
HAL Id: inria-00510018
https://hal.inria.fr/inria-00510018v2

Submitted on 25 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

More Testable Properties
Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand,

Laurent Mounier

To cite this version:
Yliès Falcone, Jean-Claude Fernandez, Thierry Jéron, Hervé Marchand, Laurent Mounier. More
Testable Properties. 22nd International Conference on Testing Software and Systems, Nov 2010,
Natal, Brazil. pp.30-46, �10.1007/978-3-642-16573-3_4�. �inria-00510018v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49602131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00510018v2
https://hal.archives-ouvertes.fr

More Testable Properties⋆

Yliès Falcone1, Jean-Claude Fernandez2, Thierry Jéron1, Hervé Marchand1,
and Laurent Mounier2

Firstname.Lastname@inria.fr - Firstname.Lastname@imag.fr

1 INRIA, Rennes - Bretagne Atlantique, France
2
Verimag, Université Grenoble I, France

Abstract. In this paper, we explore the set of testable properties within
the Safety-Progress classification where testability means to establish by
testing that a relation, between the tested system and the property under
scrutiny, holds. We characterize testable properties wrt. several relations
of interest. For each relation, we give a sufficient condition for a property
to be testable. Then, we study and delineate, for each Safety-Progress
class, the subset of testable properties and their corresponding test oracle
producing verdicts for the possible test executions. Finally, we address
automatic test generation for the proposed framework.

1 Introduction

Due to its ability to scale up well and its practical aspect, testing remains one
of the most effective and widely used validation technique for software systems.
However, due to recent needs in the software industry (for instance in terms of
security), it is important to reconsider the classes of requirements this technique
allows to validate or invalidate. The aim of a testing stage may be either to find
defects or to witness expected behaviors on an implementation under test (IUT).
From a practical point of view, a test campaign consists in producing a test suite
(test generation) from some initial system description, and executing it on the
system implementation (test execution). The test suite consists in a set of test
cases, where each test case is a set of interaction sequences to be executed by
an external tester (performed on the points of control and observation, PCOs).
Any execution of a test case should lead to a test verdict, indicating if the system
succeeded or not on this particular test (or if the test was not conclusive).

One way to improve the practical feasibility of a test campaign is to use
a property to drive the test execution. In this case, the property is used to
generate the so-called test purposes [2, 3] so as to select the most relevant test
case behaviors. A property may also represent the desired behavior of the system.
In this setting, the property may be a formalization of a security policy describing
prohibited behaviors and expectations from the users, as considered in [4, 5].
Several approaches (e.g., [6]) combine classical testing techniques and property
verification so as to improve the test activity. Most of these approaches used
safety and co-safety properties. A natural question is the existence of other kinds
of properties that can be “tested”, i.e., to define a precise notion of testability.

⋆ An extended version of this paper with complete proofs can be found in [1].

In [7, 8], Nahm, Grabowski, and Hogrefe addressed this issue by discussing
the set of temporal properties that can be tested on an implementation. A pro-
perty is said to be testable if it is possible to determine if a given relation (e.g.,
inclusion) holds between the sequences described by a property and the set of
execution sequences that can be produced by interacting with the IUT, after
the execution of a finite sequence on the IUT. In their work, testability of pro-
perties is studied wrt. the Safety-Progress classification ([9] and Section 3) for
infinitary properties. The announced classes of testable properties are the safety
and guarantee3 classes. Then, it is not too surprising that most of the previously
depicted approaches used safety and co-safety properties during testing.

Context. In this paper, we shall use the same notion of testability. We consider
a generic approach, where an underlying property is compared to the possibly
infinite execution sequences of the IUT by a tester. This property expresses finite
and infinite4 observable behaviors (which may be desired or not). Usually, IUT’s
execution sequences are expressed in a different alphabet than the one used to
describe the property and have thus to be interpreted. However, testability and
the test oracle problem (i.e., the problem of deciding verdicts) can be studied
while abstracting this alphabet discrepancy. A second characteristic is that we do
not require the existence of an executable specification to generate the test cases.
This allows to encompass several conformance testing approaches by viewing the
specification as a special property.

Motivations and contributions. The main motivation of this paper is to leverage
the use of an extended version of the Safety-Progress classification of properties
dedicated to runtime techniques. We give a precise characterization of testable
properties and provide a formal basis for several previous testing activities. We
extend the results of [7] by showing that lots of interesting properties (neither
safety nor guarantee) are also testable. Moreover, this framework allows to simply
obtain test oracles producing verdicts according to the test execution.

Paper organization. The remainder of this paper is organized as follows. In
Section 2, some preliminary concepts and notations are introduced. A quick
overview of the Safety-Progress classification of properties for runtime validation
techniques is given in Section 3. Section 4 introduces the notion of testability
considered in this paper. In Section 5, testable properties are characterized. Au-
tomatic test generation is addressed in Section 6. Next, in Section 7, we overview
the related work and propose a discussion on the results provided by this paper.
Finally, Section 8 gives some concluding remarks and raised perspectives.

2 Preliminaries

Given an alphabet of actions Σ, a sequence σ on Σ is a total function σ : I → Σ
where I is either the interval [0, n] for some n ∈ N, or N itself. The empty

3 In the Safety-Progress classification the guarantee class is the co-safety class in the
Safety-Liveness classification.

4 The tester observes a finite sequence of the IUT and should state a verdict about all
potential continuations of this execution sequence (finite and infinite ones).

2

sequence is denoted by ǫ. We denote by Σ∗ the set of finite sequences over Σ
and by Σω the set of infinite sequences over Σ. Σ∗∪Σω is noted Σ∞. The length
(number of elements) of a finite sequence σ is noted |σ| and the (i+1)-th element
of σ is denoted by σi. For σ ∈ Σ∗, σ′ ∈ Σ∞, σ · σ′ is the concatenation of σ and
σ′. The sequence σ ∈ Σ∗ is a strict prefix of σ′ ∈ Σ∞ (equivalently σ′ is a strict
continuation of σ), noted σ ≺ σ′, when ∀i ∈ [0, |σ| − 1] : σi = σ′

i and |σ| < |σ′|.

When σ′ ∈ Σ∗, we note σ � σ′ def

= σ ≺ σ′ ∨ σ = σ′. For σ ∈ Σ∞ and n ∈ N, σ···n
is the sub-sequence containing the n+ 1 first elements of σ. The set of prefixes

of σ ∈ Σ∞ is pref (σ)
def

= {σ′ ∈ Σ∗ | σ′ � σ}. For a finite sequence σ ∈ Σ∗, the

set of finite continuations is cont∗(σ)
def

= {σ′ ∈ Σ∗ | ∃σ′′ ∈ Σ∗ : σ′ = σ · σ′′}.
The IUT is a program P abstracted as a generator of execution sequences.

