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Abstract: This paper analyses the behavior of the augmented Lagrangian algorithm when it
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norm to zero; this rule has the advantage of generating bounded augmentation parameters even
when the problem is infeasible.

Key-words: Augmented Lagrangian algorithm, augmentation parameter update, closest fea-
sible problem, convex quadratic optimization, feasible shift, global linear convergence, infeasible
problem, proximal point algorithm, quasi-global error bound, shifted constraint.

† INRIA Paris-Rocquencourt, project-team Pomdapi, BP 105, F-78153 Le Chesnay (France); e-mails: Alice.

Chiche@inria.fr, Jean-Charles.Gilbert@inria.fr.
‡ EDF R&D, Osiris departement – 1, avenue du Gnral de Gaulle – F-92141 Clamart Cedex (France).



Comment l’algorithme du lagrangien augmenté peut traiter

un problème d’optimisation quadratique convexe non

réalisable

Résumé : Cet article analyse le comportement de l’algorithme du lagrangien augmenté lorsqu’il
cherche à résoudre un problème d’optimisation quadratique convexe non réalisable. Nous montrons
que l’algorithme trouve un point qui, d’une part, réalise les contraintes translatées par la plus petite
translation qui les rend compatibles et, d’autre part, minimise l’objectif sur l’ensemble admissible
ainsi transformé. La vitesse de convergence vers un tel point est globalement linéaire, avec un taux
inversement proportionnel au paramètre d’augmentation. Ceci suggère une règle de mise à jour de
ce paramètre, de manière à obtenir une vitesse de convergence donnée des contraintes translatées
vers zéro ; cette règle a l’avantage de générer des paramètres d’augmentation bornés, même lorsque
le problème n’est pas réalisable.

Mots-clés : Algorithme du lagrangien augmenté, algorithme proximal, borne d’erreur quasi-
globale, contrainte translatée, convergence linéaire globale, mise à jour du paramètre d’augmenta-
tion, optimisation quadratique convexe, problème non réalisable, problème réalisable le plus proche,
translation admissible.
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1 Introduction

We consider the convex quadratic optimization problem that we write as follows

{
infx q(x)
l 6 Ax 6 u.

(1.1)

In that problem, the objective function

q : x ∈ R
n 7→ q(x) = gTx+

1

2
xTHx (1.2)

is convex quadratic (the vector g ∈ R
n and the matrix H ∈ R

n×n is positive semidefinite) and the
constraints are defined by a matrix A ∈ R

m×n and bounds l and u ∈ R
m

that must satisfy l < u.
The sign “T” denotes transposition, so that uTv =

∑
i uivi is the Euclidean scalar product of the

vectors u and v. Because of the possible infinite value of the components of l and u, we feel it
necessary to give a precise definition of the frequently used interval

[l, u] := {y ∈ R
m : l 6 y 6 u}. (1.3)

Since H may vanish, the problem encompasses linear optimization. On the other hand, linear
equality constraints, like Bx = b, can be expressed in (1.1) by using two inequalities Bx 6 b and
−Bx 6 −b, so that the analysis below also covers problems with linear equality constraints.

The augmented Lagrangian (AL) algorithm studied in this paper is defined by first introducing
an auxiliary vector of variables y ∈ R

m and by rewriting (1.1) as follows





inf(x,y) q(x)
Ax = y
l 6 y 6 u.

(1.4)

Given an augmentation parameter r > 0, the AL function ℓr : R
n ×R

m ×R
m → R is then defined

at (x, y, λ) ∈ R
n × R

m × R
m by

ℓr(x, y, λ) = q(x) + λT(Ax − y) +
r

2
‖Ax− y‖2, (1.5)

where here and below ‖ · ‖ denotes the ℓ2-norm. For r = 0, one recovers the usual Lagrangian
function, relaxing the equality constraints of (1.4) thanks to the multiplier or dual variable λ. The
AL algorithm generates a sequence of dual variables {λk}k∈N ⊆ R

m as follows. Knowing rk > 0
and λk ∈ R

m, the next dual iterate λk+1 is computed by

(xk+1, yk+1) ∈ argmin {ℓrk(x, y, λk) : (x, y) ∈ R
n × [l, u]} , (1.6)

λk+1 := λk + rk(Axk+1 − yk+1), (1.7)
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The augmented Lagrangian algorithm on an infeasible convex QP 4

where “argmin” denotes the solution set of the associated minimization problem. Next, rk is
updated by a rule that depends on the implementation and to which we pay much attention in this
paper. The quadratic optimization problem in (1.6) is called the AL subproblem. The algorithm
is presented with more details and is further discussed at the end of this section.

This paper can be viewed as a continuation of the work initiated in [16; 2005], in which the
global linear convergence of the constraint norm to zero is established, when (1.1) is feasible and
bounded. Feasibility means that there is a point x ∈ R

n such that Ax ∈ [l, u] or, equivalently, that
R(A) ∩ [l, u] 6= ∅ (we denote the range space of the matrix A by R(A) := {Ax : x ∈ R

n}). When
feasibility occurs, boundedness means that the optimal value of (1.1) is finite. For a quadratic
problem like (1.1), these two conditions (feasibility and boundedness) are equivalent to the existence
of a solution [24; 1956]. More specifically, it was shown in [16] that when (1.1) has a solution

∀β > 0, ∃L > 0, dist(λ0,SD) 6 β implies that
∀ k > 1, ‖Axk+1 − yk+1‖ 6

L
rk
‖Axk − yk‖, (1.8)

where SD denotes the necessarily nonempty set of optimal multipliers associated with the equality
constraints of (1.4) and the operator “dist” denotes the Euclidean distance. Computationally, this
result is interesting because it allows the AL algorithm to tune the augmentation parameter rk on
the basis of the examined behavior of the constraint norm ratio ‖Axk+1 − yk+1‖/‖Axk − yk‖, from
the very first iteration. In [26], rk is increased if this ratio is larger than a desired rate of convergence
(this rate is easier to prescribe by the solver user than rk). Let us stress that it is the fact that the
constraint norm inequality in (1.8) is valid from the first iteration, not only asymptotically in an
unknown neighborhood of the unknown set SD, that makes this tuning possible. Now, when the
problem is infeasible, i.e., R(A) ∩ [l, u] = ∅, the constraint norm cannot, of course, tends to zero
and the just described rule for tuning rk makes the augmentation parameter blow up. In that case,
the algorithm could stop if rk exceeds some threshold, but one understands that (i) it is difficult
to specify a universal value for such a threshold, (ii) a threshold may be difficult to determine
for a particular problem by the user of the code, and (iii) probably nothing can be said on the
approximate solution obtained when the threshold is exceeded.

This paper gives more properties on the AL algorithm when problem (1.1) is infeasible. Since,
the AL algorithm is equivalent to the proximal (point) algorithm on the dual function [47; 1973],
the present contribution is related to those works describing the behavior of the proximal method
on monotone inclusion problems without solution [51, 6, 44, 56, 57; 1976-1987], but it goes a
little further, by taking advantage of the special structure of the quadratic optimization problem
(1.1). In particular, the way how the changing penalty parameters rk intervene in the speed of
convergence is highlighted.

One assumption is crucial for making the AL algorithm consistent for infeasible problems. Since
[l, u] 6= ∅, it is always possible to find a shift s ∈ R

m such that the shifted constraints l 6 Ax+s 6 u
are feasible for some x ∈ R

n ; let us call such an s a feasible shift. The feasible shifts are clearly
the vectors in the set

S := [l, u] +R(A). (1.9)

The fundamental assumption of this study is that for some shift s ∈ S (or any such feasible shift,
as this will be clarified by the comment after proposition 2.5), the shifted quadratic optimization

problem {
infx q(x)
l 6 Ax+ s 6 u

(1.10)

has a solution. This assumption is essential in the present context because it is equivalent to saying
that each AL subproblem (1.6) has a solution whatever are (or, equivalently, for some) λ ∈ R

m

and r > 0 (see proposition 2.5 again), so that the AL algorithm is consistent if and only if that
fundamental assumption holds.

RR n° 8583



The augmented Lagrangian algorithm on an infeasible convex QP 5

Since S is a nonempty closed convex set (it is a convex polyhedron containing [l, u]), there is
also one and only one smallest shift s̄ ∈ S, which is the projection of zero on S:

s̄ := argmin
s∈S

‖s‖. (1.11)

Of course, s̄ = 0 if and only if problem (1.1) is feasible. Problem (1.10) with s = s̄ is called in this
paper the closest feasible problem. It reads

{
infx q(x)
l 6 Ax+ s̄ 6 u.

(1.12)

Computing s̄ is not easier than computing a solution to a feasible quadratic problem like (1.1),
so that this smallest feasible shift is not computed before running the AL algorithm. We will see,
however, that in the AL algorithm the following dual function subgradients

sk := yk −Axk (1.13)

converge globally linearly to s̄, in a way similar to (1.8) but with sk replaced by sk− s̄ in the second
line (theorem 3.4). This result is partly due to the fact that s̄ is also the smallest subgradient of
the dual function δ associated with problem (1.1) (it will be shown in proposition 2.9, indeed, that
the set of all subgradients of δ, denoted R(∂δ), is identical to S) and that the AL algorithm tries
to find a multiplier λ such that ∂δ(λ) contains that smallest subgradient s̄.

The minimum shift s̄ is not known when the AL algorithm is running, so that it is less straight-
forward to use that new global linear convergence for updating the parameter rk, than it was when
s̄ = 0. We propose instead to use the differences s′k := sk+1 − sk, which also converge globally
linearly to zero (a known limit point this time!), provided rk is sufficiently large. Finally, this
analysis results (i) in a new update rule for rk, which maintains bounded the generated sequence
of augmentation parameters even for an infeasible problem, hence avoids introducing useless ill-
conditionding (section 4.1) and which computes the smallest feasible shift s̄ at a global linear speed
and (ii) in a new stopping criterion for the AL algorithm, which can detect that a solution to the
closest feasible problem has been obtained to the required precision. The new version of the AL
algorithm for solving the convex quadratic problem (1.1) is presented in section 4.2.

