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ABSTRACT 
Exploratory search systems are built specifically to help the user 
in his cognitive consuming search tasks like learning or topic 
investigation. Some of these systems are built on the top of linked 
data and use semantics to provide cognitively-optimized search 
experiences. Thanks to their richness and to their connected nature 
linked data datasets can serve as a ground for advanced 
exploratory search. We propose to address the case of mixed 
interests’ exploration in the form of composite queries (several 
unitary interests combined) e.g. exploring results and make 
discoveries related to both The Beatles and Ken Loach. . The main 
contribution of this paper is the proposition of a novel method that 
processes linked-data for exploratory search purpose. It makes use 
of a semantic spreading activation algorithm coupled with a 
sampling technique. Its particularity is to not require any results 
preprocessing. Consequently this method offers a high level of 
flexibility for querying and allows, among others, the expression 
of composite interests’ queries on remote linked data sources. 
This paper also details the analysis of the algorithm behavior over 
DBpedia and describes an implementation: the Discovery Hub 
application. It is an exploratory search engine that notably 
supports composite queries. Finally the results of a user evaluation 
are presented. 

Categories and Subject Descriptors 
G.2.2 [Mathematics of Computing]: Graph Theory – Graph 
algorithms; E.1 [Data]: Data Structures – Graphs and networks 

General Terms 
Algorithms, experimentation  

Keywords 
Semantic web, linked data, DBpedia, spreading activation, 
semantic spreading activation, exploratory search system, 
discovery engine, composite interest query. 

1. INTRODUCTION 
In 2006, Gary Marchionini [18] stressed the distinction between 
lookup and exploratory search tasks. Lookup tasks refer to search 
tasks when the user looks for something in particular (e.g. known 
item search, question answering, fact checking). During lookup 
tasks the search keywords are well-defined and consequently the 

number of results is often limited and they are easy to understand. 

Exploratory search [18] refers to expensive cognitive search 
tasks when the search objective is fuzzy (e.g. learning or topic 
investigation). In this case the users manipulate iteratively an 
evolving set of keywords and have to synthesize an important 
amount of information coming from a changing results space. 
According to Gary Marchionini the actual search engines are not 
very efficient for the exploratory search tasks due to their 
keyword-based search paradigm [18]. He proposed to complete 
the existing solutions with new approaches that are cognitively 
optimized for exploratory tasks.  

To optimize the search experience some exploratory search 
systems are built on the top of knowledge bases. Some of them 
make use of semantic knowledge sources including the linked 
open data1 datasets. Linked data-based approaches involve the use 
of (1) the semantic web technologies where the semantic web is 
the web augmentation by formal metadata giving to software the 
access to some semantic facets of information. The semantic web 
data are expressed according to ontologies. An ontology is a 
partial representation of a world’s conceptualization [9] or in 
others words the conceptual vocabulary of a domain. The main 
semantic web standards include RDF [14], a graph model with 
XML syntax to describe resources, SPARQL language [22] 
allowing querying an RDF base, RDFS [3] and OWL [19] for 
modeling ontologies. They also use (2) linked open data cloud 
(LOD) dataset(s) where the LOD is a web of interconnected 
public datasets published in RDF. Among all the LOD datasets 
DBpedia [1] is the most popular and used one. DBpedia results 
from the extraction of data from Wikipedia2 then published in 
RDF following the LOD principles3. As it is extracted from an 
encyclopedia DBpedia contains in a single graph a vast amount of 
highly heterogeneous resources of various types (e.g. persons, 
places) belonging to diverse domains (e.g. art, fashion, science, 
sport).  

The graph structure of the LOD datasets like DBpedia offers a 
great potential to enable composite interests explorations on the 
following form “knowing my interest for X, Y and Z what can I 
discover/learn which is related to all these resources?”. Using the 
linked data knowledge to solve such queries gives the possibility 
to identify complex, indirect, non-trivial paths between the 
combined interests. It can give a new perspective compared to the 
keyword-based search engines results which retrieve the web 
pages containing both strings. The composite queries can be used 
to get a fast summary of the connections between several 
resources (e.g. a journalist writing on the relations between 

                                                                    
1 http://linkeddata.org   
2 http://wikipedia.org  
3 http://www.w3.org/DesignIssues/LinkedData.html  
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Winston Churchill and Charles De Gaulle) or to unveil hidden 
connections (e.g. a fan of Ken Loach and The Beatles searching 
for cultural content related to both). It can also be used in some 
applications to be run without user intervention in order to provide 
content exploratory search features. In others’ words, not all the 
inputs need to be query; they can also be context, preferences, etc. 

The combined inputs are potentially heterogeneous, having 
diverse types and/or belonging to different domains. An 
illustration of the power of DBpedia to identify paths between two 
very different resources is the “everything is connected” 
application [28].  

In this paper we propose a method allowing composite interests 
explorations exploiting the knowledge of the LOD. This paper is 
organized as follows. The section 2 presents the related works. 
The section 3 details our formal proposition. The section 4 
describes the implementation we built on top of DBpedia. It also 
presents the algorithm behavior analysis’ results and motivates the 
choices of the parameters. The Section 5 presents the hypotheses, 
the protocols and the results of a user’s evaluations. Finally the 
section 6 concludes. We illustrate our proposition with a query 
combining The Beatles and Kean Loach. It was the first composite 
query entered by a user on the Discovery Hub prototype. 

2. RELATED WORK 
We present in this part the related works concerning linked data 
based knowledge exploration and discovery. The applications 
presented below belong to the broad category of semantic search 
systems. Semantic search can be defined as “search approaches 
that broadly speaking, use semantics to improve the search 
experience” [27]. These approaches are always based on an 
explicit semantic processing but they vary a lot in the tackled 
information needs, the information resources’ representation, the 
query’s representation and the results’ computation. For an 
extensive survey about semantic search, the readers may refer to 
[27]. We focus on the works sharing the following properties: 

- Fuzzy information need for knowledge exploration and 
discovery in learning or leisure situations. We focus on two 
categories of systems that are the recommenders and the 
exploratory search systems.  