We are interested in a restricted set of operations that influence the truth value
of tested properties and are made on PCOs. We abstract these operations by an
alphabet Σ. We denote by PΣ a program with alphabet Σ. The set of execu-
tion sequences of PΣ is denoted by Exec(PΣ) ⊆ Σ∞. This set is prefix-closed,
that is ∀σ ∈ Exec(PΣ) : pref (σ) ⊆ Exec(PΣ). We will use Execf(PΣ) (resp.
Execω(PΣ)) to refer to the finite (resp. infinite) execution sequences of PΣ , that

is Execf(PΣ)
def

= Exec(PΣ) ∩Σ
∗ and Execω(PΣ)

def

= Exec(PΣ) ∩Σ
ω.

Properties as sets of execution sequences. A finitary property (resp. an infinitary
property, a property) is a subset of execution sequences of Σ∗ (resp. Σω, Σ∞).
Given a finite (resp. infinite) execution sequence σ and a property φ (resp. ϕ),
we say that σ satisfies φ (resp. ϕ) when σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ, noted
ϕ(σ)). A consequence of this definition is that properties we will consider are re-
stricted to linear time execution sequences, excluding specific properties defined
on powersets of execution sequences and branching properties.

Runtime properties [10]. Runtime properties should characterize satisfaction for
both kinds of sequences (finite and infinite) in a uniform way. To do so, we define
r-properties as pairs Π = (φ, ϕ) ⊆ Σ∗×Σω. We say that σ ∈ Exec(PΣ) satisfies
(φ, ϕ) (noted Π(σ)) when σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). The definition of
the negation of an r-property follows from definition of the negation for finitary
and infinitary properties. Boolean combinations of r-properties are defined in a

natural way. For ∗ ∈ {∨,∧}, (φ1, ϕ1) ∗ (φ2, ϕ2)
def

= (φ1 ∗ φ2, ϕ1 ∗ ϕ2).
An r-property Π ⊆ Σ∗ ×Σω is said to be negatively (resp. positively) deter-

mined [11] by σ ∈ Σ∗ if ¬Π(σ)∧∀µ ∈ Σ∞ : ¬Π(σ · µ) (resp. Π(σ)∧∀µ ∈ Σ∞ :
Π(σ · µ)), denoted ⊖−determined(σ,Π) (resp. ⊕−determined(σ,Π)).

3 A Safety-Progress classification for runtime techniques

The Safety-Progress (SP) classification of properties [12, 9] introduced a hierar-
chy between regular (linear time) properties5 defined as sets of infinite execution
sequences. In [10], we extended the classification to deal also with finite-length
execution sequences by revisiting it using runtime properties (r-properties). The
Safety-Progress classification is an alternative to the classical Safety-Liveness [13,

5 In the remainder of this paper, the term property will stand for regular property.

3

14] dichotomy. Unlike this later, the Safety-Progress classification is a hierarchy
and not a partition, and provides a finer-grain classification of properties in a
uniform way according to 4 views [15]: a language-theoretic view (seeing pro-
perties as sets of sequences), a logical view (seeing properties as LTL formulas),
a topological view (seeing properties as open or closed sets), and an automata
view (seeing properties as accepted words of Streett automata [16]).

unrestricted automata

Guarantee

Response Persistence

Safety

Progress

Safety

Obligation

Reactivity

P = ∅, R 9 R
(Ef (ψ), E(ψ))

(Rf (ψ), R(ψ))

P = ∅

(Pf (ψ), P (ψ))

R = ∅

(Af (ψ), A(ψ))
R = ∅, P 9 P

Pi 9 Pi, Ri 9 Ri

⋂
i[Safetyi ∪ Guaranteei]

⋂
i[Responsei ∪ Persistencei]

Fig. 1: SP classification

A graphical representation of the Safety-Progress clas-
sification of properties is depicted in Fig. 1. Further
details and results can be found in [17]. Here, we
consider only the language and the automata views.

The language-theoretic view of r-properties. The lan-
guage-theoretic view of the SP classification is based
on the construction of infinitary properties and fini-
tary properties from finitary ones. It relies on the
use of four operators A,E,R, P (building infinitary
properties) and four operators Af , Ef , Rf , Pf (build-
ing finitary properties) applied to finitary properties.

Formal definitions can be found in [17]. In the following ψ is a finitary property.
A(ψ) consists of all infinite words σ s.t. all prefixes of σ belong to ψ. E(ψ)

consists of all infinite words σ s.t. some prefixes of σ belong to ψ. R(ψ) consists
of all infinite words σ s.t. infinitely many prefixes of σ belong to ψ. P (ψ) consists
of all infinite words σ s.t. all but finitely many prefixes of σ belong to ψ.

Af (ψ) consists of all finite words σ s.t. all prefixes of σ belong to ψ. One
can observe that Af (ψ) is the largest prefix-closed subset of ψ. Ef (ψ) consists
of all finite words σ s.t. some prefixes of σ belong to ψ. One can observe that
Ef (ψ) = ψ · Σ∗. Rf (ψ) consists of all finite words σ s.t. ψ(σ) and there exists
an infinite number of continuations σ′ of σ also belonging to ψ. Pf (ψ) consists
of all finite words σ belonging to ψ s.t. there exists a continuation σ′ of σ s.t. σ′

persistently has continuations staying in ψ (i.e., σ′′ s.t. σ′ · σ′′ belongs to ψ).

The automata view of r-properties [10]. We define a variant of deterministic
and complete Streett automata (introduced in [16] and used in [15]). We add to
original Streett automata an acceptance condition for finite sequences in such a
way that these automata uniformly recognize r-properties.

Definition 1 (Streett automaton). A deterministic Streett automaton A is
a tuple (QA, qA

init
, Σ,−→A, {(R1, P1), . . . , (Rm, Pm)}). The set QA is the set of

states, qA
init

∈ QA is the initial state. −→A: Q
A × Σ → QA is the (complete)

transition function. {(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all
i ≤ n, Ri ⊆ QA and Pi ⊆ QA are the sets of recurrent and persistent states.