Another source of motivation for the present work, to add further to [16; 2005], is a result
on the minimization of a strictly convex quadratic function q subject to infeasible linear equality
constraints Bx = b (Fortin and Glowinski [23; 1982, remark 5.6, page 42] and Glowinski and
Le Tallec [29; 1989, remark 2.13, page 65] claim the result without proof; see also [15; 2006,
theorem 4.1] for a related result): the primal sequence generated by the AL algorithm converges
globally linearly to the solution to the weakly constrained problem

{
infx q(x)
BT(Bx − b) = 0.

(1.14)

Therefore, this paper can also be viewed as an extension of the Fortin-Glowinski-LeTallec result
to the minimization of a convex function (strict convexity is no longer required) subject to incom-
patible inequality constraints. Without strict convexity, however, the convergence of the entire
primal sequence is no longer ensured, so that the presented linear convergence result is related to
the constraint values, instead. Another contribution comes from the impact of the values of the
penalty parameters rk on the speed of convergence: the larger the parameters are, the faster the
convergence is; this is an expected property of the AL algorithm.

Notation

We denote by N := {0, 1, 2, . . .} the set of nonnegative integers, by [1 : p] := {1, . . . , p} the set of the
first p positive integers, by R the set of real numbers, and sets R+ := {t ∈ R : t > 0}, R− := −R+,
and R := R ∪ {−∞,+∞}.
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The notation and concepts of convex analysis that we employ are standard [45, 33, 5]. Let E

be a finite dimensional vector space (below, E is some R
p). The asymptotic cone of a nonempty

closed convex set C ⊆ E is denoted by C∞ := {d ∈ E : C+d ⊆ C}. We denote by IS the indicator
function of a set S ⊆ E: IS(x) = 0 if x ∈ S, IS(x) = +∞ if x /∈ S. The domain of a function
f : E → R is defined and denoted by dom f := {x ∈ E : f(x) < +∞} and its epigraph by epi f :=
{(x, α) ∈ E×R : f(x) 6 α}. As in [33], Conv(E) is the set of functions f : E → R∪{+∞} that are
convex (i.e., epi f is convex) and proper (i.e., epi f 6= ∅); while Conv(E) is the subset of Conv(E)
of those functions f that are also closed (i.e., epi f is closed).

Suppose now that E is endowed with a scalar product denoted by 〈·, ·〉 (below, 〈·, ·〉 is the
standard Euclidean scalar product of some E = R

p). The normal cone to a convex set C ⊆ E at
x ∈ C is denoted by NC(x) := {ν ∈ E : 〈ν, y − x〉 6 0, for all y ∈ C}. The Fenchel conjugate of
f ∈ Conv(E) is the function f∗ ∈ Conv(E) defined at s ∈ E by f∗(s) = sup{〈s, x〉 − f(x) : x ∈ E}.
The biconjugate f∗∗ of f is the conjugate of f∗; its value at x ∈ E is given by f∗∗(x) = sup{〈s, x〉−
f∗(s) : s ∈ E}; it is known that f∗∗ = f if and only if f ∈ Conv(E). The subdifferential at x ∈ E

of f ∈ Conv(E) is the set denoted by ∂f(x) := {s ∈ E : f(x)+ f∗(s) = 〈s, x〉}; it is known that the
multifunction x 7→ ∂f(x) is monotone, i.e., 〈s2 − s1, x2 − x1〉 > 0 whenever for i = 1, 2, xi ∈ E,
and si ∈ ∂f(xi). The range space of ∂f is denoted by R(∂f) := ∪{∂f(x) : x ∈ E}. The orthogonal
projector on [l, u] is denoted by P[l,u].

The standard augmented Lagrangian algorithm

We conclude this introduction by setting forth precisely the classical AL algorithm that is analyzed
in this paper. The algorithm will be rewritten in section 4.2 in a version that incorporates the
results of this paper and only differs on the stopping criterion (step 3) and on the way of updating
the augmentation parameter (step 4). It is described below as though computation were done in
exact arithmetic.

Standard AL algorithm to solve (1.1)

Initialization: choose λ0 ∈ R
m and r0 > 0.

Repeat for k = 0, 1, 2, . . .

1. If the feasible problem
min

(x,y)∈Rn×[l,u]
ℓrk(x, y, λk) (1.15)

has no solution, exit with a direction d ∈ R
n such that

gTd < 0, Hd = 0, and Ad ∈ [l, u]∞. (1.16)

Otherwise, denote a solution to (1.15) by (xk+1, yk+1).
2. Update the multiplier

λk+1 = λk + rk(Axk+1 − yk+1). (1.17)

3. Stop if
Axk+1 = yk+1. (1.18)

4. Choose a new augmentation parameter: rk+1 > 0.

This algorithm deserves some comments.

1. It is shown in proposition 2.5 below that if the AL subproblem (1.15) has no solution, then
the closest feasible QP is unbounded and the subproblem (1.15) has no solution, whatever is
λk ∈ R

m and rk > 0. Therefore this situation is detected at the very first AL iteration.

RR n° 8583



The augmented Lagrangian algorithm on an infeasible convex QP 7

2. The fact that a direction d ∈ R
n satisfying (1.16) can be found when the AL subproblem has

no solution is a consequence of lemma 2.2 below; see remark 2.3 (iii). Such a direction is
useful when the QP solver is used within the SQP algorithm (see part III in [4] and [28, 34],
for instance).

3. The AL subproblem (1.15) may have many solutions (xk+1, λk+1). Despite that fact, the next
multiplier λk+1 is uniquely determined by (1.17). This is discussed after lemma 2.4.

4. Some implementations of the AL algorithm update λk with more flexibility than in for-
mula (1.17), for example by taking λk+1 = λk + ξkrk(Axk+1 − yk+1), with ξk in a compact
subset of the open interval ]0, 2[ (see for example [20; 2012, proposition 11]). The compati-
bility of this flexibility with our analysis has not been explored.

5. The stopping criterion in step 3 is only valid if the QP (1.1) is feasible, since otherwise
Axk+1 = yk+1 ∈ [l, u] cannot be satisfied. The proposed stopping criterion is based on the
fact that, when the QP is feasible, a pair (xk+1, yk+1) satisfying (1.18) at this stage of the
algorithm is necessarily a solution to (1.4). This stopping criterion will be modified for dealing
with infeasible problems in the revised AL algorithm presented in section 4.2.

6. The update of the augmentation parameter in step 4 largely depends on the implementation.
The rule proposed in [16] will be adapted to infeasible problems in the revised AL algorithm
of section 4.2.

The AL algorithm has a long history that cannot be retraced here. The minimum is certainly
to mention that it was introduced for equality constrained nonlinear optimization problems by
Hestenes and Powell [32, 41; 1969], and extended to inequality constrained problems by Rock-
afellar, Buys, Arrow, Gould, and Howe [46, 10, 48, 1, 49; 1971-74]. More recently, its properties
when it solves more structured problems have been investigated: linear optimization problems are
considered in [40, 30; 1972-1992], quadratic optimization problems in [17, 19, 18, 16, 15, 25; 1999-
2008], SDP problems in [36, 37, 31, 59; 2004-2010], and cone constrained optimization problems
in [52; 2004].

2 Problem structure

2.1 On quadratic optimization

We quote in this section two results on a quadratic optimization problem, slightly more general
than (1.1), namely

inf
x∈X

q(x), (2.1)

where q is the quadratic function (1.2) and X is a convex polyhedron. This generality simplifies the
proof of proposition 2.2. Both results are useful in the subsequent analysis. The first one recalls
the famous characterization of the existence of a solution established by Frank and Wolfe [24;
1956, appendix (i)], which does not require convexity. The second one requires the convexity of
the objective q (see remark 2.3 (ii)) and characterizes the unboundedness of (1.1) in terms of the
existence of a direction d that has interesting theoretical and numerical properties.

We denote by val(P ) ∈ R := R∪{−∞,+∞} the optimal value of an optimization problem (P ),
with the convention that val(P ) = +∞ if (P ) is an infeasible minimization problem. We say that
a feasible minimization problem (P ) is unbounded if val(P ) = −∞ and bounded if val(P ) > −∞.

Lemma 2.1 (solvable QP) The (non necessarily convex) quadratic optimization prob-

lem (1.1) has a solution if and only if val((1.1)) ∈ R (i.e., problem (1.1) is feasible and

bounded).
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The augmented Lagrangian algorithm on an infeasible convex QP 8

Lemma 2.2 (unbounded convex QP) Consider problem (2.1) with a convex objective q
and a nonempty feasible set X. Then this problem is unbounded if and only if there is a

direction d ∈ R
n such that

gTd < 0, Hd = 0, and d ∈ X∞. (2.2)

Proof. [⇐] It is clear that the conditions (2.2) imply the unboundedness of the feasible prob-
lem (1.1) since, given an arbitrary point x0 ∈ X 6= ∅, the points xk = x0+kd with k ∈ N are in X
(definition of X∞) and q(xk) = q(x0) + k(gTd) → −∞ when k → ∞.

[⇒] When the problem is unbounded, there is a sequence {xk} of feasible points such that
q(xk) → −∞. By the continuity of q, the sequence {xk} must be unbounded. Extracting a
subsequence if necessary, one can assume that xk/‖xk‖ converges to some unit norm vector v.
This one necessarily satisfies

gTv 6 0, Hv = 0, and v ∈ X∞. (2.3)

Indeed, the first condition is obtained by taking the limit in gTxk/‖xk‖ 6 q(xk)/‖xk‖ [since H < 0]
6 γ/‖xk‖ [since q(xk) 6 γ for some constant γ ∈ R]; the second condition is obtained by taking the
limit in q(xk)/‖xk‖2 6 γ/‖xk‖2, which yields vTHv 6 0 and subsequently Hv = 0 by the positive
semidefiniteness of H ; and the third condition results from xk ∈ X , ‖xk‖ → ∞, and xk/‖xk‖ → v,
which imply that v ∈ X∞ [2; definition 2.1.2].