- Graph-based inputs: such systems take one or several 
resource(s) as input(s) and retrieve others related and 
meaningful resources. After the computation, the result-
resources are rendered and constitute the output or serve to 
identify the final content that is retrieved. 

- Linked data based processing: such systems use LOD 
graphs, mainly DBpedia, as the primary material for the 
processing.  

Seevl4 [21] is a band recommender helping the discovery of 
musical content and artists on Youtube5 thanks to a 
recommendation algorithm and a faceted browsing functionality. 
The ranking is processed offline. MORE [8] is a DBpedia-based 
film recommender accessible in the form of a Facebook6 
application7. It uses a semantic adaptation of the vector space 
model called sSVM. The more features two movies share the 
more similar they are. They can be linked through direct 
properties (e.g. “subsequentWork”) or be the subject of triples 
                                                                    
4 http://seevl.net/  
5 http://youtube.com  
6 http://www.facebook.com  
7 http://apps.facebook.com/new-more/  

having the same property and object (“starring” “ Robert de 
Niro”). The system accepts several films as inputs and retrieves 
the union of the unitary results. The ranking is also processed 
offline. These two firsts systems are limited to a defined domains 
and to defined resource types. 

Several cross-domain recommendation systems are based on 
linked data. In [26] the authors propose to use DBpedia in order to 
identify new potential collaborators. The objective is to solve 
industrial problems in an innovative way. A set of entities is first 
extracted from the description of the targeted problem. Then the 
hyProximity algorithm tries to find experts coming from others 
domains that might suggest innovative and unexpected solutions 
to the initial problem. [26] takes several resources as inputs and 
performs a cross-domain processing. [11] proposes a 
recommendation method starting from a defined domain, with a 
defined type, which retrieves recommendations in another domain 
with another defined type. The authors tested it over DBpedia 
using the scenario of musical recommendations starting from 
tourists’ attractions (e.g. “Vienna State Opera”).  The 
recommendation process is operated offline using a weighted 
spreading activation algorithm. The positive evaluation of their 
experimentation confirmed the high potential of Linked data for 
cross-domain and cross-type recommendations.  

Others systems take advantage of linked data semantics to support 
exploratory search tasks. Aemoo8 [20] is an exploratory search 
system offering a filtered view on the DBpedia graph and giving 
Wikipedia-based explanations on the resources shown to the user. 
Yovisto9 [29] is a video platform offering an exploratory search 
feature that proposes a ranked list of topics related to the search 
results. It is also noticeable that a major search player, Google10, 
launched recently an exploratory search feature (“explore your 
search”, “ things not strings”11). This functionality takes 
advantage of the Google Knowledge Graph11 semantic network. 
At the beginning of 2013 it is composed of 570 million objects 
and more than 18 billion facts. This functionality includes 
collaborative filtering recommendations (“people also search 
for”).  The exploration is centered on one interest at a time. There 
is no API available at the moment; the Google Knowledge Graph 
is not part of the LOD. 

The state-of-the-art showed the value of using linked data for 
knowledge discovery and exploration purpose. As it is a young 
research area there are many important improvements possible: 

- (1) No work is focused on composite queries solving. The 
systems that accept several inputs retrieve a combination of 
the unitary results (e.g. sum). 

- (2) No work addresses the data freshness issue. Indeed, the 
linked data datasets are evolving over the time. The 
continuous update of the data and its impact on the 
preprocessing is not addressed in the state-of-the-art.  

- (3) No work is applied on public SPARQL endpoints. Indeed 
the preprocessing they use is specific to the knowledge base 
addressed and often requires a local copy to be performed.  

These limitations are mainly due to the preprocessing step used by 
the aforementioned systems. It is strongly conditioning the type 
and the range of results that the applications are able to retrieve.  

                                                                    
8 http://wit.istc.cnr.it/aemoo   
9 http://www.yovisto.com/  
10 http://www.google.com  
11 www.google.com/insidesearch/features/search/knowledge.html  
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3. PROPOSITION 

3.1 On-the-fly linked data processing for 
composite interest exploration 
In this paper we propose an “on-the-fly” processing for linked-
data based exploratory search and we explore more particularly its 
potential in the context of composite queries. We use the term 
“on-the-fly” to stress that the method does not need any 
preprocessing to retrieve the results. It opens new perspectives for 
exploratory search: 

- (1) It is a way to handle the quasi-infinite number of potential 
composite queries (resources combinations) brought by some 
LOD dataset(s). It is time-consuming to preprocess this 
ensemble. Moreover it is even more difficult if we consider 
the point (2) and limiting if we consider the point (3). 

- (2) It ensures that the freshest data in the knowledge base 
were used to compute the results. Even DBpedia, a 
knowledge source based on an encyclopaedia, is evolving 
quickly in terms of ontology models12 and instances13. Some 
topics are interesting for exploratory search and strongly 
evolving (e.g. Northern Mali conflict 2012 - present). This is 
a realistic use-case, for data-journalism for instance, that 
justifies the need for an approach that provides fresh views of 
the topic. It prevents from any delay or rupture between the 
explored linked data source and the user e.g. schema change, 
instances addition, new alignments available. 

- (3) As it does not need any preprocessing the method we 
propose can be applied on public SPARQL endpoints.  

The absence of preprocessing is a challenge itself due to the 
complexity of the LOD graphs. Indeed, it requires smart strategies 
to compute the results on-the-fly starting from a very large and 
heterogeneous graph. To sum up our requirements we need a 
method that retrieves relevant results for exploratory search, that 
is fast but that does not depends on a preprocessing step. 

3.2 Spreading activation basis 
We chose to ground our solution on a spreading activation 
algorithm for the following reasons. First spreading activation was 
designed to process semantic networks and proved its value for 
information and knowledge retrieval purposes. Second it can 
easily be tuned and integrate various constraints including, for 
example, semantic sensitive weights. Third it showed efficient 
response times on large graphs.  

