a major search player, Google10,
launched recently an exploratory search feature (“explore your
search”, “ things not strings”11). This functionality takes
advantage of the Google Knowledge Graph11 semantic network.
At the beginning of 2013 it is composed of 570 million objects
and more than 18 billion facts. This functionality includes
collaborative filtering recommendations (“people also search
for”). The exploration is centered on one interest at a time. There
is no API available at the moment; the Google Knowledge Graph
is not part of the LOD.

The state-of-the-art showed the value of using linked data for
knowledge discovery and exploration purpose. As it is a young
research area there are many important improvements possible:

- (1) No work is focused on composite queries solving. The
systems that accept several inputs retrieve a combination of
the unitary results (e.g. sum).

- (2) No work addresses the data freshness issue. Indeed, the
linked data datasets are evolving over the time. The
continuous update of the data and its impact on the
preprocessing is not addressed in the state-of-the-art.

- (3) No work is applied on public SPARQL endpoints. Indeed
the preprocessing they use is specific to the knowledge base
addressed and often requires a local copy to be performed.

These limitations are mainly due to the preprocessing step used by
the aforementioned systems. It is strongly conditioning the type
and the range of results that the applications are able to retrieve.

8 http://wit.istc.cnr.it/aemoo
9 http://www.yovisto.com/
10 http://www.google.com
11 www.google.com/insidesearch/features/search/knowledge.html

32

3. PROPOSITION

3.1 On-the-fly linked data processing for
composite interest exploration
In this paper we propose an “on-the-fly” processing for linked-
data based exploratory search and we explore more particularly its
potential in the context of composite queries. We use the term
“on-the-fly” to stress that the method does not need any
preprocessing to retrieve the results. It opens new perspectives for
exploratory search:

- (1) It is a way to handle the quasi-infinite number of potential
composite queries (resources combinations) brought by some
LOD dataset(s). It is time-consuming to preprocess this
ensemble. Moreover it is even more difficult if we consider
the point (2) and limiting if we consider the point (3).

- (2) It ensures that the freshest data in the knowledge base
were used to compute the results. Even DBpedia, a
knowledge source based on an encyclopaedia, is evolving
quickly in terms of ontology models12 and instances13. Some
topics are interesting for exploratory search and strongly
evolving (e.g. Northern Mali conflict 2012 - present). This is
a realistic use-case, for data-journalism for instance, that
justifies the need for an approach that provides fresh views of
the topic. It prevents from any delay or rupture between the
explored linked data source and the user e.g. schema change,
instances addition, new alignments available.

- (3) As it does not need any preprocessing the method we
propose can be applied on public SPARQL endpoints.

The absence of preprocessing is a challenge itself due to the
complexity of the LOD graphs. Indeed, it requires smart strategies
to compute the results on-the-fly starting from a very large and
heterogeneous graph. To sum up our requirements we need a
method that retrieves relevant results for exploratory search, that
is fast but that does not depends on a preprocessing step.

3.2 Spreading activation basis
We chose to ground our solution on a spreading activation
algorithm for the following reasons. First spreading activation was
designed to process semantic networks and proved its value for
information and knowledge retrieval purposes. Second it can
easily be tuned and integrate various constraints including, for
example, semantic sensitive weights. Third it showed efficient
response times on large graphs.

Spreading activation is an algorithm family having its roots in
cognitive psychology. In 1968, Quillian [23] proposed to model
the human memory in the form of a semantic network. Then,
Collins and Loftus [5] proposed the spreading activation
mechanism to simulate the human remembering process. Later it
inspired a lot of algorithms in various fields, often uncorrelated
with the initial purpose. It was very successful in information and
knowledge retrieval. Early and important works include [4] and
[7]. A lot of variants exist but the core functioning is always the
same: first a stimulation value is assigned to one or several
node(s) representing the user’s interest. Then this value is
propagated to neighbor's node(s). The value assigned to the
neighbors depends on the settings and heuristics used to reach the
algorithm goal. During the next iterations the propagation
continues from the newly activated nodes. This process is

12 http://blog.dbpedia.org/2012/08/06/
13 http://live.dbpedia.org

repeated till a stop condition is reached e.g. maximum number of
nodes activated, maximum number of iterations, time limit.

Many researchers applied the spreading activation algorithm to
perform information retrieval on RDF graphs. The notable works
include [24] in which the authors present a hybrid search approach
combining a classical search method and an ontology-based
weighted spreading activation. [25] uses a spreading activation
algorithm to perform information retrieval over a RDF knowledge
base. The authors make use of a schema-based similarity measure.
In [15] the authors propose a semantic association search system
using two pre-computed weight: a specificity and a generality one.