We refer to an automaton with m accepting pairs as an m-automaton. A plain-
automaton is a 1-automaton, and we refer to R1 and P1 as R and P . Moreover,
for σ = σ0 · · ·σn−1 ∈ Σ∗ and q, q′ ∈ QA, we note q

σ
−→ q′ when ∃q1, . . . , qn−2 ∈

QA : q
σ0−→ q1 ∧ . . . ∧ qn−2

σn−2

−→ q′. For q ∈ QA, ReachA(q) = {q′ ∈ QA |

∃σ ∈ Σ∗ \ {ǫ} : q
σ

−→A q′} ∪ {q} is the set of reachable states from q. For

4

P P

P

Safety

R

R R

Guarantee

R R

R R

Response

P P

P P

Persistence

Fig. 2: Schematic illustrations of the shapes of Streett automata for basic classes

σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution
of σ on A. It is formally defined as run(σ,A) = q0 · q1 · · · where ∀i : (qi ∈

QA∩ReachA(q
A
init

)∧qi
σi−→A qi+1)∧q0 = qA

init
. For an execution sequence σ ∈ Σω

on a Streett automaton A, we define vinf (σ,A) as the set of states appearing
infinitely often in run(σ,A).

Definition 2 (Acceptance conditions). For σ ∈ Σω, A accepts σ if ∀i ∈
[1,m] : vinf (σ,A) ∩ Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi. For σ ∈ Σ∗ s.t. |σ| = n, A
accepts σ if (∃q0, . . . , qn−1 ∈ QA : run(σ,A) = q0 · · · qn−1 ∧ q0 = qA

init
and

∀i ∈ [1,m] : qn−1 ∈ Pi ∪Ri). A defines an r-property (φ, ϕ) ∈ 2Σ
∗×Σω

iff the set
of finite (resp. infinite) sequences accepted by A is equal to φ (resp. ϕ).

The hierarchy of r-properties. The hierarchical organization of r-properties can
be seen in the language view using the operators and in the automata view using
syntactic restrictions on Streett automata (illustrated in Fig. 2 for basic classes).

Definition 3 (Safety-Progress classes). An r-property Π defined by (QAΠ ,
qAΠ
init

, Σ,−→AΠ
, {(R1, P1), . . . , (Rm, Pm)}), Π is said to be

– A safety r-property if Π = (Af (ψ), A(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. R = ∅ and there is no transition from P to P .

– A guarantee r-property if Π = (Ef (ψ), E(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. P = ∅ and there is no transition from R to R.

– An m-obligation r-property if Π =
⋂m
i=1(Si(ψi)∪Gi(ψ

′
i)) or Π =

⋃m
i=1(Si(ψi)

∩Gi(ψ
′
i)) where S(ψi) (resp. G(ψ′

i)) are safety (resp. guarantee) r-properties
defined over the ψi and the ψ′

i; or equivalently AΠ is an m-automaton s.t. for
i ∈ [1,m] there is no transition from Pi to Pi and from Ri to Ri.

– A response r-property if Π = (Rf (ψ), R(ψ)) for some ψ ⊆ Σ∗ or equivalently
AΠ is a plain-automaton s.t. P = ∅.
– A persistence r-property if Π = (Pf (ψ), P (ψ)) for some ψ ⊆ Σ∗ or equiva-
lently AΠ is a plain-automaton s.t. R = ∅.
– A reactivity r-property if Π is obtained by finite boolean combinations of
response and persistence r-properties or equivalently AΠ is unrestricted.

An r-property of a given class is pure when not belonging to any other sub-class.

Example 1 (r-properties). Let us consider Σ1 = {a, b, c} and ψ1 = a∗ ·
(

b∗+c·(c+

a)∗·b+
)

defined by the deterministic finite-state automaton (DFA) in Fig. 3a with
accepting states 1, 2. The Streett automaton in Fig. 3b defines (Af (ψ1), A(ψ1)).
Let Σ2 = {a, b}, and the finitary property ψ2 = (a · b)+ recognized by the DFA
depicted in Fig. 4a. The Streett automaton in Fig. 4b (resp. Fig. 4c) represents
the guarantee (resp. response) r-property built upon ψ2.

5

4 Some notions of testability

From its finite interaction with the underlying IUT, the tester produces a se-
quence of events in Σ∗. We study the conditions for a tester, using the produced
sequence of events, to determine whether a given relation holds between the set
of all (finite and infinite) execution sequences that can be produced by the IUT
(Exec(PΣ)), and the set of sequences described by the r-property Π. Roughly
speaking, the challenge addressed by a tester is thus to determine a verdict
between Π and Exec(PΣ), from a finite sequence extracted from Execf(PΣ)

6.
Let us recall that the r-property is a pair made of two sets: a set of finite

sequences and a set of infinite sequences. In the sequel, we shall compare this
pair to the set of execution sequences of the IUT which is a set constituted of
finite and infinite sequences. As noticed in [7], one may consider several possible
relations between the execution sequences produced by the program and those
described by the property. Those relations are recalled here in the context of
r-properties. In [1], further relations are studied.

Definition 4 (Relations between IUT sequences and an r-property [7]).
The possible relations of interest between Exec(PΣ) and Π are:

– Execf(PΣ) ⊆ Π ∩Σ∗ and Execω(PΣ) ⊆ Π ∩Σω (noted Exec(PΣ) ⊆ Π).

– Execf(PΣ)∩(Π∩Σ∗) 6= ∅ and Execω(PΣ)∩(Π∩Σω) 6= ∅ (noted Exec(PΣ)∩Π 6= ∅).

The test verdict is thus determined according to the conclusions that one can
obtain for the considered relation. In essence, a tester can and must only deter-
mine a verdict from a finite interaction σ ∈ Execf(PΣ). In Section 5, we will
study the conditions to state weaker verdicts on a single execution sequence.

Definition 5 (Verdicts [7]). Given a relation R between Exec(PΣ) and Π and
a test execution σ, the tester produces verdicts as follows:

– pass if σ allows to determine that R holds;
– fail if σ allows to determine that R does not hold;
– unknown otherwise.

We note verdict(σ,R(Exec(PΣ), Π)) the verdict that the observation of σ allows
to determine. Let us remark the two following practical problems:

– In general, the IUT may be a program exhibiting infinite-length execution
sequences. Obviously these sequences cannot be evaluated by a tester wrt. Π.

6 Or from a finite set of finite sequences, as a straightforward extension.

1

4

2 3

a

b

c b
b

a, c

Σ

a, c

(a) ψ1 = a∗ ·
(

b∗ + c · (c+ a)∗ · b+
)

1 2 3

a
b b a, c

c

Σ

(b) Streett safety, P = {1, 2}

Fig. 3: DFA for ψ1 and Streett for (Af (ψ1), A(ψ1))

6

1 2 3 4

5

a

b

b

a
a

b

b

aΣ

(a) ψ2 = (a · b)+

1 2 3

5

a

b

b

a

Σ

Σ

(b) Streett guarantee

1 2 3 4

5

a

b

b

a
a

b

b

aΣ

(c) Streett response

Fig. 4: DFA for ψ2 and Streett for (Ef (ψ2), E(ψ2)), (Rf (ψ2), R(ψ2)), R = {3}

– Moreover, finite execution sequences contained in the r-property cannot be
processed easily. For instance, if the test execution exhibits a sequence σ /∈ Π,
deciding to stop the test is a critical issue. Actually, nothing allows to claim
that a continuation of the test execution would not exhibit a new sequence
belonging to the r-property , i.e., σ′ ∈ Σ∞ s.t. σ · σ′ ∈ Π.