We pursue by induction on the dimension of X (i.e., the dimension of its affine hull affX),
taking inspiration from the proof of lemma 2.1 by Franck and Wolfe [24; 1956, appendix (i)]. Let
V be the vector subspace parallel to affX and denote by w a vector such that affX = w + V . It
is clear that v ∈ V .

r If dimX = 1, (2.2) is satisfied with d = v, since otherwise gTv would vanish by (2.3) and, for
any x ∈ X , q(x) would be the constant gTw + 1

2w
THw, contradicting the fact that problem

(1.1) is unbounded.

r Suppose now that the conditions in (2.2) hold when dimX < p for some p ∈ [2 :n] and let us
prove these conditions when dimX = p. If gTv < 0, (2.3) shows that (2.2) is satisfied with
d = v. Otherwise gTv = 0 and the function q is constant along the direction v (same argument
as in the first point). There are now two complementary subcases to consider.

If x′
k := xk − (vTxk)v ∈ X for a subsequence of indices K ⊆ N, then x′

k ∈ X ′ := X ∩ {v}⊥
(since ‖v‖ = 1). Furthermore, q(x′

k) = q(xk) → −∞, so that the quadratic problem consisting
of minimizing q on the convex polyhedron X ′ is unbounded. Since dimX ′ < dimX = p, the
induction assumption implies that there exists a direction d such that gTd < 0, Hd = 0, and
d ∈ (X ′)∞. Now, X ′ ⊆ X implies that (X ′)∞ ⊆ X∞, so that (2.2) is proven with that d.

If x′
k /∈ X for k larger than some index k1, then, for each k > k1, there is an αk ∈ R such that

x′′
k := xk + αkv is on the boundary of X of (1.1). Since that boundary is formed of a finite

number of convex polyhedral sets Xi of dimension < p and since q(x′′
k) = q(xk) → −∞, one of

these polyhedron, say Xj , must contain an unbounded subsequence of {x′′
k} that again satisfies

q(x′′
k) → −∞. The conclusion now follows, like before, from the induction assumption since

dimXj < p and X∞
j ⊆ X∞. ✷

If the convex polyhedron reads X := {x : Ax ∈ [l, u]}, like in problem (1.1), there holds
X∞ = {d : Ad ∈ [l, u]∞} and the conditions (2.2) becomes

gTd < 0, Hd = 0, and Ad ∈ [l, u]∞. (2.4)

RR n° 8583



The augmented Lagrangian algorithm on an infeasible convex QP 9

A direction satisfying (2.4) is called in this paper an unboundedness direction or a direction of

unboundedness.

Remarks 2.3 (i) Lemma 2.2 no longer holds if the feasible set is an arbitrary closed convex set.
For example inf{x1 : (x1, x2) ∈ X} = −∞ if X = {x ∈ R

2 : x2 > x2
1}, but X∞ = R+{d}, where

d = (0, 1), while gTd = 0.
(ii) Lemma 2.2 no longer holds if q is nonconvex. For example inf{−x2 : x ∈ R} = −∞ but

g = 0 so that there is no direction d such that gTd < 0.
(iii) If we apply lemma 2.2 to the feasible problem (1.15) with rk ≡ r > 0 and λk ≡ λ, we

see that it has no solution (or, equivalently, problem (1.15) is unbounded) if and only if there is a
direction (dx, dy) ∈ R

n × R
m such that

[
g +Hx+ATλ+ rAT(Ax− y)

]T
dx −

[
λ+ r(Ax − y)

]T
dy < 0,

(
H + rATA −rAT

−rA rI

)(
dx
dy

)
= 0, and dy ∈ [l, u]∞.

These conditions are equivalent to (2.4) and (dx, dy) = (d,Ad). ✷

2.2 The dual function

We introduce a Lagrangian of problem (1.4) by dualizing its equality constraints. It is the function
ℓ : Rn × R

m × R
m 7→ R defined at (x, y, λ) by

ℓ(x, y, λ) = q(x) + λT(Ax− y). (2.5)

The dual function δ : Rm → R associated with problem (1.4) is then defined at λ by

δ(λ) := − inf
(x,y)∈Rn×[l,u]

ℓ(x, y, λ). (2.6)

With the minus sign in front of the infimum, this function is convex, closed, and does not take the
value −∞. Therefore,

δ ∈ Conv(Rm) ⇐⇒ dom δ 6= ∅. (2.7)

For r > 0, the Moreau-Yosida regularization of the dual function δ [38, 33; 1965] is the function
δr : R

m → R defined at λ ∈ R
m by

δr(λ) = inf
µ∈Rm

(
δ(µ) +

1

2r
‖µ− λ‖2

)
. (2.8)

A fundamental tool to study the properties of the AL algorithm is the following beautiful result
by Rockafellar [47; 1973], which is particularized below to the present context; this result is indeed
also valid for general convex optimization problems.

Lemma 2.4 (AL and proximality) Suppose that the dual function δ defined by (2.6) is in

Conv(Rm) and let r > 0. Then δr(λ) defined by (2.8) verifies

δr(λ) = − inf
(x,y)∈Rn×[l,u]

ℓr(x, y, λ), (2.9)

where ℓr is the augmented Lagrangian defined in (1.5). Furthermore, the unique solution λ+

to the problem in the right hand side of (2.8) is linked to an arbitrary solution (x+, y+) to the
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problem in the right hand side of (2.9) by

λ+ = λ+ r(Ax+ − y+) and y+ −Ax+ ∈ ∂δ(λ+).

The unique solution λ+ to the problem in the right hand side of (2.8) is called the proximal point

of λ associated with δ and r > 0 and is denoted in this paper by

proxδ,r(λ) := argmin
µ∈Rm

(
δ(µ) +

1

2r
‖µ− λ‖2

)
. (2.10)

Hence, according the lemma 2.4, the multipliers λk generated by the AL algorithm satisfy

λk+1 = proxδ,rk(λk) and sk+1 ∈ ∂δ(λk+1), (2.11)

where sk is defined by (1.13). As a result, the multiplier λk+1 computed by the AL algorithm is
uniquely determined, although the AL subproblem in (1.6) may have several solutions (xk+1, yk+1).
These facts alone show the importance of the dual function in the analysis of the AL algorithm.

To be comprehensive and clear up any ambiguity, we feel it necessary to restate and proof
proposition 3.3 from [16] in the present context, in which problem (1.1) may have no solution
(infeasibility or unboundedness); in places, we use a different argument (i.e., lemma 2.2), which
makes the proof shorter. The proposition establishes a link between properties of three different
objects: the nonemptiness of the dual function domain, the solvability of the feasible shifted
quadratic problems, and the solvability of the AL subproblems.

Proposition 2.5 (three expressions of the AL subproblem solvability) Let be given

s ∈ S := [l, u]+R(A), λ ∈ R
m, and r > 0. Then the following three properties are equivalent:

(i) dom δ 6= ∅,

(ii) the feasible shifted quadratic problem (1.10) has a solution,

(iii) the augmented Lagrangian subproblem in (2.9) has a solution.

Proof. [(i) ⇒ (iii)] Since dom δ 6= ∅, δ ∈ Conv(Rm) by (2.7), so that the optimal value δr(λ) of
the problem in the right hand side of (2.8) is finite. By lemma 2.4, the optimal value of problem
in (2.9) is also finite. As a feasible bounded convex quadratic problem, the problem in (2.9) must
have a solution (lemma 2.1).

[(iii) ⇒ (ii)] We proceed by contradiction. Suppose that the feasible problem (1.10) has no
solution. Then this problem is unbounded (lemma 2.1) and there is a direction d ∈ R

n such that
(2.4) holds (lemma 2.2 and [l − s, u − s]∞ = [l, u]∞). Now, by applying lemma 2.2 to problem
(1.15), we see that the existence of such a direction d implies that problem (1.15) has no solution
(remark 2.3 (iii)).

[(ii) ⇒ (i)] Let (x, (λ
l
, λ

u
)) be a primal-dual solution to the feasible shifted problem (1.10),

where λ
l
[resp. λ

u
] is the multiplier associated with the lower [resp. upper] bound. Then ((x,Ax+

s), (λ
l
, λ

u
)) is a primal-dual solution to the optimization problem in (2.6) with λ = λ

u−λ
l
. Hence

δ 6≡ +∞. ✷

Since s ∈ S, λ ∈ R
m, and r > 0 are common to all the conditions (i)–(iii) of proposition 2.5

and since condition (i) does not depend on that data, once a shifted quadratic problem (1.10) has
a solution for some s ∈ S, it has a solution for any s ∈ S. For the same reason, once an augmented
Lagrangian subproblem in (2.9) has a solution for some λ ∈ R

m and r > 0, it has a solution
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whatever are λ ∈ R
m and r > 0. Note also that the result no longer holds when r = 0: for exemple

(i) may not imply (iii) when r = 0 (dom δ 6= ∅ does not necessarily imply that dom δ = R
m).

We can now precise the general assumption made throughout this paper in the form of three
equivalent properties. This equivalence is a consequence of proposition 2.5.

Assumption 2.6 The following equivalent properties hold:

dom δ 6= ∅ [this is equivalent to δ ∈ Conv(Rm)], (2.12)

∃ s ∈ R
m : (1.10) has a solution, (2.13)

∀ s ∈ S : (1.10) has a solution. (2.14)

In this paper, we are interested in infeasible problems of the form (1.1). The following propo-
sition gives an expression of feasibility in terms of the dual function (2.6), which is instructive to
understand how the AL behaves in case it tries to solve an infeasible problem (see the comment
after the proof).

Proposition 2.7 (feasibility and dual function) Suppose that assumption 2.6 holds.

Then, the following two properties are equivalent:

(i) problem (1.1) is feasible,

(ii) the dual function δ is bounded below.

Proof. [(i) ⇒ (ii)] When problem (1.1) is feasible, there is some x0 such that y0 := Ax0 ∈ [l, u].
It follows from the definition (2.6) of δ that, for any λ ∈ R

m, δ(λ) > −ℓ(x0, y0, λ) = −q(x0); hence
δ is bounded below by −q(x0) ∈ R.