The LOD also motivated researches on highly fast, robust and
scalable algorithms processing RDF data. This was the purpose of
the LarKC14 project: an open-source and distributed semantic
computing platform using, among others, spreading activation
techniques. In [10] the authors achieved the activation of millions
nodes in only few seconds over locally stored LOD graphs.
Nevertheless, the approximation strategies proposed are not
accurate enough to be used in a knowledge retrieval context.
Indeed the method massively activates the nodes, does not rank
them and does not exploit finely their semantics.

We propose below a spreading activation adaptation designed to
explore the graph by exploiting its semantics on-the-fly.

3.3 Algorithm proposition
The algorithm identifies and ranks the results starting from a user
interest represented by one or several nodes of the graph (e.g. The
Beatles + Ken Loach). At the end of its execution the activation
values of the nodes determine their ranks. They are presented to
the user in decreasing activation value order. Prior to the
algorithm description, we introduce several necessary definitions
on RDF triples, (extended from [2]), and the classic graph
functions we use:

Definition 1.(RDF triple, RDF graph). Given U a set of URI, L a
set of plain and typing Literal and B a set of blank nodes. An RDF
triple is a 3-tuple ��, �, �� 	
� �� � � �
� � ��. s is the
node subject of the RDF triple, p the predicate of the triple and o
the node object of the triple. An RDF graph is a set of RDF
triples.

Definition 2.(RDF typing triple, RDF non-typing triple.) An RDF
typing triple is a 3-tuple��, �, �� 	
� �� �
���: ����� �
� � ��. An RDF non-typing triple is a 3-tuple��, �, �� 	
� �� �
� \���: ����� �
� � ��.
Definition 3. (Infered RDF triples, IRDF triples) Infered RDF
triples of an RDF non-typing triple �s, p, o� is the set of RDF
triples
��, �, ���
��, ���: ����, ���, 1 ! "� #$�, ���: ����, %&', 1 ()* obtained after RDFS closure. To
ensure that each node has at least one type we give by default the
type rdf:resource to each node.

Let KB be the set of all the typing triples asserted and inferred in
the triple store (def. 1,2,3).

Definition 4. (Node degree) ��+���& is the number of edges
involving node (:

��+���& / |
 �(, �, 1� 	 2� �
�1, �, (� 	 2��|

14 http://www.larkc.eu/

33

Definition 5. (Node depth) ����3��� uses the subsumption
schema hierarchy in order to compute the depth of a type �. It is
used to identify the most precise type(s) available for a node. ����3���
/ 4 ����3�t� / 0 !� � / Τ the root of the hierarchy,depth��� / 1 ? @!" AB;�D,EFG:AHIJKLAAMG,AB�	NO����3��D� ��3��P!�� Q

Where type t is a class in the hierarchy of the RDFS schema and St is a direct super class of t in this hierarchy before any transitive
closure is computed.
Definition 6. (Node neighborhood) S�!+3T���!� is the set of
neighbors of node i in the linked data graph: S�!+3T���!� / #1 ; $�!, �, 1� 	 2� U �1, �, !� 	 2� ' V �W ���: ���� V 1 	 � �*
Here is the formula for a monocentric query i.e. for an interest
captured in the form of a unique stimulated resource (e.g. The
Beatles). The monocentric formula serves as a basis for the
polycentric one used for the composite interest queries:

Definition 7. (Semantic Spreading Activation algorithm,
monocentric query) X�!, " ? 1, �� / ��!, ", �� ? P�!, ��Y Z X�(, ", ����+���&&	[\�]^I_E���

Where:

• � is the origin node i.e. the instance of interest initially
stimulated;

• ! is an arbitrary instance node of the graph;
• j iterates over the neighbors of i ;
• " is the current number of iterations;
• X�!, " ? 1, �� is the activation of node ! at iteration " ? 1 for

an initial stimulation at �;
• ��!, ", �� is the stimulation of the node ! at ". The nodes with

a positive stimulation are the origin/seeds nodes i.e. here ��!, ", �� =1 if ! / � and " / 0 and 0 otherwise;
• X�(, ", �� is the activation from a neighbor node (of ! for a

propagation origin � at iteration ";
• degree& returns the degree of the node ((def. 4);
• P�!, �� is a semantic weighting function which takes into

account the semantics of the nodes ! and �. First, it aims to
identify the propagation domain: the nodes are activated or
not depending on their types. Second, it encourages the
activation of the nodes similar to the origin � using others
semantics attributes. P�i, o� is explained in detail below.

Definition 8. (Semantic Spreading Activation algorithm,
polycentric query)

The query is polycentric when several nodes of interest are
stimulated at a same time. The stimulations correspond to the
unitary inputs constituting the composite interest in our case (e.g.
The Beatles and Ken Loach). The results of a polycentric query
are the product-intersection of several monocentric propagations
results (def. 7):

X�!, "�/ abX�!, ", ��c/log ���+�����_∈M
Where:

• O is the set of seeds nodes i.e. the origins of the activations;
• X�!, "� is the aggregated value of the node !, i.e. the product

of the activation values of ! for the various propagation
spreading at the iteration " (differentiated by their origin �).
The product was chosen instead of the sum in order to avoid
a potential disequilibrium introduced by the difference in the
monocentric activations distributions. This difference is due
to the graph topologies around their respective origin node.
The division by log ���+����) aims to minimize the
importance of the highly connected nodes that can be present
in the monocentric propagations intersections but not very
informative;

• X�!, ", �� is the activation value of node ! at iteration " for a
spreading activation taking its origin at � as in definition 7.