Thus, the test should be stopped only when there is no doubt regarding the
verdict to be established. Following [7], we propose a notion of testability, that
takes into account the aforementioned practical limitations, and that is set in the
context of the Safety-Progress classification. We suppose the existence of a tester
that can interpret the execution sequences with the IUT PΣ on Execf(PΣ).

Definition 6 (Testability). An r-property Π is said to be testable on PΣ wrt.
the relation R if there exists an execution sequence σ ∈ Σ∗ s.t.:

σ ∈ Execf(PΣ) ⇒ verdict(σ,R(Exec(PΣ), Π)) ∈ {pass, fail}

Intuitively, this condition compels the existence of a sequence which, if played
on the IUT, allows to determine for sure, whether the relation holds or not. Let
us note that this definition entails to synthesize a test oracle which allows to
determine R

(

Exec(PΣ), Π
)

from the observation of a sequence σ ∈ Execf(PΣ).
A test oracle is a finite state machine (FSM) parametrized by a test relation

as shown in Definition 4. It reads incrementally an interaction sequence σ ∈
Execf(PΣ) and produces verdicts in {pass, fail , unknown}.

Definition 7 (Test Oracle). A test oracle O for an IUT PΣ, a relation R and
an r-property Π is a 4-tuple (QO, qO

init
,−→O, Γ

O). The finite set QO denotes
the control states and qO

init
∈ QO is the initial state. The complete function

−→O: Q
O × Σ → QO is the transition function. The output function ΓO :

QO → {pass, fail , unknown} produces verdicts with the following constraints:

– all states emitting a pass or a fail verdict are final (sink states),

– ∃σ ∈ Execf(PΣ) : q
O
init

σ
−→O q ∧ Γ (q) = pass ⇒ R(Exec(PΣ), Π),

– ∃σ ∈ Execf(PΣ) : q
O
init

σ
−→O q ∧ Γ (q) = fail ⇒ ¬R(Exec(PΣ), Π).

5 Testable properties without executable specification

The framework of r-properties (Section 3) allows to determine the testability
of the different classes of properties using positive and negative determinacy.
Moreover, this framework provides a computable oracle, which is a sufficient
condition for testing. Furthermore, we will be able to characterize which test
sequences allow to establish sought verdicts. Then, we will determine which
verdict has to be produced in accordance with the played test sequence.

In this paper, we focus on the relation Exec(PΣ) ⊆ Π. Characterizations for
the relation Exec(PΣ) ∩Π 6= ∅ (by duality) and others relations are in [1].

7

Obtainable verdicts and sufficient conditions. For this relation, the unique ver-
dicts that may be produced are fail and unknown. We explicit this below.

A pass verdict means that all execution sequences of PΣ belong to Π. The
unique case where it is possible to establish a pass verdict is in the trivial case
where Π = (Σ∗, Σω), i.e., the r-property Π is always verified. Obviously, every
implementation with alphabet Σ satisfies this relation. In other cases, it is im-
possible to obtain such a verdict (whatever is the property class under considera-
tion), since the whole set PΣ is usually unknown from the tester. In Section 5, we
will study the conditions under which it is possible to state weak pass verdicts,
when reasoning on a single execution sequence of the IUT.

A fail verdict means that there exists some sequences of the program which
are not in Π. In order to produce this verdict, a sufficient condition is to exhibit
an execution sequence of PΣ s.t. Π is negatively determined by this sequence:

∃σ ∈ Execf(PΣ) : ⊖−determined(σ,Π) ⇒ verdict(σ,Exec(PΣ) ⊆ Π) = fail

Testability of this relation in the Safety-Progress classification. For each SP class,
we state the conditions under which the properties of this class are testable.

Theorem 1 (Testability of Exec(PΣ) ⊆ Π). For AΠ = (QAΠ , qAΠ
init

,−→AΠ
,

{(R1, P1), . . . , (Rm, Pm)}) recognizing an r-property Π, according to the class
of Π, the testability conditions expressed both in the language-theoretic and au-
tomata views are given in Table 1.

Verdicts to deliver. We now state the verdicts that should be produced by a tester
for the possibly infinite sequences of the IUT. Each testability condition in the
language view is in the form f({ψi}i) 6= ∅ where the ψi ⊆ Σ∗ (i ∈ [1, n]) are used
to build the r-property and f is a composition of set operations on ψi. When
σ ∈ Execf(PΣ)∩f({ψi}i), the test oracle should deliver fail since the underlying
r-property is negatively determined. Conversely, when σ ∈ Execf(PΣ)\f({ψi}i),
the test oracle can deliver unknown. In practice, those verdicts are determined
by a computable function, reading an interaction sequence, i.e., a test oracle. In
our framework, the test oracle is obtained from a Streett automaton7:

Property 1 (Test oracle for the relation Exec(PΣ) ⊆ Π). GivenAΠ = (QAΠ , qAΠ
init

,
Σ,−→AΠ

, {(R1, P1), . . . , (Rm, Pm)}) defining Π, the test oracle (QO, qO
init
,−→O,

ΓO) for the relation Exec(PΣ) ⊆ Π is defined as follows. QO is the smallest sub-
set of QAΠ , reachable from qO

init
by −→O (defined below) with qO

init
= qAΠ

init
.

– ΓO is defined as follows:

– If Π is a pure safety, guarantee, obligation, or response property ΓO(q) =

fail if q ∈
⋃k
i=1(Pi ∩{q ∈ Ri | ReachAΠ

(q) ⊆ Ri} and unknown otherwise,

– IfΠ is a pure persistence property ΓO(q) = fail if q ∈ {q ∈ P | ReachAΠ
(q)

⊆ P} and unknown otherwise;

– −→O is defined as the smallest relation verifying:

– q
e

−→O q if ∃e ∈ Σ, ∃q′ ∈ QO : q
e

−→AΠ
q′ and ΓO(q) = fail ,

– −→O=−→AΠ
otherwise.