[(ii) ⇒ (i)] Since dom δ 6= ∅ by (2.12), δ(λ) ∈ R for some λ ∈ R
m. On the other hand, since s̄

defined by (1.11) is the projection of 0 on S := [l, u] +R(A), there holds

∀(x, y) ∈ R
n × [l, u] : (y −Ax)Ts̄ > ‖s̄‖2.

Then, for all t > 0:

δ(λ− ts̄) = − inf
(x,y)∈Rn×[l,u]

[
q(x) + (λ− ts̄)T(Ax − y)

]
6 δ(λ) − t‖s̄‖2.

Since δ is bounded below, there must hold s̄ = 0, i.e., problem (1.1) is feasible. ✷

From proposition 2.7, from the proximal interpretation of the AL algorithm given by lemma 2.4,
and from the properties of the proximal algorithm, one readily deduces that, for an infeasible
problem (1.1) and for a sequence of augmentation parameter rk satifying

∑
k>0 rk = ∞, the

sequence {λk} generated by the AL algorithm is unbounded and δ(λk) → −∞. This observation
gives a first picture on the behavior of the AL algorithm when it is used to solve an infeasible
problem. More can be said.

The next two propositions aim at highlighting the link between the set S of feasible shifts and
the range of the dual function subdifferential, denoted R(∂δ). These results are “almost valid”
for general convex problems, using similar arguments, but with nuances whose description goes
beyond the scope of this paper. To avoid making the presentation too cumbersome, we have
preferred staying in the domain of convex quadratic optimization, although several arguments are
also valid for more general convex problems. In the case of convex quadratic problems,

S = R(∂δ), (2.15)

provided assumption 2.6 holds. This identity is surprising, since S only depends on the objects
defining the constraint set (here A, l, and u), while δ also depends on the quadratic objective q.
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The validity of this identity for a general convex problem is briefly discussed after proposition 2.9
below.

We prove (2.15) by means of the value function v : Rm → R of problem (1.1), which is defined
at s ∈ R

m by
v(s) := inf {q(x) : Ax + s ∈ [l, u], x ∈ R

n}. (2.16)

The prominent role we give to v in getting (2.15) comes from the fact that, on the one hand, it
has a link with S through the identity

dom v = S,
which is easily verified by using the expression (1.9) of S. On the other hand, the value function
has also a link with the dual function. Indeed, in convex optimization, it is known and easy to see
that the dual function (2.6) can be introduced from the value function by

δ = v∗, (2.17)

where v∗ denotes the conjugate function of v for the Euclidean scalar product; see [50; theorem 7]
or just use the definitions of v, δ, and the conjugate. For a convex quadratic optimization problem
satisfying assumption 2.6, the link between v with δ can be reinforced. Taking the conjugate
of both sides of (2.17), one gets δ∗ = v∗∗. We show in proposition 2.8 below that δ∗ = v or,
equivalently, that v ∈ Conv(Rm). As highlighted by the proof, this identity rests on the fact that
v(s) is obviously the optimal value of the shifted quadratic optimization problem (1.10), that δ∗(s)
is the optimal value of the Lagrangian dual of the same problem, and that there is no duality gap.
In other words, the identity δ∗ = v is a compact way of expressing that, whatever is s ∈ R

m,
problem (1.10) and its dual present no duality gap.

It will be useful to introduce an auxiliary vector of variables y ∈ R
m in the shifted quadratic

optimization problem (1.10), which then reads




infx,y q(x)
Ax+ s = y
l 6 y 6 u.

(2.18)

Proposition 2.8 (no duality gap) If assumption 2.6 holds, then δ∗ = v ∈ Conv(Rm).

Proof. By assumption (2.12), δ ∈ Conv(Rm), so that δ∗ ∈ Conv(Rm) [45; theorem 12.2]. It
remains to prove that δ∗ = v.

Let s ∈ R
m. From its very definition (2.16), v(s) is the optimal value of problem (2.18) and

therefore also the optimal value of the problem obtained by dualizing its equality constraint:

v(s) = inf
(x,y)∈Rn×[l,u]

sup
λ∈Rm

(
q(x) + λT(Ax + s− y)

)
.

The min-max dual of that problem reads

sup
λ∈Rm

inf
(x,y)∈Rn×[l,u]

(
q(x) + λT(Ax + s− y)

)

= sup
λ∈Rm

[
sTλ+ inf

(x,y)∈Rn×[l,u]

(
q(x) + λT(Ax − y)

)]

= sup
λ∈Rm

[
sTλ− δ(λ)

]
[definition of δ]

= δ∗(s) [definition of δ∗].

By weak duality, δ∗(s) 6 v(s). We show that equality holds by considering two mutually exclusive
cases, v(s) = +∞ and v(s) ∈ R, one of which must occur (since by assumption 2.6, v(s) > −∞).
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r If v(s) = +∞, then s /∈ S. If ŝ is the projection of s on S = [l, u] +R(A), then µ := ŝ− s 6= 0
and

∀(x, y) ∈ R
n × [l, u] : (y −Ax)Tµ > ŝTµ.

Therefore, for λ ∈ dom δ (which is nonempty by assumption 2.6) and t > 0:

δ(λ− tµ) = − inf
(x,y)∈Rn×[l,u]

[
q(x) + (λ− tµ)T(Ax − y)

]
6 δ(λ) − t ŝTµ.

Finally,

δ∗(s) = sup
λ′∈Rm

sTλ′ − δ(λ′) > sT(λ− tµ)− δ(λ− tµ) > sTλ− δ(λ) + t‖µ‖2.

Since t > 0 is arbitrary and µ 6= 0, δ∗(s) = +∞.

r If v(s) ∈ R, then problem (2.18) has a solution (x, y) ∈ R
n × [l, u] (lemma 2.1). That problem

also has an optimal multiplier λ associated with the affine constraint Ax + s = y. Then,
the pair ((x, y), λ) is a saddle-point of the Lagrangian ((x, y), λ) 7→ q(x) + λT(Ax + s − y)
on (Rn × [l, u])× R

m, which implies that there is no duality gap: δ∗(s) = v(s) by the above
computation. ✷

Note that when assumption 2.6 does not hold, then δ ≡ +∞ and δ∗ ≡ −∞, while v(s) = +∞
when s /∈ S; therefore δ∗ 6= v on the complementary set of S (both δ∗ and v take the value −∞
on S).

We now show the identity (2.15), together with some equivalences, when assumption 2.6 holds.
These equivalences, giving various expressions of the fact that λ is a dual solution to problem (2.18),
are standard and will be useful below.

Proposition 2.9 (dual subdifferential and feasible shifts) Suppose that assumption 2.6
holds. Let s and λ ∈ R

m. Then, the following properties are equivalent

(i) s ∈ ∂δ(λ),
(ii) λ ∈ ∂v(s),
(iii) s ∈ S and any solution to problem (2.18) minimizes the Lagrangian ℓ(·, ·, λ) on R

n×[l, u].
(iv) there is a feasible pair for problem (2.18) that minimizes the Lagrangian ℓ(·, ·, λ) on

R
n × [l, u].

In addition, (2.15) holds.

Proof. Before proving the equivalences, let us recall that δ ∈ Conv(Rm) by (2.12), so that

s ∈ ∂δ(λ) ⇐⇒ δ(λ) + δ∗(s) = sTλ. (2.19)

[(i) ⇔ (ii)] Since δ ∈ Conv(Rm) by (2.12), s ∈ ∂δ(λ) if and only if λ ∈ ∂δ∗(s) [45; theorem
23.5]. By proposition 2.8, the property s ∈ ∂δ(λ) is equivalent to λ ∈ ∂v(s).

[(i), (ii) ⇒ (iii)] Let s ∈ ∂δ(λ). By (ii), s ∈ dom v = S. Now, let (xs, ys) be an arbitrary
solution to (2.18). Then

ℓ(xs, ys, λ) = q(xs)− sTλ [Axs + s = ys]

= v(s)− sTλ [definition of v]

= δ∗(s)− sTλ [proposition 2.8]

= −δ(λ) [(2.19) and s ∈ ∂δ(λ)]

= inf
(x,y)∈Rn×[l,u]

ℓ(x, y, λ) [definition of δ in (2.6)].

RR n° 8583



The augmented Lagrangian algorithm on an infeasible convex QP 14

This shows the minimality property of (xs, ys).
[(iii) ⇒ (iv)] This is a clear consequence of the fact that problem (2.18) has a solution when

s ∈ S and assumption 2.6 holds.
[(iv) ⇒ (i)] Let (xs, ys) be a feasible point of problem (2.18) with the minimality property

mentioned in (iv). Then for any µ ∈ R
m:

sTµ− δ(µ)

6 q(xs) + µT(Axs − ys + s) [definition of δ in (2.6)]

= q(xs) + λT(Axs − ys + s) [feasibility of (xs, ys), implying Axs + s = ys]

= sTλ+ inf
(x,y)∈Rn×[l,u]

q(x) + λT(Ax − y) [minimality property of (xs, ys)]

= sTλ− δ(λ) [definition of δ in (2.6)].

Therefore λ minimizes µ ∈ R
n 7→ δ(µ)− sTµ, which implies that s ∈ ∂δ(λ).

[(2.15)] The inclusion R(∂δ) ⊆ S was shown during the proof of “(i), (ii) ⇒ (iii)”. To prove
S ⊆ R(∂δ), let s ∈ S. By assumption 2.6, problem (2.18) has a primal-dual solution ((xs, ys), λs).
Hence (xs, ys) minimizes (x, y) 7→ ℓ(x, y, λs) + sTλs on R

n × [l, u] and, therefore, also minimizes
(x, y) 7→ ℓ(x, y, λs) on R

n × [l, u]. By the implication (iv) ⇒ (i), s ∈ ∂δ(λs); hence s ∈ R(∂δ). ✷

A proof of (2.15) can almost be obtained by using general arguments. Note first that for any
function δ ∈ Conv(Rm), not necessarily a dual function, there holds

ri(dom δ∗) ⊆ R(∂δ) ⊆ dom δ∗,

where “ri” denotes the relative interior [45; p. 227]. Taking the closure, one gets clR(∂δ) =
cl dom δ∗. Now, for the dual function δ of problem (1.1), we have by proposition 2.8, clR(∂δ) =
cl dom v = clS, which would yield (2.15) if we knew that R(∂δ) is close (in our case, S is clearly
closed as the sum of two convex polyhedra).