The class-based propagation domain for a polycentric query noted fgh�i� is the set of types through which the propagation spreads
with i the set of all the seeds. To be precise, the propagation
spreads through instances which have at least one type present in fgh�i�. It aims to increase the results quality by focusing the
activation distribution on a consistent subset of nodes only. At the
same time it improves the performances by narrowing the amount
of processed nodes. The propagation domain is identified on-the-
fly before the propagation starts thanks to the seed nodes
neighborhoods’ types. In case of polycentric queries it takes into
account the neighborhood of all the seeds in order to identify a
shared propagation domain.

Definition 9. j)X1�1� is the set of the deepest types t of a given
node x according to their ����3��� (def. 5): j�����1� /
�; �1, ���: ����, �� 	 2��

j)X1�1� / k � 	 j�����1� ; l�� 	 j�����1� ;����3��� m ����3����n

Definition 10. Sj��� is a multi-set counting the occurrences of
the deepest types in the seed node’s neighborhood (def 6.). Sj�i�
is the union of the Sj��� with o∈ O and is used for polycentric-
queries. Sj��� /
��, %�; � 	 j)X1�1�; " 	 S�!+3T�����; %/ |
" 	 S�!+3T�����; � 	 j)X1�"��|�

Sj�i� / o Sj���_	M

Definition 11. fgh�i� is the classes propagation domain, it
constitutes the class-based “semantic pattern” used all along the
propagation. A threshold function can be applied to limit the
propagation domain size for performance purpose. After this last
operation we obtain the classes’ propagation domain fgh�i� i.e.
nodes with a type included in fgh�i� will be activated during the
propagation:

fgh�i� / p�; ��, %� 	 Sj�i�; %∑ %��rs,ts�	[u�M� m �3���3�v�w
In addition to this class-based filtering we use another triple-based
measure to improve the algorithm relevance. The more a node is a
subject of triples that share a property and an object with triples
involving the origin node � as a subject, the more it will receive
activation:

P�!, �� / x 0 !� y� 	 j�����!�; � 	 fgh�i�1 ? |%�))�"��!�v��!, ��| ��3��P!��z

34

Where:

commontriple(i,o)={(i,p,v)	KB;∃(o,p,v)	KB}

4. IMPLEMENTATION
This part is dedicated to the implementation of the algorithm in
the Discovery Hub application. It describes the general
architecture plus the settings and the approximation strategies
chosen after analyses. It finally presents the application.

4.1 Dataset
We decided to make a first implementation on top of DBpedia.
First, DBpedia is cross-domain due to its encyclopedic nature and
captures a very heterogeneous knowledge in a single graph. It
enables cross-domain and cross-type processing and is
consequently adapted to our objective of solving composite,
potentially heterogeneous, interest queries. Second it can support
users’ experiments as it contains common-knowledge items such
as films or music artists.

As we needed to query the SPARQL endpoint millions times
during the benchmark we set up a local version of DBpedia. Our
version contains the wikiPageWikilink15 triples. The
wikiPageWikiLink relations indicate that a hypertext link exists in
Wikipedia between the 2 resources, often in the core of articles,
but that the semantics of the relation was not captured. It provides
a vast amount of extra-links which can increase the relevance of
the connectionist algorithms like spreading activation ones.

As previously mentioned the main difficulty to perform spreading
activation over a LOD source is due to the graph complexity. Here
are some characteristics of DBpedia 3.7 dataset including
wikiPageWikiLink triples:
- Graph size: 3.64 million nodes, 270 million triples.
- Graph heterogeneity: 319 classes in the DBpedia ontology.

As the stimulation propagates it can potentially reach a very high
amount of nodes. The semantic pattern fgh identified by the
algorithm helps to manage the graph heterogeneity. We introduce
in the next section a sampling process used to apply the algorithm
on a limited and selected amount of data only.

4.2 Architecture
The algorithm is coded in JAVA. Each time a query is processed a
Kgram [6] inference engine instance is created. This local
instance manipulates a limited sub-graph replicated from the
SPARQL endpoint. Indeed, propagating the activation in the
whole DBpedia graph to retrieve the results would very be time
consuming and is clearly not compatible with our performance
requirements. Thus we transform this processing problem in a
local one by performing the spreading activation on a limited sub-
graph per query. The Kgram instance imports a subpart of
DBpedia using INSERT queries. The method used to identify this
sub-graph is detailed below. To control and limit the response
time we also introduced a triples loading limit (discussed in
4.4.3).