8

Exec(PΣ) ⊆ Π Testability Condition Testability Condition
(language view) (automata view)

Safety

(Af (ψ), A(ψ)) |R = ∅, P 9 P ψ 6= ∅ P 6= ∅
Guarantee

(Ef (ψ), E(ψ))|P = ∅, R 9 R {σ ∈ ψ | pref (σ) ∪ cont∗(σ) ⊆ ψ} 6= ∅ {q ∈ R | ReachAΠ
(q) ⊆ R} 6= ∅

Obligation
⋂k

i=1(Si(ψi) ∪Gi(ψ
′
i))

⋃k

i=1

(

ψi ∩ {σ ∈ ψ′
i | pref (σ) ∪ cont∗(σ) ⊆ ψ′

i}
)

6= ∅
⋃k

i=1(Si(ψi) ∩Gi(ψ
′
i))

⋂k

i=1

(

ψi ∪ {σ ∈ ψ′
i | pref (σ) ∪ cont∗(σ) ⊆ ψi}

)

6= ∅

Pi 9 Pi, Ri 9 Ri
⋃k

i=1(Pi ∩ {q ∈ Ri | ReachAΠ
(q) ⊆ Ri}) 6= ∅

Response

(Rf (ψ), R(ψ)) |P = ∅ {σ ∈ ψ | cont∗(σ) ⊆ ψ} 6= ∅ {q ∈ R | ReachAΠ
(q) ⊆ R} 6= ∅

Persistence

(Pf (ψ), P (ψ)) |R = ∅ {σ ∈ ψ | cont∗(σ) ⊆ ψ} 6= ∅ {q ∈ P | ReachAΠ
(q) ⊆ P} 6= ∅

Table 1: Summary of testability results wrt. the relation Exec(PΣ) ⊆ Π

The proof of this property follows from Theorem 1 and Definition 7.

Example 2 (Testability of some r-properties wrt. Exec(PΣ) ⊆ Π). We present
the testability of three r-properties introduced in Example 1. The safety r-property
Π1 is testable wrt. the relation Exec(PΣ1

) ⊆ Π1. Indeed in the language view,
there are sequences belonging to ψ1 (the corresponding DFA has a non accepting
state). In the automata view, we have sink ∈ P (reachable from the initial state).
The guarantee r-property Π2 is testable wrt. the relation Exec(PΣ2

) ⊆ Π2. In-
deed, there are sequences belonging to ψ2 s.t. all prefixes of theses sequences and
all its continuations are also in ψ2. In the automata view, there is a (reachable)
state in R from which all reachable states are in R. The response r-property Π3

is testable wrt. the relation Exec(PΣ2
) ⊆ Π3. Indeed, there are sequences belon-

ging to ψ2 s.t. all continuations of these sequences belong to ψ2. In the automata
view, there is a (reachable) state in R from which all reachable states are in R.

Thus, we have clarified and extended some results of [7]. First, we have shown
that the safety r-property (Σ∗, Σω) always lead to a pass verdict and is vacuously
testable. Moreover, we exhibited some r-properties of other classes which are
testable, i.e., some obligation, response, and persistence r-properties.

Refining verdicts. Similarly to the introduction of weak truth values in runtime
verification [18, 10, 17], it is possible to introduce weak verdicts in testing. In this
respect, stopping the test and producing a weak verdict consists in stating that
the test interaction sequence produced so far belongs (or not) to the property.
The idea of satisfaction “if the program stops here” in runtime verification [18,
10] corresponds to the idea of “the test has shown enough on the implemen-
tation” in testing. In this case, testing would be similar to a kind of “active
runtime verification”: one is interested in the satisfaction of one execution of
the program which is steered externally by a tester. Basically, it amounts to not
seeing testing as a destructive activity, but as a way to enhance confidence in
the implementation compliance wrt. a property.

Under some conditions, it is possible to determine weak verdicts for some
classes of properties in the following sense: the verdict is expressed on one single
execution sequence σ, and it does not afford any conclusion on the set Exec(PΣ).

7 The test oracle can be also obtained from the r-properties described in others views
(language, logic). Indeed, in [17] we describe how to express an r-property in the
automata view from its expression in the language or the logic view.

9

We have seen that, for Exec(PΣ) ⊆ Π, the only verdicts that can be produced
were fail and unknown. Clearly, fail verdicts can still be produced. Furthermore,
unknown verdicts can be refined into weak pass verdicts when the sequence σ
positively determines the r-property . In this case, the test can be stopped since
whatever is the future behavior of the IUT, it will exhibit behaviors that will
satisfy the r-property . In this case, it seems reasonable to produce a weak pass
verdict and consider new test executions in order to gain in confidence.

We revisit, for each Safety-Progress class, the situations when weak pass
verdicts can be produced for this relation.

For safety r-properties. LetΠ be a safety r-property , then there exists ψ ⊆ Σ∗

s.t. Π can be expressed (Af (ψ), A(ψ)). When the produced sequence belongs to
{σ ∈ ψ | pref (σ) ∪ cont∗(σ) ⊆ ψ}, the tester can produce a weak pass verdict.

For guarantee r-properties. LetΠ be a guarantee r-property , then there exists
ψ ⊆ Σ∗ s.t. Π can be expressed (Ef (ψ), E(ψ)). It is possible to produce a weak
pass verdict if the set ψ is not empty: guarantee r-properties are always positively
determined when they are satisfied.

For obligation r-properties. Let Π be an m-obligation r-property .
- If form ∈ N

∗,Π is expressed
⋂m
i=1(Si(ψi)∪Gi(ψ

′
i)) where Si(ψi) (resp.Gi(ψ

′
i))

is a safety (resp. guarantee) r-property built upon ψi (resp. ψ
′
i), i ∈ [1,m]. The

tester can produce a weak pass verdict when the interaction sequence belongs
to

⋂m
i=1 ψ

′
i.

- If form ∈ N
∗,Π is expressed

⋃m
i=1(Si(ψi)∩Gi(ψ

′
i)) where Si(ψi) (resp.Gi(ψ

′
i))

is a safety (resp. guarantee) r-property built upon ψi (resp. ψ
′
i), i ∈ [1,m]. The

tester can produce a weak pass verdict when the interaction sequence produced
by the program belongs to

⋃m
i=1({σ ∈ ψi | pref (σ) ∪ cont∗(σ) ⊆ ψi} ∩ ψ

′
i).

For response and persistence r-properties. The reasoning is similar to the
one used for safety r-properties. Let Π be a response (resp. persistence) r-
property , then there exists ψ ⊆ Σ∗ s.t. Π can be expressed (Rf (ψ), R(ψ))
(resp. (Pf (ψ), P (ψ))). When the interaction sequence belongs to {σ ∈ ψ |
pref (σ) ∪ cont∗(σ) ⊆ ψ}, the tester can produce a weak pass verdict.