Example 2.10 (S not closed) For non-polyhedral constraints, S may not be closed. Consider
indeed the nonempty constraint set {x ∈ R : ex 6 1}. Then, the set of feasible shifts reads
S := {s ∈ R : there exists an x such that ex + s 6 1} = {s ∈ R : s < 1}, which is open. ✷

Example 2.11 (strict inclusion R(∂δ) ⊂ S) 1. For the convex quadratic problem (1.1) with-
out assumption 2.6, the dual function δ ≡ +∞. Therefore R(∂δ) = ∅, while S 6= ∅.

2. For a non-quadratic problem, one can have the situation in which S is closed but strictly
larger than R(∂δ). Consider the problem in the single variable x ∈ R: inf{x : x2 6 0}.
Then S := {s ∈ R : x2 + s 6 0 for some x ∈ R} = {s ∈ R : s 6 0}. The dual function
λ ∈ R 7→ δ(λ) := − inf{x+ λ(x2 − y) : (x, y) ∈ R× R−} verifies

δ(λ) =

{
1/(4λ) if λ > 0
+∞ otherwise,

and ∂δ(λ) =

{
{−1/(4λ2)} if λ > 0
∅ otherwise.

Hence R(∂δ) = {s ∈ R : s < 0}, which is strictly smaller than S. This example and the condi-
tions (iii) and (iv) of proposition 2.9 highlight the benefit of a dual solution to problem (2.18),
which does not exist here when s = 0 (the zero feasible shift is precisely the one that is not in
R(∂δ)). ✷

The global linear convergence of the AL algorithm is based on the following quasi-global error
bound on the dual solution set

SD := {λ ∈ R
m : 0 ∈ ∂δ(λ)} (2.20)
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of the feasible QP (1.4) [16; proposition 4.4].

Lemma 2.12 (quasi-global error bound) Consider problem (1.4) with H < 0 and suppose

that it has a solution. Then

for any bounded set B ⊆ R
m, there is an L > 0, such that

∀λ ∈ SD + B, ∀ s ∈ ∂δ(λ) : dist(λ,SD) 6 L ‖s‖. (2.21)

We use the word quasi-global to qualify this error bound since the constant L in (2.21) depends
on the bounded set B and may be infinite (i.e., may not exist) if B = R

m. This is the case for
instance for the feasible problem infx∈R{0 : −1 6 0x 6 1} [16; example 4.3], for which the dual
function is λ ∈ R 7→ δ(λ) = |λ|, so that SD = {0} and the last inequality in (2.21) reads |λ| 6 L,
which, obviously, cannot hold for all λ ∈ R. The necessity to use a bounded set B will imply no
restriction on the global linear convergence of theorem 3.4, since it will be possible to choose B
such the λ0 ∈ SD + B implies that the next dual iterates λk ∈ SD + B (proof of lemma 3.3). Now,
when problem (1.1) is infeasible, SD = ∅, but lemma 2.21 will be used with the dual solution
set S̃D of the closest feasible problem, introduced in section 2.4.

2.3 The smallest feasible shift

The smallest feasible shift s̄ is defined by (1.11) as the smallest element in S = [l, u] +R(A) for
the Euclidean norm. Clearly, s̄ is perpendicular to R(A), which reads

ATs̄ = 0. (2.22)

The next lemma gives conditions equivalent to the fact that a pair (x, y) realizes at best the
constraint Ax = y, in the ℓ2-norm sense:

min
(x,y)∈Rn×[l,u]

‖Ax− y‖. (2.23)

The interest of the conditions in point (ii) is that they do not make use of the vector s̄, which is
unknown when the AL algorithm is trying to solve (1.1). These conditions (ii) are a first step in
the design of a stopping criterion of the revised version of the AL algorithm, given in section 4.2.
The next step is in proposition 2.18.

0

R(A)

Ax

[l, u]

y

s̄
S := [l, u] +R(A)

Figure 2.1: Illustration of lemma 2.13
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Lemma 2.13 The following properties of (x, y) ∈ R
n × R

m are equivalent:

(i) y −Ax = s̄ and y ∈ [l, u],
(ii) AT(Ax− y) = 0 and P[l,u](Ax) = y,
(iii) (x, y) is a solution to (2.23).

Proof. [(i) ⇒ (ii)] Since ATs̄ = 0 by (2.22), the first identity is a clear consequence of y−Ax = s̄
in (i). Now, since s̄ is the projection of zero on [l, u] +R(A), there holds

s̄T(s− s̄) > 0, ∀ s ∈ [l, u] +R(A).

Choosing s = y ∈ [l, u], substituting s̄ = y −Ax, and using the identity ATs̄ = 0 yield

(y −Ax)T(y − y) > 0, ∀ y ∈ [l, u],

which shows the second identity.
[(ii) ⇒ (iii)] Using the function ϕ : Rn × R

m → R defined at (x, y) ∈ R
n × R

m by ϕ(x, y) =
1
2‖Ax− y‖2, the conditions in (ii) can also be written

∇xϕ(x, y) = 0 and ∇yϕ(x, y)
T(y − y) > 0, ∀ y ∈ [l, u].

These are the optimality conditions of the convex problem (2.23). Hence (x, y) is a solution to
that problem.

[(iii) ⇒ (i)] This is because problem (2.23) is equivalent to problem inf{‖s‖ : y − Ax = s,
(x, y) ∈ R

n × [l, u]} = inf{‖s‖ : s ∈ S}, whose solution is s̄. Hence (i). ✷

2.4 The closest feasible problem

Recall that the closest feasible problem is the relaxation (1.12) of the possibly infeasible problem
(1.1). Using an auxiliary vector y ∈ R

m, it can be written in one of the two forms




inf(x,y) q(x)
Ax + s̄ = y
l 6 y 6 u.

or





inf(x,y) q(x)
Ax = y
l − s̄ 6 y 6 u− s̄.

(2.24)

That problem is therefore feasible. Of course, if the original problem (1.1) is feasible, s̄ = 0 and
(2.24) is identical to (1.4). Problem (2.24) is the one that the AL algorithm will actually solve,
when it is triggered to solve (1.4). This section gives some properties of that problem.

The dual function δ̃ : Rm → R associated to the closest feasible problem takes at λ ∈ R
m the

value

δ̃(λ) = − inf
(x,y)∈Rn×[l−s̄,u−s̄]

q(x) + λT(Ax− y) (2.25)

= − inf
(x,y)∈Rn×[l,u]

q(x) + λT(Ax + s̄− y) (2.26)

= δ(λ) − s̄Tλ. (2.27)

As a result
∂δ̃(λ) = ∂δ(λ)− s̄. (2.28)

We then define the set of dual solutions to problem (2.24) as follows

S̃D := {λ ∈ R
m : 0 ∈ ∂δ̃(λ)}. (2.29)
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Here are some other expressions of S̃D.

Lemma 2.14 (expressions of S̃D) When assumption 2.6 holds, S̃D is a nonempty closed

convex set, which also reads

S̃D = {λ ∈ R
m : s̄ ∈ ∂δ(λ)} = ∂v(s̄). (2.30)

Proof. The first equality in (2.30) comes from (2.28) and the second comes from the equivalence
(i) ⇔ (ii) in proposition 2.9. Now, by (2.15), s̄ ∈ S implies the existence of some λ ∈ R

m such
that s̄ = ∂δ(λ), so that S̃D 6= ∅. Since S̃D is the set of minimizers of the closed convex function δ̃,
it is closed and convex. ✷

The next proposition will be useful to identify some displacement decreasing the distance to S̃D.
Recall that the Hadamard product of two vectors u and v ∈ R

m is the vector, denoted u q v ∈ R
m,

having its ith component defined by
(u q v)i = uivi. (2.31)

Lemma 2.15 (s̄ and S̃D) Suppose that assumption 2.6 holds and let λ ∈ S̃D. Then

(i) s̄ qλ 6 0,
(ii) if s̄ q (λ+ αs̄) 6 0 for some α ∈ R, then λ+ αs̄ ∈ S̃D,

(iii) −s̄ ∈ S̃∞
D
.

Proof. [Preliminaries] By s̄ ∈ S and assumption 2.6, the closest feasible problem (2.24) has a
solution, say (x, y). By the assumption λ ∈ S̃D, the expression (2.30) of S̃D shows that s̄ ∈ ∂δ(λ).
Now, the implication (i) ⇒ (iii) of proposition 2.9 indicates that (x, y) minimizes the Lagrangian
ℓ(·, ·, λ) on R

n × [l, u].

[(i)] Suppose that s̄i > 0 for some index i (the reasoning is similar when s̄i < 0 and there is
nothing to prove when s̄i = 0).

r We first show, by contradiction, that yi = li. Since s̄ = argmin{‖s‖ : s ∈ [l, u] +R(A)},

(y −Ax− s̄)Ts̄ > 0, ∀ (x, y) ∈ R
n × [l, u]. (2.32)

If yi > li, y− εei = Ax+ s̄− εei is in [l, u] for some ε > 0. Taking y = Ax+ s̄− εei and x = x
in (2.32) yields −εs̄i > 0, a contradiction. Hence yi = li.

r Now since (x, y) minimizes the Lagrangian ℓ(·, ·, λ) on R
n× [l, u] and since l < u, the fact that

yi = li implies λi 6 0. We have shown that s̄iλi 6 0.