In the case of polycentric queries a two-arc non-oriented
SPARQL path query is performed on the endpoint16 to identify the
sub-graph that will be addressed by the spreading activation
algorithm. If this query fails we augment the path length. If the
queries do not produce any results and the SPARQL endpoint

15 http://dbpedia.org/ontology/wikiPageWikiLink
16 Kgram is able to translate the path queries in their expanded

form. This is necessary for some SPARQL endpoints.

starts to refuse them because it is too complex we search oriented
paths between the seeds in both directions. This approximation is
useful for the queries combining distant nodes. In our actual
implementation only the wikiPageWikiLink properties, which are
the most current, are taken into account for this step. The
wikiPageWikiLink considerably increase the number of
connections between the nodes and help to identify more paths.
Moreover when two nodes are linked by a well-defined property
(e.g. http://dbpedia.org/ontology/) the relation is often mentioned
in the Wikipedia plain text. Consequently a corresponding
wikiPageWikiLink triple exists. Thus, restraining the path queries
to these properties leads to a minor knowledge loss. The path
identification can also be replaced by a random walkers-based
approach if the SPARQL queries give insufficient results on the
endpoint.

The nodes’ neighborhoods that have been found by the path query
are loaded in increasing degree order till the loading limit is
reached. We assume that nodes having a lower degree are more
informative about the connections between the seed nodes. To
maximize the chance of retrieving results the pivot nodes
identified by the SPARQL path query are eligible for activation
even if they do not have a type present in fgh�i�.

select distinct ?x ?y where {
 service <sparqlEndpoint>
 {
 select * where {
 ?a(<…wikiPageWikiLink>|
 ^<…wikiPageWikiLink>){0,X} :: $path ?b
 filter (?a=<resource1> &&?b=<resource2>)
 }
 }
 graph $path {?x ?p ?y}
 filter(?x!=<resource1> && ?x!=<resource2>)
}

4.3 Settings
In order to implement our formula and run it over DBpedia, we
have to set up some variables:
- The �3���3�v� filtering the propagation domain is set to a

low value of 0.01. Such value minimizes loss of knowledge.
- The propagation spreads in both directions i.e. in and out

links. As reverse properties are used in RDF, it is preferable
to take into account the incoming and outcoming neighbors
in order to avoid any loss of knowledge. From a spreading
point of view the orientation is arbitrary and depends on a
modeling choice.

- We still need to set the maximum number of iterations. It is
discussed in the next part.

We make use of the dcterms:subject properties to compute the %�))�"��!�v��!, �� value. In DBpedia, the instances are linked
to their categories thanks to the �%���)�: �|T(�%� property. The
categories constitute a topic taxonomy which is highly
informative on the resources’ nature. Thus it constitutes a valuable
knowledge for %�))�"��!�v��!, �� which aim to increase the
activation values of nodes having similarities with the activation
origin.

4.4 Using approximation strategies to control
and limit the response time
Two parameters still need to be discussed: the maximum number
of iterations and the limit of triples processed by query. As the
polycentric queries’ results are the product intersection of several
monocentric queries we use the analysis we did for monocentric

35

queries’ behavior to set these two remaining parameters. We use
here an approximation that might require further studies. Indeed
for the queries with a single origin node the sampling process we
use is different. In the case of monocentric query the graph is
loaded iteratively along the iterations regarding the nodes’
activation values, following the spreading activation logic. At the
beginning the seed node’s neighborhood (filtered by classes’
propagation domain) is loaded and a first round of propagation is
performed. During the next activations the top activated nodes’
neighborhoods are loaded into the Kgram instance till the loading
limit is reached. Considering the amount of nodes processed
during the analysis we reasonably think that the same study with
the polycentric loading process would lead to similar results.

4.4.1 Analysis method

To reduce the computational cost of the algorithm behavior study
we ran it on a DBpedia sample. According to [16] the best
sampling method to preserve a large graph’s properties is a
random walker. We followed this recommendation and computed
a sample17 using this method.

To compare the results lists we obtained with various
configurations we notably used the Kendall’s tau-b coefficient }O
[12]. }O is a rank correlation measure reflecting the concordance
of two ranked lists where:

}O / ∑ ��+"$1� ~ 1&'�+"$�� ~ �&'���& ��j� ~ j���j� ~ j�� ,

where j� / "�" ~ 1�2 ,
j� / Z ����� ~ 1�2 , and j� / Z |K�|K ~ 1�2 K�

and the �� is the number of tied 1 value in the �th group of tied 1
values, |K is the number of tied � values in the vth group of tied �
values, " is the number of observation and �+"���:

�+"��� / k 1 !� � � 00 !� � / 0~1 !� � 0n

}O is comprised between -1 and 1: -1 means a total discordance
and 1 a total concordance. Thanks to it we observe the similarity
of the rankings from iteration to another. It allows observing the
algorithm convergence. Our configuration for tests was:

- Application server: 8 proc Intel Xeon CPU E5540
@2.53GHz 48 Go RAM

- SPARQL endpoint: 2 cores Intel Xeon CPU X7550
@2.00GHz 16Go RAM

4.4.2 Setting the maximum number of iterations

As spreading activation is an iterative algorithm we have to set a
maximum number of iterations. To determine the best settings in
our context we observed the algorithm convergence over DBpedia
graph. We performed an analysis on 100.000 queries using the
sample nodes as inputs. We counted the number of shared results

17 The code and a 546.000 nodes sample are publicly accessible

for reuse: http://semreco.inria.fr/hub/tools

and measured the Kendall-Tau correlation coefficient between the
top 100 results list at iteration n and the top 100 results list at
iteration n+1 for the first hundred iterations. The Kendall-Tau is
calculated considering the shared results in the two lists. The
triple loading limit is not studied yet and is experimentally set to
10.000 for this first analysis.

For clarity purpose the figure 1 shows only the twenty first
iterations, after 16 iterations the percentage of average shared
results exceeds 99% and the average }O is superior to 0.99. We
observe that the top results are quickly converging. The table 1
focuses on the }O variation along the iterations. It is clear that the
results change very slowly after few iterations. In others words it
becomes very expensive to continue the process after few
iterations regarding the very slow evolution of results. We decided
to fix the maximum pulse at 6. A propagation visualization video
using the Semantic Web Import plug-in for Gephi18 has been
published19. The fast convergence is observable on the video.

Figure 1: Percentage of shared results and �� from one

iteration to another, top 100 results

Table 1. Variation of �� for iterations n and n+1

It. n 1 2 3 4 5 6 7 8 }O .73 .11 .08 .018 .013 .006 .006 .002

4.4.3 Setting the triples loading limit

To control the size of the sub-graph processed and consequently
the response time we introduce a maximum limit of triples
imported per query. When the imported graph overtakes the
triples limit no more neighborhoods are loaded anymore. We
processed again 100.000 queries using the sample nodes as inputs.
Each query was executed ten times with a limit ranging from 2000
to 20000 triples (step of 2000). The figure 2 shows that the
algorithm response time is linear regarding the triples loading
limit.

18 http://wiki.gephi.org/index.php/SemanticWebImport
19 http://semreco.inria.fr/hub/videos/

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

S
im

il
a

ri
ty

Iteration

KT

Shared results

36

Figure 2: response time regarding the loading limits for

monocentric queries

The figure 3 shows the top 100 results Kendall-Tau variation from
a loading limit to another, 2000 by 2000. It is clearly observable
that after 6000 the convergence starts to be very slow. Thus we
chose 6000 as loading limit.

Figure 3: �� from one loading limit to another (step: 2000),

top 100 results

4.5 Polycentric behavior analysis
Then we wanted to observe if the polycentric results were specific
to the inputs combination. We processed again 100.000 nodes of
our sample. For each of them we selected randomly 2 nodes in the
2 arc-max neighbourhood thanks to a random walker. We
processed 3 queries: the sample’s node only (monocentric) and
two polycentric queries by adding each time one of the randomly
selected neighbours. The figure 4 shows a histogram of the top
100 shared results percentage between the monocentric and the
polycentric queries results. The figure 5 shows it for the 2
polycentric queries amongst themselves. These 2 histograms both
point out that the results list similarities are very low. In others
words the results are highly specific to the input(s).

Figure 4: Shared top 100 results histogram between the

monocentric and polycentric queries results

Figure 5: Shared top 100 results histograms between the first

and second polycentric queries results

The response time histogram of polycentric queries (figure 6)
shows that a majority of queries are processed in less than 10
seconds. Overall the response time of the polycentric queries is
superior to the monocentric ones (figure 2) due to the path queries
costs.

Figure 6: polycentric queries response time histogram in ms

4.6 Discovery Hub: an operational prototype
Discovery Hub20 implements the algorithm and the sampling
process previously described. It uses DBpedia as knowledge base.
It is an exploratory search engine which helps the user to discover
things he might like or might be interested in. It aims to widen his
knowledge and cultural horizons. It proposes many redirections to
tierce platforms to extend the search process. The third-party
services are proposed according to the type of the considered
result e.g. music service for a Band or tourism platform for a
Museum. Several demonstration videos are available online21.

To enter the queries the user can start with an entity search thanks
to a DBpedia lookup22 or use an import of third-party profile
information e.g. Facebook likes. In this last case an entity
recognition is performed using the rdfs:label properties and the
DBpedia lookup. The composite queries are encouraged thanks to
the “search box” in which the user can drag and drop items all
along his navigation (figure 7). He can pick resources of interest
on the homepage, the results pages or in his profile for instance.
The composition is limited today to 4 resources.