6 Automatic test generation

In this section, we address test generation for the testing framework introduced
in this paper. Here, test generation is based on r-properties, and the purpose
of the test campaign is to detect verdicts for a relation between an r-property
and an IUT. Before entering into the details of test generation, we first discuss
informally some practical constraints that have to be taken into account for test
generation. After that, we are able to compute the canonical tester, discuss test
selection, and show how quiescence can be taken into account in our framework.
Which sequences should be played? The sequences of interest to play on the
IUT are naturally those leading to a fail or a weak pass verdict and these can
be used to generate test cases. In the language view (resp. automata view),
these sequences are those belonging to the exhibited sets (resp. leading to the
exhibited set of states) in testability conditions. For instance, for a safety r-
property ΠS = (Af (ψ), A(ψ)) built upon ψ, and defined by a safety automaton
AΠS

, one should play sequences in ψ or equivalently those leading to P in AΠS
.

10

When to stop the test? When the tested program produces an execution sequence
σ ∈ Σ∗, a raised question is when to safely stop the test. Obviously, a first answer
is when a fail or weak pass verdict has been issued since this verdict is definitive.
Although in other cases, when the test interactions produced some test sequences
leading so far to unknown evaluations, the question prevails. It remains to the
tester appraisal to decide when the test should be stopped (see Section 6.2).

Vocabularies and test architecture. In order to address test generation, we will
need to distinguish inputs and outputs and the vocabularies of the IUT and the
r-property . The alphabet Σ of the property is now partitioned into Σ? (input
actions) and Σ! (output actions). The alphabet of the IUT becomes ΣIUT and is
partitioned intoΣIUT

? (input actions) andΣIUT

! (output actions) withΣ? = ΣIUT

?

and Σ! = ΣIUT

! . As usual, we also suppose that the behavior of the IUT can be
modeled by an IOLTS I = (QI , qI

init
, ΣIUT ,−→I).

6.1 Computation of the canonical tester.

We adapt the classical construction of the canonical tester for our framework.
The canonical tester that we build for a relation R between an IUT PΣ and
a r-property Π is purposed to detect all verdicts for the relation between the
r-property and all possible interactions that can be produced with PΣ .

We define canonical testers from Streett automata. To do so, we will use a
set of subsets of Streett automaton states that we introduced in [10] for runtime
verification. For a Streett automaton AΠ , the sets GAΠ , GAΠ

c , BAΠ
c , BAΠ form

a partition of QAΠ and designate respectively the good (resp. currently good,
currently bad, bad) states:

– GAΠ = {q ∈ QAΠ ∩
⋂m

i=1(Ri ∪ Pi) | ReachAΠ
(q) ⊆

⋂m

i=1(Ri ∪ Pi)}

– G
AΠ
c = {q ∈ QAΠ ∩

⋂m

i=1(Ri ∪ Pi) | ReachAΠ
(q) 6⊆

⋂m

i=1(Ri ∪ Pi)}

– B
AΠ
c = {q ∈ QAΠ ∩

⋃m

i=1(Ri ∩ Pi) | ReachAΠ
(q) 6⊆

⋃m

i=1(Ri ∩ Pi)}

– BAΠ = {q ∈ QAΠ ∩
⋃m

i=1(Ri ∩ Pi) | ReachAΠ
(q) ⊆

⋃m

i=1(Ri ∩ Pi)}

It is possible to show [10] that if a sequence σ reaches a state in BAΠ (resp.GAΠ),
then the underlying property Π is negatively (resp. positively) determined by σ.

The canonical tester is defined as follows.

Definition 8 (Canonical Tester). From a Streett automaton AΠ = (QAΠ , qAΠ
init

,
−→AΠ

, {(R1, P1), . . . , (Rm, Pm)}) defining a testable r-property Π, the canoni-
cal tester is the IOLTS T = (QT , qT

init
, Σ,−→T) defined as follows:

– QT = BAΠ
c ∪GAΠ

c ∪ {Fail} ∪ {WeakPass} with qT
init

= qAΠ
init

;

– −→T is defined as follows:

• ∀e ∈ Σ : Fail
e

−→T Fail ∧WeakPass
e

−→T WeakPass,

• q
e

−→T Fail if q
e

−→AΠ
q′ ∧ q′ ∈ BAΠ , for any e ∈ Σ,

• q
e

−→T WeakPass if q
e

−→AΠ
q′ ∧ q′ ∈ GAΠ , for any e ∈ Σ,

• q
e

−→T q
′ if q

e
−→AΠ

q′ ∧ q, q′ ∈ GAΠ
c ∪BAΠ

c , for any e ∈ Σ.

A Streett automaton is transformed as follows. Transitions leading to a bad
(resp. good) state are redirected to Fail (resp. WeakPass). Those latest states
are terminal: the test can be stopped and the verdict produced.

11

WPass
P

Unknown

FailΣ
IUT

δo
δd

Σ
IUT

Safety

WPass

Fail
R

Unknown

Σ
IUT

δo
δd

Σ
IUT

Guarantee

WPass

Fail
R

Unknown

R

Unknown

Σ
IUT

δoδd

Σ
IUT

δoδd

Response

WPass

Fail
P

Unknown

P

Unknown

Σ
IUT

δoδd

Σ
IUT

δoδd

Persistence

Fig. 5: Schematic illustrations of the canonical tester for basic classes

6.2 Test selection

For a given r-property , the set of potential sequences to be played is infinite. In
practice, one may use the underlying Streett automaton to constrain the states
that should be visited during a test. Furthermore, as usual, one needs to select
a test case that is controllable [3]. It can be done on the canonical tester by first
disabling input actions that do not permit to reach sought verdicts. Second, for a
state in which several input actions are possible, one needs to generate different
test cases with one input per state. More details can be found in [1].

Test selection plays also a role to state weak pass verdicts. Indeed, when deal-
ing with sequences satisfying a r-property so far and not positively determining
it, test selection should plan the moment for stopping the test. It can be, for
instance, when the test lasted more than a given expected duration or when the
number of interactions with the IUT is greater or equal than an expected number.
However, one should not forget that there might exist a continuation, that can
be produced by letting the test execution continue, not satisfying the r-property
or even negatively determining it. Here, it thus remains to the tester expertise
to state the halting criterion (possibly using quiescence, see Section 6.3).