[(ii)] We have seen that (x, y) minimizes the Lagrangian ℓ(·, ·, λ) on R
n × [l, u]. Suppose that

α ∈ R is such that s̄ q (λ + αs̄) 6 0. The implication (iv) ⇒ (i) of proposition 2.9 tells us that to
prove that λ+αs̄ ∈ S̃D, which is equivalent to s̄ ∈ ∂δ(λ+αs̄) by (2.30), we only have to show that
(x, y) minimizes

(x, y) 7→ ℓ(x, y, λ+ αs̄) = q(x) + (λ+ αs̄)T(Ax − y)

on R
n × [l, u]. By (2.22), the minimization in x is not affected by the new term αs̄. As for the

minimization in yi (the minimization in y can be done component by component), we only consider
the case when s̄i > 0 (the case s̄i < 0 is similar and, when s̄i = 0, the term in yi of ℓ(x, y, λ+αs̄) is
the same as the one of ℓ(x, y, λ) so that yi is still a minimizer of yi 7→ ℓ(x, y, λ+αs̄) on [li, ui]). By
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the proof of (i), we know that yi = li in that case, so that it is enough to show that (λ+αs̄)i 6 0,
which is indeed verified since s̄ q (λ+ αs̄) 6 0 by assumption.

[(iii)] Let α > 0. By point (i), s̄ q(λ−αs̄) 6 −α(s̄ qs̄) 6 0. Therefore, by point (ii), λ−αs̄ ∈ S̃D

for all α > 0, meaning that −s̄ ∈ S̃∞
D
. ✷

The example below shows that, if S̃∞
D

contains the half line −R+s̄ (point (iii) of the previous
proposition), it is not necessarily reduced to it.

Example 2.16 (S̃∞

D
can be an orthant) For the trivial optimization problem with n = 1, m =

2, g = 0, H = 0, A = 0, l = (−∞,−∞), and u = (−1,−1), one finds s̄ = u by the definition (1.11)
of s̄ and δ̃ = IR2

+
by the definition (2.26) of δ̃, so that S̃D = R

2
+ = S̃∞

D
. ✷

We recall that the prox operator is defined in (2.10).

Lemma 2.17 (distance to S̃D) Suppose that assumption 2.6 holds and let λ ∈ R
m. Then

the following properties hold:

(i) dist(λ− αs̄, S̃D) 6 dist(λ, S̃D), when α > 0,
(ii) proxδ,r(λ) = proxδ̃,r(λ− rs̄),

(iii) dist(proxδ,r(λ), S̃D) 6 dist(λ, S̃D).

Proof. [(i)] Let λ̃ be the projection of λ on the nonempty closed convex set S̃D (lemma 2.14).
For α > 0, λ̃− αs̄ ∈ S̃D (point (iii) of lemma 2.15), so that

dist(λ− αs̄, S̃D) 6 ‖(λ− αs̄)− (λ̃ − αs̄)‖ = ‖λ− λ̃‖ = dist(λ, S̃D).

[(ii)] Let µ := proxδ̃,r(λ−rs̄). Then, 0 ∈ ∂δ̃(µ)+ 1
r [µ−(λ−rs̄)], so that there is some s̃ ∈ ∂δ̃(µ)

such that
µ = λ− r(s̃ + s̄).

Now s̃+ s̄ ∈ ∂δ̃(µ) + s̄ = ∂δ(µ) by (2.28), so that µ := proxδ,r(λ).
[(iii)] By (ii),

dist
(
proxδ,r(λ), S̃D

)
= dist

(
proxδ̃,r(λ − rs̄), S̃D

)
. (2.33)

Now, since S̃D = argmin δ̃ and a proximal step decreases the distance to the minimizer set (a
standard property in proximality), there holds

dist
(
proxδ̃,r(λ− rs̄), S̃D

)
6 dist(λ− rs̄, S̃D). (2.34)

The inequality in (iii) is now obtained by combining (2.33), (2.34), and (i). ✷

Another way of viewing point (ii) is to observe that it tells us that the proximal step from λ to λ+

on λ 7→ δ(λ) = δ̃(λ) + s̄Tλ is decomposed into the sum of the proximal step on the linear function
λ → s̄Tλ, from λ to λ − rs̄, and the proximal step on the convex function δ̃, from λ − rs̄ to λ+.
The linearity of the first function is important to have that decomposition.

The next characterization of a solution to the closest feasible problem (2.24) is used in the
stopping criterion of the revised version of the AL algorithm, given in section 4.2. We further
discuss this matter after the proof of the proposition.
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Proposition 2.18 (optimality conditions of the closest feasible problem) Let r > 0
and let ℓr be the augmented Lagrangian (1.5). Then (x, y) ∈ R

n × [l, u] is a solution to the

closest feasible problem (2.24) if and only if there is some λ ∈ R
m such that

(x, y) ∈ argmin
(x,y)∈Rn×[l,u]

ℓr(x, y, λ), (2.35)

AT(Ax − y) = 0, (2.36)

P[l,u](Ax) = y. (2.37)

Proof. Note that in both parts of the equivalence, assumption 2.6 holds. This is clearly the
case by (2.13) when the closest feasible problem has a solution. This is also the case by the
implication (iii) ⇒ (i) of proposition 2.5 and (2.12) when the augmented Lagrangian with r > 0
has a minimizer. Finally, it is also the case by (2.12) when the augmented Lagrangian with r = 0
(i.e., the Lagrangian) has a minimizer.

[Necessity] Since a solution (x, y) to the closest feasible problem (2.24) satisfies the constraints
of that problem, (2.36) and (2.37) hold by the implication (i) ⇒ (ii) of lemma 2.13. Now, by
(2.15), s̄ ∈ S implies the existence of some λ such that s̄ = ∂δ(λ). By the implication (i) ⇒ (iii)
of proposition 2.9, (x, y) minimizes the Lagrangian ℓ(·, ·, λ) on R

n × [l, u]:

q(x) + λ
T

(Ax− y) 6 q(x) + λ
T

(Ax − y), ∀ (x, y) ∈ R
n × [l, u]. (2.38)

Now, y − Ax ∈ S := [l, u] + R(A), so that ‖Ax − y‖ = ‖s̄‖ 6 ‖Ax − y‖ by the minimum norm
property of s̄ in (1.11). Using (2.38), we get for all (x, y) ∈ R

n × [l, u]:

q(x) + λ
T

(Ax− y) +
r

2
‖Ax− y‖2 6 q(x) + λ

T

(Ax − y) +
r

2
‖Ax− y‖2.

This is (2.35).
[Sufficiency] By the implication (ii) ⇒ (i) of lemma 2.13, (2.36) and (2.37) show that (x, y)

satisfies the constraints of the closest feasible problem (2.24). Now let (x, y) satisfy the constraints
of (2.24). Then (2.35) and Ax− y = Ax − y = −s̄ yield

q(x)− λ
T

s̄+
r

2
‖s̄‖2 6 q(x) − λ

T

s̄+
r

2
‖s̄‖2.

Hence q(x) 6 q(x), implying that (x, λ) is a solution to (2.24). ✷

Since at each iteration of the AL algorithm, in step 1 actually, the condition (2.35) is satisfied
with λk in place of λ, it makes sense to stop the AL iterations when conditions (2.36) and (2.37)
are approximately satisfied, namely when

AT(Axk+1 − yk+1) ≃ 0 and P[l,u](Axk+1)− yk+1 ≃ 0. (2.39)

For this reason, we take these last two conditions as stopping criterion in step 3 of the revised
version of the AL algorithm in section 4.2. Proposition 4.2 below will show by its points (ii) and
(iii) that they are eventually satisfied by the AL algorithm.

3 Global linear convergence

With the results presented in the previous section, one can now start the analysis of the convergence
of the AL algorithm when the considered QP may be infeasible. The notion of convergence will,
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of course, have to be redefined, since then the QP may have neither primal nor dual solution.
Nevertheless, section 3.2 will show that, when assumption 2.6 holds, the AL algorithm is able to
find a solution to the closest feasible problem (2.24) at a global linear speed.

Let us denote by {(xk, yk)} and {λk} the primal and dual sequences generated by the AL
algorithm.

3.1 Convergence

This section deals with monotonicity and convergence properties of the AL algorithm that can
be obtained without the use of an error bound of the dual solution set S̃D of the closest feasible
problem (1.12). The convergence result of point (iii) extends a little the one by Spingarn [57; 1987,
lemma 1] (see also the earlier contributions by Bruck and Reich [6, 44; 1977]), in the sense that
it does not assume that the penalty parameters rk are fixed to 1: the constraint values or dual
function subgradients

sk := yk −Axk

converge to the smallest feasible shift s̄, provided rk is bounded away from zero. As we shall see
in theorem 3.4, this convergence result prevails when the augmentation parameters rk are small.

Proposition 3.1 (convergence without error bound) Suppose that assumption 2.6
holds. Then

(i) the sequence {‖sk‖}k>1 is nonincreasing,

(ii) the sequence {dist(λk, S̃D)}k>0 is nonincreasing,

(iii) if rk is bounded away from zero, then sk → s̄.

Proof. [(i)] The inequality ‖sk+1‖ 6 ‖sk‖ is a standard property of the proximal algorithm and
can be obtained by writing

‖sk‖2 = ‖(sk − sk+1) + sk+1‖2 = ‖sk − sk+1‖2 + 2〈sk − sk+1, sk+1〉+ ‖sk+1‖2.

Observe now that the cross term in the right hand side is nonnegative by the monotonicity of ∂δ(·):

〈sk − sk+1, sk+1〉 =
1

rk
〈sk − sk+1, λk − λk+1〉 > 0,

since, by (2.11), sk ∈ ∂δ(λk) and sk+1 ∈ ∂δ(λk+1). Point (i) follows.

[(ii)] Recall that λk+1 = proxδ,rk(λk) (lemma 2.4) and apply point (iii) of lemma 2.17.

[(iii)] The inventive idea used in [57; 1987, lemma 1] is to compare the sequence {λk}k>0 with

a sequence {µk}k>0 in S̃D 6= ∅ (lemma 2.14) defined as follows:

µ0 ∈ S̃D and µk+1 = µk − rks̄ (for k > 0).

By point (iii) of lemma 2.15, {µk} ⊆ S̃D. Since λk+1 = λk − rksk+1 by (1.7), there holds

λk − µk = λk+1 − µk+1 + rk(sk+1 − s̄).