The navigation in the results space is facilitated thanks to various
facets and filters allowing a deep exploration. The classes in the

20 http://semreco.inria.fr/hub/
21 http://semreco.inria.fr/hub/videos/
22 http://wiki.dbpedia.org/lookup/

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
il

li
se

c
o

n
d

s

Triples processed

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000

K
e

n
d

a
ll

-T
a

u

Triples processed

0

20

40

60

80

100

P
e

ce
n

ta
g

e
 o

f
sh

a
re

d

re
su

lt
s

0

20

40

60

80

100

P
e

ce
n

ta
g

e
 o

f
sh

a
re

d

re
su

lt
s

0

5000

10000

15000

20000

M
il

li
se

co
n

d
s

37

propagation domain are used as navigational items to build the
facets e.g. Band, Film. 40 results at maximum are presented by
facet on the actual prototype. Discovery Hub also proposes a
“ top” un-faceted results list showing the 40 most activated
resources without any condition on their types.

Figure 7: The user is currently dragging The Beatles in the
“ search box” to complete Ken Loach and launch the query

A set of filters per facet is proposed using the DBpedia categories.
These filters are retrieved thanks to the query below. For instance
on the figure 9 the user filtered the Film facet’s results with
“2000s comedy-drama films”. We put in evidence the categories
(i.e. the filters) having a low degree by presenting them with
clearer colors. It aims to drive the user in unexpected browsing
paths and thus augments the discovery potential of the application.
The filters have a cumulative effect.

select ?p where {
 service <sparqlEndpoint>
 {
 select ?p (count(?x) as ?count) where {
 ?x <http://purl.org/dc/terms/subject> ?p
 filter(?x = result1Facet1 || ?x=
 result2Facet1 || ?x = result3Facet1 …)
 } order by desc (?count)
 }
 filter(?count>1)
}

To give a real example of results, the composite query The Beatles
+ Ken Loach provides the following facets (or fgh): Album,
Band, Film, Musical Artist, Music Genre, Person, Radio Station,
Single, Television show. The Film facet proposes, among others,
these filters: British drama films, films associated with the
Beatles, films directed by Ken Loach, films set in Liverpool.

When a user is interested or intrigued by an item, he can ask for
various explanations thanks to three dedicated features. These
features are mandatory for composite heterogeneous queries when
some non-trivial and unattended results are retrieved. They need
to be explained to receive the user’s approval. The following
explanatory features are presented in a video23:

- A feature showing the common properties that share the
results with the query-resource(s).

- A feature identifying and highlighting the crossed references
between the result and the query-resources in the Wikipedia
pages (figure 8).

- A feature showing the connections between the results and
the query-resources in a graph format (figure 9). When the

23 http://semreco.inria.fr/hub/videos/

user goes over a node its abstract appears on the left. It is
possible to get even more information with the “see links in
Wikipedia” functionality that highlights the graph neighbors
in the Wikipedia pages. This graph is built on demand thanks
to a SPARQL path query. It is often instantaneous, require
few seconds when the graph is dense.

Figure 8: Wikipedia-based explanation for “Nowhere Boy”

Figure 9: Graph-based explanation for “Looking for Eric”

5. EVALUATION
As mentioned in [13] the research initiatives in the exploratory
search domain suffer from the lack of evaluation standardization.
It is even more the case for our composite interest objective as
there is no clear baseline available24. We wanted to verify the
following hypothesizes:

• Hypothesis 1: the composite queries results interest the user.
• Hypothesis 2: some results are unattended; they offer a high

discovery potential.
• Hypothesis 3: the explanatory features help the user to

understand the link between the query-resources and the
results; thus they support efficiently the results space
understanding.

This evaluation was executed using an adaptation of the
Discovery Hub interface. The users had to judge 2 results lists of
the top 10 algorithm results. Each list was generated starting from
2 of their individual Facebook likes randomly combined. In this
way we wanted to simulate a composite interest query that the
user was susceptible to enter in the system.

The following scenario was introduced: “you heard about a new
discovery engine that can help you to learn and discover new

24 We propose an API for comparison purpose.

38

things easily starting from items you like. This tool notably allows
generating results starting from several interests. You decide to
test it on yours. We propose you to judge 2 results lists generated
from your Facebook likes”.

Two Likert scales [17] were used:

• Question 1: The result interests me: strongly agree, agree,
disagree, strongly disagree.

• Question 2: The result is unexpected: strongly agree, agree,
disagree, strongly disagree.

Concerning the sample characteristics, the survey was filled by 12
persons: 3 females, 9 males from various backgrounds, mainly
people who asked an access to the Discovery Hub beta. In the
following results 0 corresponds to strongly disagree, 1 to
disagree, 2 to agree, 3 to strongly agree for relevance score and
discovery scores (respectively question 1 and 2).