6.3 Introducing quiescence

Quiescence [19, 3] was introduced in conformance testing in order to represent
IUT’s inactivity. In practice, several kinds of quiescence may happen (see [3] for
instance). Here we distinguish two kinds of quiescence. Outputlocks (denoted δo)
represent the situations where the IUT is waiting for an input and produces no
outputs. Deadlocks (denoted δd) represent the situations where the IUT cannot
interact anymore, e.g., its execution is terminated or it is deadlocked. Thus, we
introduce those two events in the output alphabet of the IUT. We have now the
following additional alphabets: ΣIUT

!,δ = ΣIUT

! ∪ {δo, δd}, Σ
IUT

δ = ΣIUT

!,δ ∪ΣIUT

? .
We also have to distinguish the set of traces of the IUT from the set of

potential interactions with the IUT. This latest is based on the observable be-
havior of the IUT and potential choices of the tester. The set of executions of
the IUT is now Exec(PΣIUT) ⊆ (ΣIUT

δ)∞. The set of interactions of the tester
with the IUT is Inter(ΣIUT) ⊆ (ΣIUT +δo)

∗ · (δd+ ǫ), i.e., the tester can observe
IUT’s outputlocks and finishes by the observation of a deadlock or program ter-
mination. When considering quiescence, characterizing testable properties now
consists in comparing the set of interactions to the set of sequences described by
the r-property . The intuitive ideas are the following:
– the tester can observe self-terminated executions of the IUT with δd,
– the tester can decide to terminate the program when observing an outputlock.

12

Exec(PΣ) ⊆ Π Possible Verdicts Testability Condition

Safety fail , unknown

(Af (ψ), A(ψ)) ψ 6= ∅
Guarantee fail , unknown

(Ef (ψ), E(ψ)) {σ ∈ ψ | pref (σ) ⊆ ψ}} 6= ∅
Obligation fail , unknown

⋂k

i=1(Si(ψi) ∪Gi(ψ
′
i))

⋃k

i=1

(

ψi ∩ {σ ∈ ψ′
i | pref (σ) ⊆ ψ′

i

)

6= ∅
⋃k

i=1(Si(ψi) ∩Gi(ψ
′
i))

⋂k

i=1

(

ψi ∪ {σ ∈ ψ′
i | pref (σ) ⊆ ψ′

i} 6= ∅
Response fail , unknown

(Rf (ψ), R(ψ)) ψ 6= ∅
Persistence fail , unknown

(Pf (ψ), P (ψ)) ψ 6= ∅

Table 2: Testability wrt. Inter(PΣIUT) ⊆ Π with quiescence

The notion of negative determinacy is now modified in the context of quiescence
as follows. We say that the r-property Π is negatively determined upon quies-
cence by the sequence σ ∈ Inter(PΣIUT) (denoted ⊖−determined−q(σ,Π)) if
⊖−determined(σ↓ΣIUT , Π)∨ (|σ| > 1∧ last(σ) ∈ {δd, δo} ∧ ¬Π((σ···|σ|−2)↓ΣIUT

),
where σ↓

ΣIUT
is the projection of σ on ΣIUT .

For the proposed approach, the usefulness of quiescence lies in the fact that
the current test sequence does not have any continuation. Consequently, testa-
bility conditions may be weakened. Indeed, when one has determined that the
current interaction with the IUT is over, it is not necessary that the r-property
should be evaluated in the same way. In some sense, it amounts to consider that
the evaluation produced by the last event before observing quiescence “termi-
nates” the execution sequence. Thus, if the r-property is not satisfied by the last
observed sequence, then the r-property is negatively determined by it.

Revisiting previous results. With quiescence, the purpose of the tester is now to
“drive” the IUT in a state in which the underlying r-property is not satisfied,
and then observe quiescence. Informally, the testability condition relies now on
the existence of a sequence s.t. the r-property is not satisfied. Testability results,
upon the observation of quiescence and in order to produce fail verdicts when
the tested r-property is not satisfied, are updated using the notion of negative
determinacy with quiescence as shown in Table 2.

The canonical tester construction is also updated by adding the following

rules for −→T : ∀q ∈ B
AΠ
c : q

δo,δd−→T Fail , ∀q ∈ G
AΠ
c : q

δo−→T q ∧ q
δd−→T WeakPass.

Illustrations of the construction of the canonical tester for basic classes with
quiescence is given in Fig. 5, where the original (resp. modified) transitions from
the Streett automaton are in plain (resp. dotted) lines.

Example 3 (Testability with quiescence). We illustrate the usefulness of quies-
cence. Consider the IUT depicted in Fig. 6a with observable actions ΣIUT

? = {?a}
and ΣIUT

! = {!b}. This IUT waits for an ?a, produces a !b, and then non deter-
ministically terminates or waits for an ?a, and repeats the behavior consisting
in receiving an ?a and producing a !b. The executions and possible interactions
with the tester are (“?” and “!” are not represented and x& stands for x+ ǫ):

Exec(PΣIUT) = δo
& ·

(

a& + a · b · (δd + δo
&) · (a ·

[

δo
& · ((a · b)&)∗

]∗
· a&)&

)

Inter(PΣIUT) = δo
& ·

(

(a · b)& · (δd + δo
&) · (a ·

[

δo
& · ((a · b)&)∗

]∗
· δo

&)&
)&

13

!δo

?a

?a

!b

!b !δd

?a

!δo

?a

!δo

!b

(a) IUT

1 2

!b
?a

!b

?a

(b) Response r-property

1 2

WPass Fail

!b, !δo ?a

!δd

!b

?a

!δd, !δo

Σ
IUT

Σ
IUT

(c) Canonical tester

Fig. 6: Illustrating the usefulness of quiescence

Now let us consider the r-property defined by the Streett automaton depicted in
Fig. 6b. Its vocabulary is {?a, !b}, and it has one recurrent state: R = {1}. The
underlying r-property states that every input ?a should be acknowledged by an
output !b. Though being not testable under the conditions expressed in Section 5,
this r-property is testable with quiescence. One can observe that Inter(PΣIUT) 6⊆
Π because the existence of ?a·!b·?a·!δo in Inter(PΣIUT). The synthesized canon-
ical tester is depicted in Fig. 6c.

7 Related work and discussion

In this section we overview related work or work that may be leveraged by the
results proposed in this paper. Then, we propose a discussion on the results
afforded by this paper. A deeper treatment of related work is provided in [1].

Testing oriented by properties for generating test purposes. One of the limits of
conformance testing [19] lies in the size of the generated test suite which can be
infinite or impracticable. Some testing approaches oriented by properties were
proposed to face off this limitation by focusing on critical properties. In this case,
properties are used as a complement to the specification in order to generate test
purposes which will be then used to conduct and select test cases [3, 20]. For a
presentation of some general approaches, the reader is referred to [21].