Spreading activation is an algorithm family having its roots in 
cognitive psychology. In 1968, Quillian [23] proposed to model 
the human memory in the form of a semantic network. Then, 
Collins and Loftus [5] proposed the spreading activation 
mechanism to simulate the human remembering process. Later it 
inspired a lot of algorithms in various fields, often uncorrelated 
with the initial purpose. It was very successful in information and 
knowledge retrieval. Early and important works include [4] and 
[7]. A lot of variants exist but the core functioning is always the 
same: first a stimulation value is assigned to one or several 
node(s) representing the user’s interest. Then this value is 
propagated to neighbor's node(s). The value assigned to the 
neighbors depends on the settings and heuristics used to reach the 
algorithm goal. During the next iterations the propagation 
continues from the newly activated nodes. This process is 

                                                                    
12 http://blog.dbpedia.org/2012/08/06/  
13 http://live.dbpedia.org  

repeated till a stop condition is reached e.g. maximum number of 
nodes activated, maximum number of iterations, time limit.  

Many researchers applied the spreading activation algorithm to 
perform information retrieval on RDF graphs. The notable works 
include [24] in which the authors present a hybrid search approach 
combining a classical search method and an ontology-based 
weighted spreading activation. [25] uses a spreading activation 
algorithm to perform information retrieval over a RDF knowledge 
base. The authors make use of a schema-based similarity measure. 
In [15] the authors propose a semantic association search system 
using two pre-computed weight: a specificity and a generality one. 

The LOD also motivated researches on highly fast, robust and 
scalable algorithms processing RDF data. This was the purpose of 
the LarKC14 project: an open-source and distributed semantic 
computing platform using, among others, spreading activation 
techniques. In [10] the authors achieved the activation of millions 
nodes in only few seconds over locally stored LOD graphs. 
Nevertheless, the approximation strategies proposed are not 
accurate enough to be used in a knowledge retrieval context. 
Indeed the method massively activates the nodes, does not rank 
them and does not exploit finely their semantics. 

We propose below a spreading activation adaptation designed to 
explore the graph by exploiting its semantics on-the-fly.  

3.3 Algorithm proposition 
The algorithm identifies and ranks the results starting from a user 
interest represented by one or several nodes of the graph (e.g. The 
Beatles + Ken Loach). At the end of its execution the activation 
values of the nodes determine their ranks. They are presented to 
the user in decreasing activation value order. Prior to the 
algorithm description, we introduce several necessary definitions 
on RDF triples, (extended from [2]), and the classic graph 
functions we use: 

Definition 1.(RDF triple, RDF graph). Given U a set of URI, L a 
set of plain and typing Literal and B a set of blank nodes. An RDF 
triple is a 3-tuple ��, �, �� 	 
�  �� � � � 
�  �  ��. s is the 
node subject of the RDF triple, p the predicate of the triple and o 
the node object of the triple. An RDF graph is a set of RDF 
triples. 

Definition 2.(RDF typing triple, RDF non-typing triple.) An RDF 
typing triple is a 3-tuple��, �, �� 	 
�  �� � 
���: ����� �
�  �  ��. An RDF non-typing triple is a 3-tuple��, �, �� 	
�  �� � 
� \���: ����� � 
�  �  ��. 
Definition 3. (Infered RDF triples, IRDF triples) Infered RDF 
triples of an RDF non-typing triple �s, p, o� is the set of RDF 
triples
��, �, ���   
��, ���: ����, ���, 1  !  "� #$�, ���: ����, %&', 1  (  )* obtained after RDFS closure. To 
ensure that each node has at least one type we give by default the 
type rdf:resource to each node. 

Let KB be the set of all the typing triples asserted and inferred in 
the triple store (def. 1,2,3).  

Definition 4. (Node degree)    ��+���&  is the number of edges 
involving node (:  

��+���& / |
 �(, �, 1� 	 2� �  
�1, �, (� 	 2��|  
                                                                    
14 http://www.larkc.eu/  
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Definition 5. (Node depth)    ����3��� uses the subsumption 
schema hierarchy in order to compute the depth of a type �. It is 
used to identify the most precise type(s) available for a node.  ����3���
/ 4 ����3�t� / 0 !� � / Τ the root of the hierarchy,depth��� / 1 ? @!" AB;�D,EFG:AHIJKLAAMG,AB�	NO����3��D� ��3��P!�� Q 

Where type t  is a class in the hierarchy of the RDFS schema and St is a direct super class of t in this hierarchy before any transitive 
closure is computed. 
Definition 6. (Node neighborhood)    S�!+3T���!� is the set of 
neighbors of node i in the linked data graph: S�!+3T���!� / #1 ; $�!, �, 1� 	 2� U  �1, �, !� 	 2� ' V �W ���: ���� V 1 	  �  �*  
Here is the formula for a monocentric query i.e. for an interest 
captured in the form of a unique stimulated resource (e.g. The 
Beatles). The monocentric formula serves as a basis for the 
polycentric one used for the composite interest queries: 

Definition 7. (Semantic Spreading Activation algorithm, 
monocentric query) X�!, " ? 1, �� / ��!, ", �� ? P�!, ��Y Z X�(, ", ����+���&&	[\�]^I_E���  

Where: 

•  � is the origin node i.e. the instance of interest initially 
stimulated; 

•  ! is an arbitrary instance node of the graph; 
•  j iterates over the neighbors of i ; 
•  " is the current number of iterations; 
•  X�!, " ? 1, �� is the activation of node ! at iteration " ? 1 for 

an initial stimulation at �; 
•  ��!, ", �� is the stimulation of the node ! at ". The nodes with 

a positive stimulation are the origin/seeds nodes i.e. here ��!, ", �� =1 if ! / � and " / 0 and 0 otherwise; 
•  X�(, ", �� is the activation from a neighbor node ( of ! for a 

propagation origin � at iteration "; 
•  degree& returns the degree of the node ( (def. 4); 
•  P�!, �� is a semantic weighting function which takes into 

account the semantics of the nodes ! and �. First, it aims to 
identify the propagation domain: the nodes are activated or 
not depending on their types. Second, it encourages the 
activation of the nodes similar to the origin � using others 
semantics attributes. P�i, o� is explained in detail below. 