To verify the hypothesis 1, we observed the relevance score
(question 1). The average relevance score was 1.65, with a
standard deviation of 0.94. The figure 10 shows the average
relevance scores per query histogram. 71% of queries received a
relevance score over the mean (1.5). Thus the hypothesis 1 is
verified. It is noticeable that one query received the worst score
possible; all its results were rated 0. Its seeds were very distant:
Samuel L. Jackson and Grooveshark.

To verify the hypothesis 2, we observed the unexpectedness score
(question 2). The average unexpectedness score was 1.90 with a
standard deviation of 1. The figure 11 shows the average
unexpectedness scores histogram. 58.33% of queries received an
average score over the mean (1.5). Thus, the hypothesis 2 is
verified.

Figure 10: average relevance score per query histogram

Figure 11: unexpectedness score per query histogram

Concerning the discovery potential it is also interesting to observe
the recovery between relevance and unexpectedness:
- 61.6% of the results were rated as strongly relevant or

relevant by the participants.
- 65% of the results were rated as strongly unexpected or

unexpected.
- 35.42% of the results were rated both as strongly relevant or

relevant and strongly unexpected or unexpected.

Then we asked the participants to give their opinion about the
three explanatory features. For the 3 features we asked “the
feature X helped me understand the relation between the result
and my interests and to make a choice?” and one more general
question “overall, I feel that these three features can help me to
make new discoveries”. 0 corresponds to strongly disagree, 1 to
disagree, 2 to agree and 3 to strongly agree (figure 12). The
graph-based explanatory feature which was designed specifically
to understand the non-trivial connections between several
resources received a very high average score (mean m = 2.92). It
is particularly adapted to results explanations for the polycentric
queries results as they often unveil indirect links. The Wikipedia-
based explanatory feature received an average score over the
mean (m = 1.83). Participants liked the possibility to use it from
the graph explanation. Finally the common property feature
received an average score close the mean (m = 1.58). It is often
impossible to find common properties between the results and all
the different seed nodes constituting the composite interest. This
feature is more efficient in the case of monocentric queries. The
more general question received the high average score of 2.67 and
confirms the interest of these explanatory features to increase the
discovery potential of the application. The hypothesis 3 is
verified.

Figure 12: users’ opinions about the explanatory features

Finally we asked the participants to rank the 3 functionalities
regarding their perceived efficiency in terms of results
explanations. The rankings confirmed the previous results. The
common property feature was perceived as the less efficient
(ranked first: 0%, second: 72.7%, third: 27.3%). The Wikipedia-
based feature was more appreciated (54.5%, 27.3%, and 18.2%).
Finally the graph-based received a very large approval (45.45%,
45.45%, and 9%). Nevertheless, the results are not totally
uniforms and confirm the interest to propose various strategies.

6. CONCLUSION
In this paper, we have presented a method for processing linked
data graph for exploratory search purposes. It is composed of a
semantic spreading activation algorithm associated to a sampling
process. Its main particularity regarding the state-of-the-art is to
not need any preprocessing step to compute the results. We also
detailed its implementation in the Discovery Hub application. We

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Common prop. Wiki-based Graph-based Overall

39

presented extensive analysis of its behavior that helped us to set
the main parameters of the implementation. This article was
especially focused on composite interests (interests captured in the
form of several unitary resources) explorations thanks to
polycentric spreading activation. During our analysis a majority of
the polycentric queries results were specific to the nodes
combination used as inputs. Overall the queries required few
seconds to be processed. The participants of the evaluation mostly
rated the results as relevant or unexpected. More than one third of
the results was rated as both relevant and unexpected. It is
encouraging as it reflects a high discovery potential for the
application. The evaluation notably showed the high efficiency of
the graph-based and Wikipedia-based explanatory features for
explaining the polycentric queries results.

We plan to extend this work in several directions. An interesting
possibility offered by the architecture is to modify the semantics
embedded in the propagation in order to support personalization
and contextualization functions, using for example the property
semantics. Another possible research direction is to query several
SPARQL endpoints at the same times (e.g. French, Spanish, and
Italian DBpedias), build one meta-lingual graph and retrieve
richer results. Finally we will evaluate the full Discovery Hub
system thanks to a qualitative evaluation on a large set of users.
We still need to validate the usefulness of applying the algorithm
in the context of exploratory search with the interactive
dimension. This evaluation will also allows us to determine the
quality of the navigational items we propose like the facets, filters
and to identify some browsing patterns.

7. ACKNOWLEDGMENTS
We thank Julien Cojan (SPARQL endpoint), Damien Legrand
(web-design and front-end development), Alain Giboin and
Gessica Puri (evaluations) for their precious help.

8. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,

Z.Ives, 2007. DBpedia: A nucleus for a web of open data,
in: Proceedings of the 6th International Semantic Web
Conference, 2007.