Combining testing and formal verification. In [6], the complementarity between
verification techniques and conformance testing is studied. Notably, the authors
shown that it is possible to detect (using testing) violations of safety (resp.
satisfaction of co-safety) properties on the implementation and the specification.

Requirement-Based testing. In requirement-based testing, the purpose is to gen-
erate a test suite from a set of informal requirements. For instance, in [22, 23], test
cases are generated from LTL formula using a model-checker. Those approaches
were interested in defining a syntactic test coverage for the tested requirements.

Property testing without a behavioral specification. In previous approaches, we
used the notion of tiles which are elementary test modules testing specific parts
of an implementation and which can be combined to test more complex behaviors
using a property (see [24, 25]).

Using the Safety-Progress classification in validation techniques. The Safety-
Progress classification of properties is rarely used in validation techniques. We
used (e.g., [10]) the Safety-Progress classification to characterize the sets of pro-
perties that can be verified and enforced during the runtime of systems. In some
sense, this previous endeavor similarly addressed the expressiveness question for
runtime verification and runtime enforcement.

14

Discussion. Several approaches fall in the scope of the generic one proposed in
this paper. For instance, our results apply and extend the approach where ve-
rification is combined to testing as proposed in [6]. Furthermore, this approach
leverages the use of test purposes [2, 3] in testing to guide test selection. In-
deed, the characterization of testable properties gives assets on the kind of test
purposes that can be used in testing. Moreover, the properties considered in
this paper are framed into the Safety-Progress classification of properties [12, 9]
which is equivalently a hierarchy of regular properties. Thus the results proposed
by this paper concern previous depicted approaches in which the properties at
stake can be formalized by a regular language. Furthermore, classical confor-
mance testing falls in the scope of the proposed framework. Indeed, suspended
traces of an implementation preserving the ioco relation wrt. a given specification
can be expressed as a safety property [6].

8 Conclusion and perspectives

Conclusion. In this paper, we study the space of testable properties. We use a
testability notion depending on a relation between the set of execution sequences
that can be produced by the underlying implementation and the r-property .
Leveraging the notions of positive and negative determinacy of properties, we
have identified for each Safety-Progress class and according to the relation of
interest, the testable fragment. Moreover we have seen that the framework of
r-properties in the Safety-Progress classification provides a decidable test oracle
in order to produce a verdict depending on the interaction between the tester
and the IUT. Furthermore, we also propose some conditions under which it
makes sense for a tester to state weak verdicts. Finally, results of this paper are
implemented in an available prototype tool for which a description is given in [1].

Perspectives. A first research direction is to investigate the set of testable pro-
perties for more expressive formalisms. Indeed, the Safety-Progress classification
is concerned with regular properties, and classifying testable properties for e.g.,
context-free properties would be of interest. Another perspective is to combine
the approach proposed with weak verdicts to a notion of test coverage. Indeed, in
order to bring any confidence in the fact that e.g., the implementation respects
the property, it involves to execute the test several times to make it relevant.
The various approaches [22, 23] for defining test coverage for property-oriented
testing could be used to reinforce a set of weak verdicts.

References

1. Falcone, Y., Fernandez, J.C., Jéron, T., Marchand, H., Mounier, L.: More Testable
Properties. Technical Report 7279, INRIA (2010)

2. Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink: A Tool for Automatic
Test Generation from SDL Specifications. Industrial-Strength Formal Specification
Techniques (1998)

3. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer (STTT) (2005) 297–315

15

4. Traon, Y.L., Mouelhi, T., Baudry, B.: Testing Security Policies: Going Beyond
Functional Testing. Int. Symp. on Software Reliability Engineering (2007) 93–102

5. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A Formal Ap-
proach for Testing Security Rules. In: SACMAT ’07: Proceedings of the 12th ACM
symposium on Access control models and technologies, ACM (2007) 127–132

6. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating Formal Verification
and Conformance Testing for Reactive Systems. IEEE Trans. Software Eng. 33
(2007) 558–574

7. Nahm, R., Grabowski, J., Hogrefe, D.: Test Case Generation for Temporal Pro-
perties. Technical report, Bern University (1993)

8. Grabowski, J.: SDL and MSC based test case generation– an overall view of the
SAMSTAG method. Technical report, University of Berne IAM-94-0005 (1994)

9. Chang, E., Manna, Z., Pnueli, A.: Characterization of Temporal Property Classes.
In: Automata, Languages and Programming. (1992) 474–486

10. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime Verification of Safety-Progress
Properties. In: the 9th Int. Workshop on Runtime Verification. (2009) 40–59

11. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: FM06: Proceedings of the 14th Int Symp. on Formal Methods. (2006) 573–586

12. Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties (invited paper, 1989).
In: PODC ’90: Proceedings of the 9th symp. on Principles Of Distributed Com-
puting, ACM (1990) 377–410

13. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Trans.
Softw. Eng. (1977) 125–143

14. Alpern, B., Schneider, F.B.: Defining Liveness. Technical report, Cornell Univer-
sity, Ithaca, NY, USA (1984)

15. Chang, E., Manna, Z., Pnueli, A.: The Safety-Progress Classification. Technical
report, Stanford University, Dept. of Computer Science (1992)

16. Streett, R.S.: Propositional Dynamic Logic of looping and converse. In: STOC ’81:
Proceedings of the 13th Symp. on Theory Of computing, ACM (1981) 375–383

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can You Verify and Enforce at
Runtime? Technical Report TR-2010-5, Verimag Research Report (2010)

18. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation (2009)

19. Tretmans, J.: Test Generation with Inputs, Outputs, and Quiescence. In: Tools
and Algorithms for the Construction and Analysis of Systems. (1996) 127–146

20. de Vries, R.G.: Towards formal test purposes. In: FATES’01: Formal Approaches
to Testing of Software. (2001) 61–76

21. Machado, P.D.L., Silva, D.A., Mota, A.C.: Towards Property Oriented Testing.
Electron. Notes Theor. Comput. Sci. (2007) 3–19

22. Rajan, A., Whalen, M., Heimdahl, M.: Model Validation using Automatically
Generated Requirements-Based Tests. In: HASE ’07: 10th IEEE Symposium on
High Assurance Systems Engineering. (2007) 95–104

23. Pecheur, C., Raimondi, F., Brat, G.: A Formal Analysis of Requirements-based
Testing. In: ISSTA’09: Proceedings of the 18th International Symposium on Soft-
ware Testing and Analysis, ACM (2009) 47–56

24. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test Gen-
eration for Network Security Rules. In: TestCOM, Springer (2006) 341–356

25. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A Compositional Testing
Framework Driven by Partial Specifications. In: TestCom/FATES. (2007) 107–122

16