Definition 8. (Semantic Spreading Activation algorithm, 
polycentric query) 

The query is polycentric when several nodes of interest are 
stimulated at a same time. The stimulations correspond to the 
unitary inputs constituting the composite interest in our case (e.g. 
The Beatles and Ken Loach). The results of a polycentric query 
are the product-intersection of several monocentric propagations 
results (def. 7): 

X�!, "�/  abX�!, ", ��c/log ���+�����_∈M   
Where: 

•  O is the set of seeds nodes i.e. the origins of the activations;   
•  X�!, "� is the aggregated value of the node !, i.e. the product 

of the activation values of ! for the various propagation 
spreading at the iteration " (differentiated by their origin �). 
The product was chosen instead of the sum in order to avoid 
a potential disequilibrium introduced by the difference in the 
monocentric activations distributions. This difference is due 
to the graph topologies around their respective origin node. 
The division by log ���+����) aims to minimize the 
importance of the highly connected nodes that can be present 
in the monocentric propagations intersections but not very 
informative;  

•  X�!, ", �� is the activation value of node ! at iteration " for a 
spreading activation taking its origin at � as in definition 7. 

The class-based propagation domain for a polycentric query noted fgh�i� is the set of types through which the propagation spreads 
with i the set of all the seeds. To be precise, the propagation 
spreads through instances which have at least one type present in fgh�i�. It aims to increase the results quality by focusing the 
activation distribution on a consistent subset of nodes only. At the 
same time it improves the performances by narrowing the amount 
of processed nodes. The propagation domain is identified on-the-
fly before the propagation starts thanks to the seed nodes 
neighborhoods’ types. In case of polycentric queries it takes into 
account the neighborhood of all the seeds in order to identify a 
shared propagation domain. 

Definition 9. j)X1�1� is the set of the deepest types t of a given 
node x according to their ����3��� (def. 5):  j�����1� /  
�; �1, ���: ����, �� 	 2�� 

j)X1�1� / k � 	 j�����1� ; l��  	  j�����1� ;����3��� m ����3����n 

Definition 10. Sj��� is a multi-set counting the occurrences of 
the deepest types in the seed node’s neighborhood (def 6.). Sj�i� 
is the union of the Sj��� with o∈  O and is used for polycentric-
queries. Sj��� / 
��, %�; � 	  j)X1�1�; " 	  S�!+3T�����; %/ |
" 	 S�!+3T�����; � 	 j)X1�"��|� 

Sj�i� / o Sj���_	M  

Definition 11. fgh�i� is the classes propagation domain, it 
constitutes the class-based “semantic pattern” used all along the 
propagation. A threshold function can be applied to limit the 
propagation domain size for performance purpose. After this last 
operation we obtain the classes’ propagation domain fgh�i� i.e. 
nodes with a type included in fgh�i� will be activated during the 
propagation: 

fgh�i� / p�; ��, %� 	 Sj�i�; %∑ %��rs,ts�	[u�M� m �3���3�v�w  
In addition to this class-based filtering we use another triple-based 
measure to improve the algorithm relevance. The more a node is a 
subject of triples that share a property and an object with triples 
involving the origin node � as a subject, the more it will receive 
activation: 

P�!, �� / x 0 !� y� 	 j�����!�; � 	 fgh�i�1 ? |%�))�"��!�v��!, ��| ��3��P!��z 
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Where: 

commontriple(i,o)={( i,p,v)	KB;∃(o,p,v)	KB}  

4. IMPLEMENTATION 
This part is dedicated to the implementation of the algorithm in 
the Discovery Hub application. It describes the general 
architecture plus the settings and the approximation strategies 
chosen after analyses. It finally presents the application. 

4.1 Dataset 
We decided to make a first implementation on top of DBpedia. 
First, DBpedia is cross-domain due to its encyclopedic nature and 
captures a very heterogeneous knowledge in a single graph. It 
enables cross-domain and cross-type processing and is 
consequently adapted to our objective of solving composite, 
potentially heterogeneous, interest queries. Second it can support 
users’ experiments as it contains common-knowledge items such 
as films or music artists. 

As we needed to query the SPARQL endpoint millions times 
during the benchmark we set up a local version of DBpedia. Our 
version contains the wikiPageWikilink15 triples. The 
wikiPageWikiLink relations indicate that a hypertext link exists in 
Wikipedia between the 2 resources, often in the core of articles, 
but that the semantics of the relation was not captured. It provides 
a vast amount of extra-links which can increase the relevance of 
the connectionist algorithms like spreading activation ones. 

As previously mentioned the main difficulty to perform spreading 
activation over a LOD source is due to the graph complexity. Here 
are some characteristics of DBpedia 3.7 dataset including 
wikiPageWikiLink triples: 
- Graph size:  3.64 million nodes, 270 million triples. 
- Graph heterogeneity: 319 classes in the DBpedia ontology. 

As the stimulation propagates it can potentially reach a very high 
amount of nodes. The semantic pattern fgh identified by the 
algorithm helps to manage the graph heterogeneity. We introduce 
in the next section a sampling process used to apply the algorithm 
on a limited and selected amount of data only.  

4.2 Architecture 
The algorithm is coded in JAVA. Each time a query is processed a 
Kgram [6] inference engine instance is created. This local 
instance manipulates a limited sub-graph replicated from the 
SPARQL endpoint. Indeed, propagating the activation in the 
whole DBpedia graph to retrieve the results would very be time 
consuming and is clearly not compatible with our performance 
requirements. Thus we transform this processing problem in a 
local one by performing the spreading activation on a limited sub-
graph per query. The Kgram instance imports a subpart of 
DBpedia using INSERT queries. The method used to identify this 
sub-graph is detailed below. To control and limit the response 
time we also introduced a triples loading limit (discussed in 
4.4.3).  

