
HAL Id: hal-01058073
https://hal.inria.fr/hal-01058073

Submitted on 26 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Fuzzy Job-Shop Scheduling Problems with a
Multiobjective Optimizer

Thanh-Do Tran, Ramiro Varela, Inés González-Rodríguez, El-Ghazali Talbi

To cite this version:
Thanh-Do Tran, Ramiro Varela, Inés González-Rodríguez, El-Ghazali Talbi. Solving Fuzzy Job-
Shop Scheduling Problems with a Multiobjective Optimizer. The Fifth International Conference on
Knowledge and Systems Engineering (KSE), Oct 2013, Hanoi, Vietnam. �10.1007/978-3-319-02821-
7_19�. �hal-01058073�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49602014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01058073
https://hal.archives-ouvertes.fr


Solving Fuzzy Job-Shop Scheduling Problems
with a Multiobjective Optimizer

Thanh-Do Tran1?, Ramiro Varela2, Inés González-Rodŕıguez3, and
El-Ghazali Talbi1

1 DOLPHIN Team, Inria Lille – Nord Europe and LIFL, Université Lille 1, France
2 A.I. Centre and Department of Computer Science, University of Oviedo, Spain

3 Dept. of Mathematics, Statistics and Computing, University of Cantabria, Spain

Abstract. In real-world manufacturing environments, it is common to
face a job-shop scheduling problem (JSP) with uncertainty. Among dif-
ferent sources of uncertainty, processing times uncertainty is the most
common. In this paper, we investigate the use of a multiobjective ge-
netic algorithm to address JSPs with uncertain durations. Uncertain du-
rations in a JSP are expressed by means of triangular fuzzy numbers
(TFNs). Instead of using expected values as in other work, we consider
all vertices of the TFN representing the overall completion time. As a
consequence, the proposed approach tries to obtain a schedule that op-
timizes the three component scheduling problems (corresponding to the
lowest, most probable, and largest durations) all at the same time. In
order to verify the quality of solutions found by the proposed approach,
an experimental study was carried out across different benchmark in-
stances. In all experiments, comparisons with previous approaches that
are based on a single-objective genetic algorithm were also performed.

1 Introduction

Job-shop scheduling problems (JSPs) are known to be one of the hardest classes
of combinatorial problems. They have formed an important body of research
since the late fifties, with multiple applications in industry, finance, and sci-
ence [23]. In fact, JSPs are not only NP-complete but also among the worst
NP-complete class members [21]. Therefore, they have usually been solved by
using heuristic techniques, rather than exact methodologies.

During the past two decades, various proposals based on genetic algorithms
have been introduced to solve large JSP instances: [4], [27], [22], and [15], to name
but a few. Even though most proposals deal with crisp JSPs, i.e. all relevant
information is assumed to be concrete, in many real-life situations, it is often
the case that the exact duration of a task is not known in advance [10]. Instead,
based on previous experience, an expert may have some knowledge about this
duration and it is therefore possible to estimate this processing time. In such a

? TDT was supported by the ECSC Scholarship Program of the Master in Soft Com-
puting and Intelligent Data Analysis at the European Centre for Soft Computing
and, currently, is supported by a CORDI-S Doctoral Fellowship of Inria.



2 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

situation, it is neither possible nor plausible to represent processing times with
concrete numbers.

Depending on the available knowledge and the representation technique being
used, the information about durations can be modeled by an interval for the
possible processing times or its most typical values. When deeper knowledge of
the problem is available, fuzzy intervals—which are considered as an alternative
to probability distributions—can also be used; however, this technique usually
requires complex computation [13]. When only little knowledge is available, we
can use a confidence interval to represent the uncertain duration of a task. In this
context, if some values in the interval appear to be more probable than others, it
is natural to extend the representation to a fuzzy interval or fuzzy number [13].

In this work, following [10], triangular fuzzy numbers (TFNs) are employed
to represent uncertain durations in a JSP. By this representation, only the sum
and maximum operations are needed to calculate the completion time of each
task in a job. Then, the completion time of each job is computed via a semi-active
schedule builder [12]. This job completion time is also represented by a TFN.
When completion times of all jobs have been determined, the overall completion
time of the JSP (aka makespan) is taken as the maximum completion time
over all the jobs. By taking the expected value of the overall completion time
as an objective function, genetic and memetic algorithms have been successfully
applied to search for a (near-) optimal schedule to the problem [11,14,24].