Now sk+1 ∈ ∂δ(λk+1), s̄ ∈ ∂δ(µk+1) by (2.30), and the monotonicity of ∂δ imply that 〈sk+1 − s̄,
λk+1 − µk+1〉 > 0. Therefore, taking the squared norm of both sides of the identity above and
neglecting the resulting cross term in the right hand side yield

‖λk − µk‖2 > ‖λk+1 − µk+1‖2 + r2k‖sk+1 − s̄‖2.
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Since the last term is nonnegative, the inequality shows that the nonnegative sequence {‖λk −
µk‖} is nonincreasing, hence converges. Therefore the same inequality implies that rk‖sk+1 − s̄‖
converges to zero. Since rk is bounded away from zero, sk → s̄. ✷

It will be shown in lemma 3.3, that dist(λk, S̃D) also tends to zero when rk is bounded away to
zero.

To extend the inequality (42) in [16], it would have been pleasant that ‖sk+1 − s̄‖ does not
exceed ‖sk − s̄‖, whatever is the index k and the augmentation parameter rk > 0. As shown by
the following example, however, it is not true that the sequence {‖sk − s̄‖}k>1 is nonincreasing for
small rk. For large rk, section 3.2 will show that this sequence is linearly decreasing.

Example 3.2 (non monotonicity of {‖sk − s̄‖}k>1) Consider the problem (1.1), in which
n = 1, m = 2, g = 0, H = 1, A = e (e is the vector of all ones in R

2), l = (−1, 2), and
u = (0, 3). The smallest feasible shift is s̄ = (−1, 1). Let the augmentation parameter be fixed
to an arbitrary (small) constant value r in the open interval ]0, (

√
2− 1)/2[ and let the initial

iterate be λ0 = r(l1, l2) = r(−1, 2). It is easier to compute the next two iterates λ1 and λ2 of
the AL algorithm as though they were generated by the proximal algorithm on the dual function
(lemma 2.4), which reads here

δ : λ ∈ R
2 7→ δ(λ) =

(
max
y∈[l,u]

yTλ

)
+

1

2
(eTλ)2.

r Since 0 = λ0−r(l1, l2) and (l1, l2) ∈ ∂δ(0) = [l, u], the next iterate is λ1 = 0, with s1 = (l1, l2) =
(−1, 2).

r To show that λ2, defined by λ2 := λ1 − rs2 = −rs2 for some s2 ∈ ∂δ(λ2), is the vector

λ2 = − r

1 + 2r

(
−2r
2 + 2r

)
,

we only have to prove that s2 := (−2r, 2 + 2r)/(1 + 2r) is in ∂δ(λ2). Since the first component
of λ2 is positive and the second is negative, the expression of the dual function above shows
that the function is differentiable at λ2 and that

∇δ(λ2) =

(
u1

l2

)
+ eeTλ2 =

(
0
2

)
− 2r

1 + 2r

(
1
1

)
= s2.

Now, ‖s1 − s̄‖ = 1 and ‖s2 − s̄‖ =
√
2/(1 + 2r), so that the inequality ‖s2 − s̄‖ 6 ‖s1 − s̄‖ fails for

the chosen small value of r. ✷

3.2 Linear convergence

This section presents convergence results that prevail when the augmentation parameters rk are
sufficiently large. The results depend on the error bound associated with the dual solution set S̃D,
derived from the one presented in lemma 2.12.

Lemma 3.3 (dist(λk, S̃D)) Suppose that assumption 2.6 holds. Then for any β > 0, there
exists an L > 0, such that dist(λ0, S̃D) 6 β implies that

∀ k > 1 : dist(λk, S̃D) 6 L ‖sk − s̄‖. (3.1)

RR n° 8583



The augmented Lagrangian algorithm on an infeasible convex QP 22

In particular, if rk is bounded away from zero, dist(λk, S̃D) → 0.

Proof. Since, by (2.14), the closest feasible problem (2.24) has a solution. The quasi-global error
bound of lemma 2.12 applied to the second form of the problem in (2.24) yields

for any bounded set B̃ ⊆ R
m, there is an L > 0, such that

∀λ ∈ S̃D + B̃, ∀ s̃ ∈ ∂δ̃(λ) : dist(λ, S̃D) 6 L ‖s̃‖. (3.2)

Let β > 0 and define B := βB, where B denotes the closed unit ball. Let L > 0 be the constant
given by (3.2). Assume now that dist(λ0, S̃D) 6 β. Then point (ii) of proposition 3.1 implies that
dist(λk, S̃D) 6 β for all k > 0, which can also be written λk ∈ S̃D +B. Assume now that k > 1. By
(2.11) and (2.28), sk − s̄ ∈ ∂δ̃(λk). Therefore, one can use λ = λk and s̃ = sk − s̄ in (3.2), which
leads to (3.1).

To see that dist(λk, S̃D) → 0, use point (iii) of proposition 3.1 and (3.1). ✷

Here is our main result.

Theorem 3.4 (global linear convergence) Suppose that assumption 2.6 holds. Then, for

any β > 0, there exists an L > 0, such that dist(λ0, S̃D) 6 β implies that

∀ k > 1 : ‖sk+1 − s̄‖ 6
L

rk
‖sk − s̄‖, (3.3)

∀ k > 0 : dist(λk+1, S̃D) 6 min

(
L

rk
, 1

)
dist(λk, S̃D). (3.4)

Proof. Suppose that k > 0 and consider an arbitrary λ̃ ∈ S̃D. First 0 ∈ ∂δ̃(λ̃), by the definition
(2.29) of S̃D. Next sk+1−s̄ ∈ ∂δ(λk+1)−s̄ = ∂δ̃(λk+1), by (2.11) and (2.28). Then, the monotonicity
of the multifunction ∂δ̃ implies that

(sk+1 − s̄)T(λk+1 − λ̃) > 0. (3.5)

On the other hand, subtracting λ̃+ rk s̄ from both sides of the iteration identity (1.17) and intro-
ducing λ̃k := λk − rks̄ yield

λk+1 − λ̃+ rk(sk+1 − s̄) = λ̃k − λ̃.

Taking the squared norm of both sides of this identity, using (3.5) and rk > 0, and neglecting
‖λk+1 − λ̃‖2 lead to

‖sk+1 − s̄‖ 6
1

rk
‖λ̃k − λ̃‖.

Since λ̃ is arbitrary in S̃D:

‖sk+1 − s̄‖ 6
1

rk
dist(λ̃k, S̃D).

Now the expression of λ̃k = λk − rks̄ and point (i) of lemma 2.17 yield

∀ k > 0 : ‖sk+1 − s̄‖ 6
1

rk
dist(λk, S̃D). (3.6)

Assuming that k > 1 and using (3.1) in (3.6) gives (3.3).
On the other hand, starting with (3.1) and using (3.6) lead to (3.4) with the factor L/rk. For

getting the unit factor in (3.4), just use point (ii) of proposition 3.1. ✷
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4 The revised AL algorithm

4.1 Update of the augmentation parameters

When the convex quadratic optimization problem (1.1) has a solution, the estimate (1.8) offers a
possibility to design an update rule for the augmentation parameters rk, based on a desired linear
convergence rate ρdes ∈ ]0, 1[ of the constraint value sk := yk − Axk towards zero (the lower ρdes
is, the faster the convergence is required). In practice, this convergence rate is easier to specify
by the user of the algorithm than the augmentation parameter itself, because a satisfactory value
of the latter depends in a complex way on the problem data and its solutions (see formula (34)
in [16]). The rule proposed in [16] and implemented in [26, 27] is based on an examination of the
ratio ρk := ‖sk+1‖/‖sk‖: if this one is not less than ρdes, rk+1 is set to rkρk/ρdes. The logic is
that, from (1.8), ρk is always less than L/rk, so that it makes sense to increase rk in this way.

When problem (1.1) is infeasible, the ratio ‖sk+1‖/‖sk‖ is no longer bounded by L/rk (it
cannot be, since sk cannot tend to zero), so that the update rule of rk sketched above generates an
unbounded sequence of augmentation parameters, without the hope to realize what it is designed
for. By theorem 3.4, ‖sk+1 − s̄‖/‖sk − s̄‖ is bounded by L/rk, but the latter ratio is not accessible
while the algorithm is running, since the smallest feasible shift s̄ is not known before convergence is
reached, so that the extension of the above update rule to infeasible problems is not straightforward.
In other to overcome this difficulty, we propose to watch instead the ratio ‖s′k+1‖/‖s′k‖, where

s′k = sk − sk−1. (4.1)

This proposal is grounded on the following proposition.

Proposition 4.1 Let {sk} and {s′k} be two sequences of a normed space E, whose elements

are linked by (4.1).

1) If the sequence {sk} satisfies for some s̄ ∈ E, some ρ ∈ [0, 1[, and some index k1

∀ k > k1 : ‖sk+1 − s̄‖ 6 ρ‖sk − s̄‖,

then the sequence {s′k} verifies

∀ k > k1 + 1 : ‖s′k+1‖ 6
(1 + ρ)ρ

1− ρ
‖s′k‖. (4.2)

2) Conversely, if the sequence {s′k} verifies for some ρ′ ∈ [0, 1[ and some index k1

∀ k > k1 : ‖s′k+1‖ 6 ρ′‖s′k‖,

then the sequence {sk} converges to some s̄ and satisfies

∀ k > k1 − 1 : ‖sk+1 − s̄‖ 6
ρ′

1− 2ρ′
‖sk − s̄‖. (4.3)

Proof. 1) Let k > k1 + 1. Then

‖s′k+1‖ 6 ‖sk+1 − s̄‖+ ‖sk − s̄‖ 6 (1 + ρ)‖sk − s̄‖
‖s′k‖ > ‖sk−1 − s̄‖ − ‖sk − s̄‖ > (1− ρ)‖sk−1 − s̄‖.

Hence

‖s′k+1‖ 6 (1 + ρ)‖sk − s̄‖ 6 (1 + ρ)ρ‖sk−1 − s̄‖ 6
(1 + ρ)ρ

1− ρ
‖s′k‖.
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2) Observe first that the sequence {sk} is a Cauchy sequence, since for l > k > k1 − 1, there
holds

‖sl − sk‖ 6 ‖s′l‖+ · · ·+ ‖s′k+1‖ 6

l−k−1∑

i=0

(ρ′)i‖s′k+1‖ 6
1

1− ρ′
‖s′k+1‖,

which tends to zero when k → ∞. Therefore {sk} converges, say to some s̄. Taking k + 1 instead
of k in the previous estimate and letting l → ∞ yield for k > k1 − 1:

‖sk+1 − s̄‖ 6
1

1− ρ′
‖s′k+2‖ 6

ρ′

1− ρ′
‖s′k+1‖ 6

ρ′

1− ρ′
(‖sk+1 − s̄‖+ ‖sk − s̄‖).