In the case of polycentric queries a two-arc non-oriented 
SPARQL path query is performed on the endpoint16 to identify the 
sub-graph that will be addressed by the spreading activation 
algorithm. If this query fails we augment the path length. If the 
queries do not produce any results and the SPARQL endpoint 

                                                                    
15 http://dbpedia.org/ontology/wikiPageWikiLink  
16 Kgram is able to translate the path queries in their expanded 

form. This is necessary for some SPARQL endpoints. 

starts to refuse them because it is too complex we search oriented 
paths between the seeds in both directions. This approximation is 
useful for the queries combining distant nodes. In our actual 
implementation only the wikiPageWikiLink properties, which are 
the most current, are taken into account for this step. The 
wikiPageWikiLink considerably increase the number of 
connections between the nodes and help to identify more paths. 
Moreover when two nodes are linked by a well-defined property 
(e.g. http://dbpedia.org/ontology/) the relation is often mentioned 
in the Wikipedia plain text. Consequently a corresponding 
wikiPageWikiLink triple exists. Thus, restraining the path queries 
to these properties leads to a minor knowledge loss. The path 
identification can also be replaced by a random walkers-based 
approach if the SPARQL queries give insufficient results on the 
endpoint. 

The nodes’ neighborhoods that have been found by the path query 
are loaded in increasing degree order till the loading limit is 
reached. We assume that nodes having a lower degree are more 
informative about the connections between the seed nodes. To 
maximize the chance of retrieving results the pivot nodes 
identified by the SPARQL path query are eligible for activation 
even if they do not have a type present in fgh�i�. 

select distinct ?x ?y where {  
 service <sparqlEndpoint> 
  { 
   select * where { 
    ?a(<…wikiPageWikiLink>| 
      ^<…wikiPageWikiLink>){0,X} :: $path ?b  
    filter (?a=<resource1> &&?b=<resource2>) 
   } 
  } 
 graph $path {?x ?p ?y} 
 filter(?x!=<resource1> && ?x!=<resource2>) 
}  

4.3 Settings 
In order to implement our formula and run it over DBpedia, we 
have to set up some variables:  
- The �3���3�v� filtering the propagation domain is set to a 

low value of 0.01. Such value minimizes loss of knowledge.  
- The propagation spreads in both directions i.e. in and out 

links. As reverse properties are used in RDF, it is preferable 
to take into account the incoming and outcoming neighbors 
in order to avoid any loss of knowledge. From a spreading 
point of view the orientation is arbitrary and depends on a 
modeling choice. 

- We still need to set the maximum number of iterations. It is 
discussed in the next part. 

We make use of the dcterms:subject properties to compute the %�))�"��!�v��!, �� value. In DBpedia, the instances are linked 
to their categories thanks to the �%���)�: �|T(�%� property. The 
categories constitute a topic taxonomy which is highly 
informative on the resources’ nature. Thus it constitutes a valuable 
knowledge for %�))�"��!�v��!, �� which aim to increase the 
activation values of nodes having similarities with the activation 
origin.  

4.4 Using approximation strategies to control 
and limit the response time 
Two parameters still need to be discussed: the maximum number 
of iterations and the limit of triples processed by query. As the 
polycentric queries’ results are the product intersection of several 
monocentric queries we use the analysis we did for monocentric 
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queries’ behavior to set these two remaining parameters. We use 
here an approximation that might require further studies. Indeed 
for the queries with a single origin node the sampling process we 
use is different. In the case of monocentric query the graph is 
loaded iteratively along the iterations regarding the nodes’ 
activation values, following the spreading activation logic. At the 
beginning the seed node’s neighborhood (filtered by classes’ 
propagation domain) is loaded and a first round of propagation is 
performed. During the next activations the top activated nodes’ 
neighborhoods are loaded into the Kgram instance till the loading 
limit is reached. Considering the amount of nodes processed 
during the analysis we reasonably think that the same study with 
the polycentric loading process would lead to similar results. 

4.4.1 Analysis method 

To reduce the computational cost of the algorithm behavior study 
we ran it on a DBpedia sample. According to [16] the best 
sampling method to preserve a large graph’s properties is a 
random walker. We followed this recommendation and computed 
a sample17 using this method.  

To compare the results lists we obtained with various 
configurations we notably used the Kendall’s tau-b coefficient }O 
[12]. }O is a rank correlation measure reflecting the concordance 
of two ranked lists where:  

}O / ∑ ��+"$1� ~ 1&'�+"$�� ~ �&'���& ��j� ~ j���j� ~ j�� ,  
 

where j� / "�" ~ 1�2 , 
j� / Z ����� ~ 1�2 , and j� / Z |K�|K ~ 1�2  K�  

and the �� is the number of tied 1 value in the �th group of tied 1 
values, |K is the number of tied � values in the vth group of tied � 
values, " is the number of observation and �+"���: 

�+"��� / k 1 !� � � 00 !� � / 0~1 !� �  0n 

}O is comprised between -1 and 1: -1 means a total discordance 
and 1 a total concordance. Thanks to it we observe the similarity 
of the rankings from iteration to another. It allows observing the 
algorithm convergence. Our configuration for tests was:  

- Application server: 8 proc Intel Xeon CPU E5540 
@2.53GHz 48 Go RAM 

- SPARQL endpoint: 2 cores Intel Xeon CPU X7550 
@2.00GHz 16Go RAM  

4.4.2 Setting the maximum number of iterations 

As spreading activation is an iterative algorithm we have to set a 
maximum number of iterations. To determine the best settings in 
our context we observed the algorithm convergence over DBpedia 
graph. We performed an analysis on 100.000 queries using the 
sample nodes as inputs. We counted the number of shared results 

                                                                    
17 The code and a 546.000 nodes sample are publicly accessible 

for reuse: http://semreco.inria.fr/hub/tools  

and measured the Kendall-Tau correlation coefficient between the 
top 100 results list at iteration n and the top 100 results list at 
iteration n+1 for the first hundred iterations. The Kendall-Tau is 
calculated considering the shared results in the two lists. The 
triple loading limit is not studied yet and is experimentally set to 
10.000 for this first analysis. 

For clarity purpose the figure 1 shows only the twenty first 
iterations, after 16 iterations the percentage of average shared 
results exceeds 99% and the average }O is superior to 0.99. We 
observe that the top results are quickly converging. The table 1 
focuses on the }O variation along the iterations. It is clear that the 
results change very slowly after few iterations. In others words it 
becomes very expensive to continue the process after few 
iterations regarding the very slow evolution of results. We decided 
to fix the maximum pulse at 6. A propagation visualization video 
using the Semantic Web Import plug-in for Gephi18 has been 
published19. The fast convergence is observable on the video. 