[2] Basse A., Gandon F., Mirbel I., Lo M., Incremental
characterization of RDF Triple Stores, INRIA Research
Report RR-7941, April 2012

[3] D. Brickley and R. Guha. 2004. Rdf vocabulary description
language 1.0: Rdf schema, Feb. 2004.

[4] Cohen, P and Kjeldsen, R. Information Retrieval by
Constrained Spreading Activation on Semantic Networks.
Information Processing and Management, 23(4): 1987.

[5] A. Collins and E. Loftus. A spreading activation theory of
semantic processing. Psychological Review,8,2 1975.

[6] O. Corby and C. Faron-Zucker. The KGRAM abstract
machine for knowledge graph querying. In Web Intelligence,
pages 338–341, 2010.

[7] Crestani, F. Application of Spreading Activation Techniques
in Information Retrieval. Artificial Intelligence Review,
11(6): 453-482, 1997.

[8] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M.
Zanker. Linked open data to support content-based
recommender systems. In 8th I-SEMANTICS 2012. ACM
Press

[9] N. Guarino and P. Giaretta. 1995. Ontologies and Knowledge
Bases - Towards a Terminological Clarification, pages 25-
32. IOS Press, Amsterdam, The Netherlands, 199

[10] HS. Haltakov, A. Kiryakov, D. Ognyanoff, R .Velkov - 2010
- D2. 4.2 Approximate Activation Spreading - larkc.eu

[11] Kaminskas M. and al, Knowledge-based Music Retrieval for
Places of Interest, in Proceedings of MIRUM’12, 2012.

[12] Kendall, Maurice, Rank Correlation Methods. London:
Charles Griffin and Co., 1948.

[13] Kules, B., & Capra, R. (2008) Creating exploratory tasks for
a faceted search interface. Paper presented at the Second
Workshop on Human-Computer Interaction (HCIR 2008).

[14] Lassila O. and Swick R. (1999). RESOURCE DESCRIPTION

FRAMEWORK (RDF). W3C proposed Recommendation,
January 1999

[15] M. Lee, W. Kim, and T. G. Wang, “An explorative
association-based search for the semantic web,” in
Proceedings of the 2010 IEEE Fourth International
Conference on Semantic Computing, ser. ICSC ’10.

[16] J. Leskovec and C. Faloutsos. Sampling from large graphs. In
KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 631–636, New York, NY, USA, 2006. ACM
Press.

[17] Likert, R. (1931). A technique for the measurement of
attitudes. Archives of Psychology. New York: Columbia
University Press.

[18] G. Marchionini. 2006. Exploratory search: From finding to
understanding. Comm. Of the ACM, 49(4), 2006.

[19] D. L. McGuinness and F. van Harmelen. Owl web ontology
language overview. Technical Report REC-owl-features-
20040210, W3C, 2004.

[20] A. Musetti, A. G. Nuzzolese, F. Draicchio, V. Presutti, E.
Blomqvist, A. Gangemi, and P. Ciancarini. 2012. Aemoo:
Exploratory search based on knowledge patterns over the
semantic web. Semantic Web Challenge.

[21] A. Passant,. 2010. dbrec – music recommendations using
dbpedia. The Semantic Web–ISWC 2010 209–224.

[22] E. Prud'hommeaux and A. Seaborne. 2005. SPARQL query
language for RDF, 2005.

[23] Quillian, M. (1968). Semantic memory. In M. Minsky (Ed.),
Semantic Information Processing, pp. 227–270. MIT Press,
Cambridge, MA.

[24] Rocha, C., Schwabe, D., and de Aragão, M. P.: A Hybrid
Approach for Searching in the Semantic Web. In Proc. of the
13th International World Wide Web Conference (WWW
2004), NY (2004) 374-383

[25] Scheir, P., Ghidini, C., Lindstaedt, S.N.: Improving search on
the semantic desktop using associative retrieval techniques.
In: Proc. of the I-Semantics 2007, pp. 415– 422 (2007)

[26] Stankovic, M., Rowe, M. and Laublet, P. Finding Co-solvers
on Twitter , with a Little Help from Linked Data. In
Proceedings of Extended Semantic Web Conference ESWC
2012, May 27-31, Heraklion, Crete, Grece Tran, T., & Mika,
P. 2012. Semantic Search-Systems, Concepts, Methods and
the Communities behind It.

[27] Tran, T., & Mika, P. 2012. Semantic Search-Systems,
Concepts, Methods and the Communities behind It.

[28] Miel Vander Sande and al.s, 2012. Everything is Connected:
Using Linked Data for Multimedia Narration of Connections
between Concepts,. In: Proceedings of the 11th International
Semantic Web Conference, 2012.

[29] Waitelonis, J., Sack, H.: Augmenting Video Search with
Linked Open Data. In: Proc. of Int. Conf. on Semantic
Systems 2009 (i-semantics2009). Graz, Austria (Sep 2009)

40