The linear convergence of {sk} in (4.3) follows. ✷

This proposition shows that the linear convergence of the sequence {sk − s̄} and {s′k} occurs
simultaneously, provided their convergence rate is sufficiently small:

r by point 1: as soon as the sequence {sk} converges linearly to some s̄ with a rate ρ <
√
2− 1 ≃

0.41, the sequence {s′k} converges linearly to zero with the rate (1 + ρ)ρ/(1− ρ);
r by point 2: as soon as the sequence {s′k} converges linearly to zero with a rate ρ′ < 1/3, the
sequence {sk} converges linearly to some s̄ with the rate ρ′/(1− 2ρ′).

For example, if ρ = 0.1, the rate of convergence in (4.2) is approximately 0.122; if ρ′ = 0.1 the rate
of convergence in (4.3) is 0.125.

4.2 Revised augmented Lagrangian algorithm

Let us now incorporate in the AL algorithm of section 1 the modifications suggested by the analysis
of this paper: a new stopping criterion is introduced in step 3 and a new rule for updating the
augmentation parameter is found in step 4. The algorithm is described as though computation
were done in exact arithmetic.

Revised AL algorithm to solve (1.1)

Initialization: choose λ0 ∈ R
m, r0 > 0, and ρdes ∈ ]0, 1[; set ρ′des := ρdes/(1 + 2ρdes).

Repeat for k = 0, 1, 2, . . .

1. If the feasible AL subproblem (1.15) has no solution, exit with a direction d ∈ R
n

verifying (1.16). Otherwise, denote a solution to (1.15) by (xk+1, yk+1).
2. Update the multiplier by (1.17).
3. Stop if

AT(Axk+1 − yk+1) = 0 and P[l,u](Axk+1) = yk+1.

4. Update the augmentation parameter if k > 1. Let sk+1 and s′k+1 be given by (1.13)
and (4.1) respectively and set ρ′k := ‖s′k+1‖/‖s′k‖. Then take

rk+1 := max

(
1,

ρ′k
ρ′des

)
rk. (4.4)

The next paragraphs discuss the new components of the algorithm.
By proposition 2.5, if assumption 2.6 does not hold, the revised AL algorithm exits in step 1

at the first iteration (k = 0). Otherwise, the stopping criterion in step 3 is eventually satisfied (up
to a given precision), as shown by the next proposition.
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Proposition 4.2 (satisfaction of the stopping criterion) Suppose that assumption 2.6
holds. Then the revised AL algorithm does not terminate in step 1 with a direction of un-

boundedness and generates a sequence {(xk, yk)} that satisfies

AT(Axk − yk) → 0 and P[l,u](Axk)− yk → 0. (4.5)

Proof. By assumption 2.6, the AL subproblems have a solution, so that the algorithm does not
terminate in step 1 with a direction of unboundedness.

By proposition 3.1 and the fact that rk is bounded away from zero (it can only increase in this
version of the algorithm), sk := yk −Axk → s̄, so that AT(yk −Axk) → ATs̄ = 0 by (2.22), which
is the first condition in (4.5).

Let us denote the projection of Axk on [l, u] by

ỹk := P[l,u](Axk),

which is characterized by

(ỹk −Axk)
T(y − ỹk) > 0, ∀ y ∈ [l, u].

Taking y = yk ∈ [l, u] yields
(ỹk −Axk)

T(yk − ỹk) > 0. (4.6)

On the other hand, the characterization of the projection s̄ of zero on S can be written

s̄T(s− s̄) > 0, ∀ s ∈ S.

Taking s = ỹk − yk + sk = ỹk −Axk ∈ [l, u] +R(A) = S yields

s̄T(ỹk − yk + sk − s̄) > 0. (4.7)

Now adding (4.6) and (4.7) leads to

(s̄− ỹk +Axk)
T(ỹk − yk) + s̄T(sk − s̄) > 0

or, using sk := yk −Axk and Cauchy-Schwarz inequality,

‖ỹk − yk‖2 6 (s̄− sk)
T(ỹk − yk) + s̄T(sk − s̄) 6 ‖sk − s̄‖ ‖ỹk − yk‖+ ‖s̄‖ ‖sk − s̄‖.

This inequality, quadratic in ‖ỹk − yk‖, and the convergence sk → s̄ imply that there is a constant
γ > 0 such that

‖ỹk − yk‖ 6 γ‖sk − s̄‖1/2,
which certainly implies the second condition in (4.5). ✷

The logic behind the update rule of the augmentation parameter rk in step 4 is the following.
The algorithm should ideally guarantee the desired convergence rate ρdes ∈ ]0, 1[ of sk := yk −Axk

towards s̄, as opposed to the one of {s′k} to zero, because this convergence, expressed in terms of
the optimization problem data, is meaningful for the user of the algorithm. Nevertheless, we have
already pointed out that the current value of the quotient

ρk :=
‖sk+1 − s̄‖
‖sk − s̄‖
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cannot be examined (s̄ being unknown), so that the algorithm tries to get the convergence rate
of ρ′des := ρdes/(1 + 2ρdes) on s′k, which implies indeed a rate ρdes for the linear convergence of sk
towards s̄ (see point 2 of proposition 4.1). Now, if the effect of rk on the rate of convergence of sk
to s̄ is transparent through (3.3), its effect on the rate of convergence of {s′k} is more complex. For
this reason, if we assume that ρdes is sufficiently small, say less than 0.1, the rate of convergence of
the two sequences {sk − s̄} and {s′k} are close to each other (proposition 4.1), and the algorithm
can proceed on {s′k} as it would do on {sk}: if

ρ′k :=
‖s′k+1‖
‖s′k‖

is sufficiently small (step 4.1), the value of rk is unchanged; otherwise, rk is multiplied by the factor
ρ′k/ρdes (step 4.2).

The update rule of the augmentation parameters in step 4 will maintain the sequence {rk}
bounded, even when the quadratic problem is infeasible, since ρ′k 6 ρ′des as soon as the quotient
ρk is permanently less than the positive root ρ+des of ρ 7→ ρ2 + (1 + ρ′des)ρ − ρ′des (point 1 of
proposition 4.1), which will occur if rk is permanently larger than L/ρ+des (inequality (3.3)). As
already observe by Fortin and Glowinski [23; 1982, remark 5.6, page 42], if the generated multipliers
λk blow up when the problem is infeasible, they do so by adding at each iteration the converging
term −rksk → −rs̄ (if rk converges to r), which is much slower than the decrease of sk → 0, which
occurs with a linear convergence speed. Hence overflow will not be observed in the implementation
of the algorithm.

5 Perspectives

The implementation of the revised AL algorithm of section 4.2 for solving convex quadratic
optimization problems is ongoing. It takes the form of C++/Matlab pieces of software called
Oqla/Qpalm [27]. A particular attention is paid to the problems that are either unbounded or
infeasible. When the closest feasible problem is unbounded, the codes return an unboundedness

direction, that is a direction d satisfying (2.4). Otherwise, assumption 2.6 holds and the codes
return a solution to the closest feasible problem (1.12), as well as the smallest feasible shift s̄
(which can vanish). These features are attractive when the solvers are used to deal with the con-
vex quadratic optimization problems generated by some versions of the SQP algorithm for solving
nonlinear optimization problems.

It would be interesting to know whether the global linear convergence presented in this paper
can be extended to a (possibly infeasible) convex quadratic problem defined on a Euclidean space
E (with a scalar product denoted by 〈·, ·〉) and that reads





infx 〈g, x〉+ 1
2 〈x,Hx〉

Ax ∈ C
x ∈ X,

(5.1)

where g ∈ E, H is a linear symmetric positive definite operator on E, A is a linear operator from
E to some linear space F, while X and C are convex sets in E and F respectively. The experience
acquired in [16] and in this paper suggests that the polyhedrality of the sets X and C is probably
sufficient to get the quasi-global error bound of lemma 2.12, which has been important so far to
get the global linear convergence result, but other assumptions on X and C might also yield a
similar error bound. The generalization (5.1) of (1.1) is useful, in particular, because it can model
by x ∈ X a trust region constraint [13], which is not present in (1.1) as a constraint satisfied at
each iteration of the AL algorithm, even when the constraints are incompatible. Such a constraint
may occur in a trust region approach for solving a nonlinear optimization problem or may be used
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to prevent the solution to (1.1) from being discontinuous with respect to the problem data [9, 7, 8].
Many algorithms have indeed been proposed to find a solution to some relaxed version of (5.1)
when the set {x ∈ E : Ax ∈ C, x ∈ X} is empty (see [42, 58, 12, 11, 39, 43] to mention a few),
while to our knowledge the use of the AL algorithm has not been investigated.

Another computationally important question is to know whether the linear convergence result
still holds when the AL subproblems are solved inexactly. Contributions along this line include [30,
53, 54, 55, 21, 22] and the references thereof.

The case of the Lagrangian relaxation algorithm [33; chapters XIV-XV] probably deserves
more investigations. Indeed, on the one hand, Dean and Glowinski [15; 2006, theorem 4.1] have
shown that, for the minimization of a strictly convex quadratic function subject to linear equality
constraints, the Lagrangian relaxation method, which is the steepest descent algorithm on the dual
function, with sufficiently small step-sizes in the dual space, generates primal iterates that converge
to the (unique) solution to the closest feasible problem. On the other hand, more robust and
accurate algorithms like bundle methods have been shown to be possible approaches to computing
an approximate proximal point [35, 14, 3; 1990-1995], so that their use on the dual function could
benefit from the properties of the augmented Lagrangian (or proximal method on the dual function)
highlighted in this paper. We are not aware of an extension of this result to convex problems with
inequality constraints.
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