 
Figure 1: Percentage of shared results and �� from one 

iteration to another, top 100 results 

Table 1. Variation of �� for iterations n and n+1  
 

It. n 1 2 3 4 5 6 7 8 }O .73 .11 .08 .018 .013 .006 .006 .002 

4.4.3 Setting the triples loading limit 

To control the size of the sub-graph processed and consequently 
the response time we introduce a maximum limit of triples 
imported per query. When the imported graph overtakes the 
triples limit no more neighborhoods are loaded anymore. We 
processed again 100.000 queries using the sample nodes as inputs. 
Each query was executed ten times with a limit ranging from 2000 
to 20000 triples (step of 2000). The figure 2 shows that the 
algorithm response time is linear regarding the triples loading 
limit. 

                                                                    
18 http://wiki.gephi.org/index.php/SemanticWebImport  
19 http://semreco.inria.fr/hub/videos/  
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Figure 2: response time regarding the loading limits for 

monocentric queries 

The figure 3 shows the top 100 results Kendall-Tau variation from 
a loading limit to another, 2000 by 2000. It is clearly observable 
that after 6000 the convergence starts to be very slow. Thus we 
chose 6000 as loading limit.  

 
Figure 3: �� from one loading limit to another (step: 2000), 

top 100 results  

4.5 Polycentric behavior analysis 
Then we wanted to observe if the polycentric results were specific 
to the inputs combination. We processed again 100.000 nodes of 
our sample. For each of them we selected randomly 2 nodes in the 
2 arc-max neighbourhood thanks to a random walker. We 
processed 3 queries: the sample’s node only (monocentric) and 
two polycentric queries by adding each time one of the randomly 
selected neighbours. The figure 4 shows a histogram of the top 
100 shared results percentage between the monocentric and the 
polycentric queries results. The figure 5 shows it for the 2 
polycentric queries amongst themselves. These 2 histograms both 
point out that the results list similarities are very low. In others 
words the results are highly specific to the input(s). 

 
Figure 4: Shared top 100 results histogram between the 

monocentric and polycentric queries results 

  
Figure 5: Shared top 100 results histograms between the first 

and second polycentric queries results 

The response time histogram of polycentric queries (figure 6) 
shows that a majority of queries are processed in less than 10 
seconds. Overall the response time of the polycentric queries is 
superior to the monocentric ones (figure 2) due to the path queries 
costs. 

 

Figure 6: polycentric queries response time histogram in ms 
 

4.6 Discovery Hub: an operational prototype 
Discovery Hub20 implements the algorithm and the sampling 
process previously described. It uses DBpedia as knowledge base. 
It is an exploratory search engine which helps the user to discover 
things he might like or might be interested in. It aims to widen his 
knowledge and cultural horizons. It proposes many redirections to 
tierce platforms to extend the search process. The third-party 
services are proposed according to the type of the considered 
result e.g. music service for a Band or tourism platform for a 
Museum. Several demonstration videos are available online21. 

To enter the queries the user can start with an entity search thanks 
to a DBpedia lookup22 or use an import of third-party profile 
information e.g. Facebook likes. In this last case an entity 
recognition is performed using the rdfs:label properties and the 
DBpedia lookup. The composite queries are encouraged thanks to 
the “search box” in which the user can drag and drop items all 
along his navigation (figure 7). He can pick resources of interest 
on the homepage, the results pages or in his profile for instance. 
The composition is limited today to 4 resources.  

The navigation in the results space is facilitated thanks to various 
facets and filters allowing a deep exploration. The classes in the 
                                                                    
20 http://semreco.inria.fr/hub/    
21 http://semreco.inria.fr/hub/videos/ 
22 http://wiki.dbpedia.org/lookup/  
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propagation domain are used as navigational items to build the 
facets e.g. Band, Film. 40 results at maximum are presented by 
facet on the actual prototype. Discovery Hub also proposes a 
“ top” un-faceted results list showing the 40 most activated 
resources without any condition on their types.  

 

Figure 7: The user is currently dragging The Beatles in the 
“ search box” to complete Ken Loach and launch the query 

A set of filters per facet is proposed using the DBpedia categories. 
These filters are retrieved thanks to the query below. For instance 
on the figure 9 the user filtered the Film facet’s results with 
“2000s comedy-drama films”. We put in evidence the categories 
(i.e. the filters) having a low degree by presenting them with 
clearer colors. It aims to drive the user in unexpected browsing 
paths and thus augments the discovery potential of the application. 
The filters have a cumulative effect. 

select ?p where { 
 service <sparqlEndpoint> 
 { 
  select ?p (count(?x) as ?count) where { 
   ?x <http://purl.org/dc/terms/subject> ?p 
   filter( ?x = result1Facet1  || ?x= 
    result2Facet1 || ?x = result3Facet1 … ) 
  } order by desc (?count)  
 } 
 filter(?count>1) 
} 

To give a real example of results, the composite query The Beatles 
+ Ken Loach provides the following facets (or fgh): Album, 
Band, Film, Musical Artist, Music Genre, Person, Radio Station, 
Single, Television show. The Film facet proposes, among others, 
these filters: British drama films, films associated with the 
Beatles, films directed by Ken Loach, films set in Liverpool. 

When a user is interested or intrigued by an item, he can ask for 
various explanations thanks to three dedicated features. These 
features are mandatory for composite heterogeneous queries when 
some non-trivial and unattended results are retrieved. They need 
to be explained to receive the user’s approval. The following 
explanatory features are presented in a video23:  

- A feature showing the common properties that share the 
results with the query-resource(s). 

- A feature identifying and highlighting the crossed references 
between the result and the query-resources in the Wikipedia 
pages (figure 8). 

- A feature showing the connections between the results and 
the query-resources in a graph format (figure 9). When the 

                                                                    
23 http://semreco.inria.fr/hub/videos/ 

user goes over a node its abstract appears on the left. It is 
possible to get even more information with the “see links in 
Wikipedia” functionality that highlights the graph neighbors 
in the Wikipedia pages. This graph is built on demand thanks 
to a SPARQL path query. It is often instantaneous, require 
few seconds when the graph is dense.  

 
Figure 8: Wikipedia-based explanation for “Nowhere Boy” 

 

 
Figure 9: Graph-based explanation for “Looking for Eric”  

5. EVALUATION 
As mentioned in [13] the research initiatives in the exploratory 
search domain suffer from the lack of evaluation standardization. 
It is even more the case for our composite interest objective as 
there is no clear baseline available24. We wanted to verify the 
following hypothesizes: 

•  Hypothesis 1: the composite queries results interest the user. 
•  Hypothesis 2: some results are unattended; they offer a high 

discovery potential. 
•  Hypothesis 3: the explanatory features help the user to 

understand the link between the query-resources and the 
results; thus they support efficiently the results space 
understanding. 

This evaluation was executed using an adaptation of the 
Discovery Hub interface. The users had to judge 2 results lists of 
the top 10 algorithm results. Each list was generated starting from 
2 of their individual Facebook likes randomly combined. In this 
way we wanted to simulate a composite interest query that the 
user was susceptible to enter in the system.  

The following scenario was introduced: “you heard about a new 
discovery engine that can help you to learn and discover new 

                                                                    
24 We propose an API for comparison purpose. 
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things easily starting from items you like. This tool notably allows 
generating results starting from several interests. You decide to 
test it on yours. We propose you to judge 2 results lists generated 
from your Facebook likes”. 

Two Likert scales [17] were used: 

•  Question 1: The result interests me: strongly agree, agree, 
disagree, strongly disagree. 

•  Question 2: The result is unexpected: strongly agree, agree, 
disagree, strongly disagree. 

Concerning the sample characteristics, the survey was filled by 12 
persons: 3 females, 9 males from various backgrounds, mainly 
people who asked an access to the Discovery Hub beta. In the 
following results 0 corresponds to strongly disagree, 1 to 
disagree, 2 to agree, 3 to strongly agree for relevance score and 
discovery scores (respectively question 1 and 2).   

To verify the hypothesis 1, we observed the relevance score 
(question 1). The average relevance score was 1.65, with a 
standard deviation of 0.94. The figure 10 shows the average 
relevance scores per query histogram. 71% of queries received a 
relevance score over the mean (1.5). Thus the hypothesis 1 is 
verified. It is noticeable that one query received the worst score 
possible; all its results were rated 0. Its seeds were very distant: 
Samuel L. Jackson and Grooveshark.  

To verify the hypothesis 2, we observed the unexpectedness score 
(question 2). The average unexpectedness score was 1.90 with a 
standard deviation of 1. The figure 11 shows the average 
unexpectedness scores histogram. 58.33% of queries received an 
average score over the mean (1.5). Thus, the hypothesis 2 is 
verified. 

 
Figure 10: average relevance score per query histogram 

 
Figure 11: unexpectedness score per query histogram 

 
 

Concerning the discovery potential it is also interesting to observe 
the recovery between relevance and unexpectedness: 
- 61.6% of the results were rated as strongly relevant or 

relevant by the participants. 
- 65% of the results were rated as strongly unexpected or 

unexpected. 
- 35.42% of the results were rated both as strongly relevant or 

relevant and strongly unexpected or unexpected.  

Then we asked the participants to give their opinion about the 
three explanatory features. For the 3 features we asked “the 
feature X helped me understand the relation between the result 
and my interests and to make a choice?” and one more general 
question “overall, I feel that these three features can help me to 
make new discoveries”. 0 corresponds to strongly disagree, 1 to 
disagree, 2 to agree and 3 to strongly agree (figure 12). The 
graph-based explanatory feature which was designed specifically 
to understand the non-trivial connections between several 
resources received a very high average score (mean m = 2.92). It 
is particularly adapted to results explanations for the polycentric 
queries results as they often unveil indirect links. The Wikipedia-
based explanatory feature received an average score over the 
mean (m = 1.83). Participants liked the possibility to use it from 
the graph explanation. Finally the common property feature 
received an average score close the mean (m = 1.58). It is often 
impossible to find common properties between the results and all 
the different seed nodes constituting the composite interest. This 
feature is more efficient in the case of monocentric queries. The 
more general question received the high average score of 2.67 and 
confirms the interest of these explanatory features to increase the 
discovery potential of the application. The hypothesis 3 is 
verified. 

 
Figure 12: users’ opinions about the explanatory features 

Finally we asked the participants to rank the 3 functionalities 
regarding their perceived efficiency in terms of results 
explanations. The rankings confirmed the previous results. The 
common property feature was perceived as the less efficient 
(ranked first: 0%, second: 72.7%, third: 27.3%). The Wikipedia-
based feature was more appreciated (54.5%, 27.3%, and 18.2%). 
Finally the graph-based received a very large approval (45.45%, 
45.45%, and 9%). Nevertheless, the results are not totally 
uniforms and confirm the interest to propose various strategies. 

6. CONCLUSION 
In this paper, we have presented a method for processing linked 
data graph for exploratory search purposes. It is composed of a 
semantic spreading activation algorithm associated to a sampling 
process. Its main particularity regarding the state-of-the-art is to 
not need any preprocessing step to compute the results. We also 
detailed its implementation in the Discovery Hub application. We 
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presented extensive analysis of its behavior that helped us to set 
the main parameters of the implementation. This article was 
especially focused on composite interests (interests captured in the 
form of several unitary resources) explorations thanks to 
polycentric spreading activation. During our analysis a majority of 
the polycentric queries results were specific to the nodes 
combination used as inputs. Overall the queries required few 
seconds to be processed. The participants of the evaluation mostly 
rated the results as relevant or unexpected. More than one third of 
the results was rated as both relevant and unexpected. It is 
encouraging as it reflects a high discovery potential for the 
application. The evaluation notably showed the high efficiency of 
the graph-based and Wikipedia-based explanatory features for 
explaining the polycentric queries results.   

We plan to extend this work in several directions. An interesting 
possibility offered by the architecture is to modify the semantics 
embedded in the propagation in order to support personalization 
and contextualization functions, using for example the property 
semantics. Another possible research direction is to query several 
SPARQL endpoints at the same times (e.g. French, Spanish, and 
Italian DBpedias), build one meta-lingual graph and retrieve 
richer results. Finally we will evaluate the full Discovery Hub 
system thanks to a qualitative evaluation on a large set of users. 
We still need to validate the usefulness of applying the algorithm 
in the context of exploratory search with the interactive 
dimension. This evaluation will also allows us to determine the 
quality of the navigational items we propose like the facets, filters 
and to identify some browsing patterns.  

7. ACKNOWLEDGMENTS 
We thank Julien Cojan (SPARQL endpoint), Damien Legrand 
(web-design and front-end development), Alain Giboin and 
Gessica Puri (evaluations) for their precious help. 

8. REFERENCES 
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, 

Z.Ives,  2007. DBpedia: A nucleus for a web of open data, 
in: Proceedings of the 6th International Semantic Web 
Conference, 2007. 

[2] Basse A., Gandon F., Mirbel I., Lo M., Incremental 
characterization of RDF Triple Stores, INRIA Research 
Report RR-7941, April 2012 

[3] D. Brickley and R. Guha. 2004. Rdf vocabulary description 
language 1.0: Rdf schema, Feb. 2004. 

[4] Cohen, P and Kjeldsen, R. Information Retrieval by 
Constrained Spreading Activation on Semantic Networks. 
Information Processing and Management, 23(4): 1987. 

[5] A. Collins and E. Loftus. A spreading activation theory of 
semantic processing. Psychological Review,8,2 1975. 

[6] O. Corby and C. Faron-Zucker. The KGRAM abstract 
machine for knowledge graph querying. In Web Intelligence, 
pages 338–341, 2010. 

[7] Crestani, F. Application of Spreading Activation Techniques 
in Information Retrieval. Artificial Intelligence Review, 
11(6): 453-482, 1997. 

[8] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. 
Zanker. Linked open data to support content-based 
recommender systems. In 8th I-SEMANTICS 2012. ACM 
Press 

[9] N. Guarino and P. Giaretta. 1995. Ontologies and Knowledge 
Bases - Towards a Terminological Clarification, pages 25-
32. IOS Press, Amsterdam, The Netherlands, 199 

[10] HS. Haltakov, A. Kiryakov, D. Ognyanoff, R .Velkov - 2010 
- D2. 4.2 Approximate Activation Spreading - larkc.eu 

[11] Kaminskas M. and al, Knowledge-based Music Retrieval for 
Places of Interest, in Proceedings of MIRUM’12, 2012. 

[12] Kendall, Maurice, Rank Correlation Methods. London: 
Charles Griffin and Co., 1948. 

[13] Kules, B., & Capra, R. (2008) Creating exploratory tasks for 
a faceted search interface. Paper presented at the Second 
Workshop on Human-Computer Interaction (HCIR 2008). 

[14] Lassila O. and Swick R. (1999). RESOURCE DESCRIPTION 

FRAMEWORK (RDF). W3C proposed Recommendation, 
January 1999 

[15] M. Lee, W. Kim, and T. G. Wang, “An explorative 
association-based search for the semantic web,” in 
Proceedings of the 2010 IEEE Fourth International 
Conference on Semantic Computing, ser. ICSC ’10.  

[16] J. Leskovec and C. Faloutsos. Sampling from large graphs. In 
KDD ’06: Proceedings of the 12th ACM SIGKDD 
international conference on Knowledge discovery and data 
mining, pages 631–636, New York, NY, USA, 2006. ACM 
Press. 

[17] Likert, R. (1931). A technique for the measurement of 
attitudes. Archives of Psychology. New York: Columbia 
University Press. 

[18] G. Marchionini. 2006. Exploratory search: From finding to 
understanding. Comm. Of the ACM, 49(4), 2006. 

[19] D. L. McGuinness and F. van Harmelen. Owl web ontology 
language overview. Technical Report REC-owl-features-
20040210, W3C, 2004.  

[20] A. Musetti, A. G. Nuzzolese, F. Draicchio, V. Presutti, E. 
Blomqvist, A. Gangemi, and P. Ciancarini. 2012. Aemoo: 
Exploratory search based on knowledge patterns over the 
semantic web. Semantic Web Challenge. 

[21] A. Passant,. 2010. dbrec – music recommendations using 
dbpedia. The Semantic Web–ISWC 2010 209–224. 

[22] E. Prud'hommeaux and A. Seaborne. 2005. SPARQL query 
language for RDF, 2005. 

[23] Quillian, M. (1968). Semantic memory. In M. Minsky (Ed.), 
Semantic Information Processing, pp. 227–270. MIT Press, 
Cambridge, MA. 

[24] Rocha, C., Schwabe, D., and de Aragão, M. P.: A Hybrid 
Approach for Searching in the Semantic Web. In Proc. of the 
13th International World Wide Web Conference (WWW 
2004), NY (2004) 374-383 

[25] Scheir, P., Ghidini, C., Lindstaedt, S.N.: Improving search on 
the semantic desktop using associative retrieval techniques. 
In: Proc. of the I-Semantics 2007, pp. 415– 422 (2007) 

[26] Stankovic, M., Rowe, M. and Laublet, P. Finding Co-solvers 
on Twitter , with a Little Help from Linked Data. In 
Proceedings of Extended Semantic Web Conference ESWC 
2012, May 27-31, Heraklion, Crete, Grece Tran, T., & Mika, 
P.  2012. Semantic Search-Systems, Concepts, Methods and 
the Communities behind It. 

[27] Tran, T., & Mika, P.  2012. Semantic Search-Systems, 
Concepts, Methods and the Communities behind It. 

[28] Miel Vander Sande and al.s, 2012. Everything is Connected: 
Using Linked Data for Multimedia Narration of Connections 
between Concepts,. In: Proceedings of the 11th International 
Semantic Web Conference, 2012. 

[29] Waitelonis, J., Sack, H.: Augmenting Video Search with 
Linked Open Data. In: Proc. of Int. Conf. on Semantic 
Systems 2009 (i-semantics2009). Graz, Austria (Sep 2009) 

40