Being a single number, an expected value cannot fully represent the overall
completion time that is expressed by a triangular fuzzy number. Consequently,
using the expected value as an objective function implies an approximation of
the problem to be solved. Such approximation might, to some extent, result
in the loss of information; and therefore the obtained schedule might always
be different from the true optimal one in some situations. To overcome this
conspicuous drawback of the current techniques, we have investigated a new
approach based on a multi-objective genetic algorithm.

This new approach enables us to take into account all three vertices of a
TFN representing the overall completion time in the objective function. As a
consequence, this approach considers at the same time three different scheduling
problems corresponding to the lowest, most probable, and largest durations.
With the use of a multi-objective genetic algorithm, the proposed approach tries
to obtain a schedule that optimizes the three component scheduling problems
all at the same time. In order to verify the quality of solutions found by the
proposed approach, an experimental study has been carried out across different
benchmark instances. Then a new proposal on analyzing the tolerance for the
imprecision of knowledge representation is presented.

2 Job-Shop Scheduling with Uncertain Durations

2.1 Crisp Job-Shop Scheduling Problems

A general JSP [16] can be defined as scheduling a set of n jobs {J1, J2, · · · , Jn}
on a set of m physical resources or machines {M1,M2, · · · ,Mm}, subject to a set



Solving Fuzzy JSPs with a Multiobjective Optimizer 3

of constraints. For a job Ji to be completed, a series of tasks have to be done in
a predefined order. Those tasks are enumerated by an index j, and, obviously,
j is at most equal to m. The job Ji is then said to be composed of tasks θij ’s,
where j = 1, 2, · · · ,m. It is noteworthy that a task denoted by θij does not imply
that it will be processed on the j-th machine. The index j is used only for task
enumeration of the job Ji.

In such a general JSP, the predefined orders of tasks form precedence con-
straints; that is, m tasks {θi1, θi2, · · · , θim} of the job Ji, where i = 1, 2, · · · , n,
have to be sequentially scheduled. Also, there are capacity constraints; that is,
each task θij requires the uninterrupted and exclusive use of one of the machines
for its whole processing time. A solution to this problem is a schedule s—which
is an allocation of starting times for all the tasks. Such a solution, besides be-
ing feasible (i.e. all the constraints hold), has to be optimal according to some
criteria, for instance, the makespan is minimal [10].

Without loss of generality, let us now consider a JSP instance of size n×m
(i.e. n jobs and m machines), let p be a duration (aka processing time) matrix
and v be a machine matrix such that pij is the processing time of task θij and
vij is the machine required by θij , where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.
Let σ be a feasible task processing order, i.e. a lineal ordering of tasks which is
compatible with a processing order of tasks that may be carried out such that all
constraints hold. A feasible schedule s may be derived from σ using a semi-active
schedule builder [17,12]. Let Sij(σ,p,v) and Cij(σ,p,v) denote the starting and
completion times of the task θij . According to the semi-active schedule builder,
the starting and completion times can be computed as follows:

Sij (σ,p,v) = Ci(j−1) (σ,p,v) ∨ Crs (σ,p,v) , (1)

Cij (σ,p,v) = Sij (σ,p,v) + pij , (2)

where θrs is the task preceding θij in the machine according to the processing
order σ, Ci0(σ,p,v) is assumed to be zero and, analogously, Crs(σ,p,v) is taken
to be zero if θij is the first task to be processed in the corresponding machine.
The completion time of job Ji will then be Ci(σ,p,v) = Cim(σ,p,v), and the
makespan Cmax(σ,p,v) is the maximum completion time of any job under a
given candidate schedule σ:

Cmax(σ,p,v) = ∨1≤i≤n
[
Ci(σ,p,v)

]
. (3)

For the sake of notation simplicity, we follow [10] to write Cmax(σ) when the
problem (and thus p and v) is fixed or even Cmax when no confusion is possible.

2.2 Modeling Uncertain Durations with TFNs

In real-life applications, it is often the case that the exact duration of a task,
i.e. the time it takes to be processed, is not known in advance. However, based
on previous experience, an expert may have some knowledge, usually uncer-
tain, about the duration. The most straightforward representation for uncertain



4 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

durations would be a human-originated confidence interval. If some values ap-
pear to be more plausible than others, a natural extension is a fuzzy interval or
fuzzy number [14]. The simplest model for this case is a triangular fuzzy num-
ber (TFN) [19], which use an interval

[
p1, p3

]
of possible values and a modal

value p2 in between. For a TFN A, denoted by A = (p1, p2, p3), the membership
function takes the following triangular shape:

µA(x) =


0 , x < p1

x−p1
p2−p1 , p1 ≤ x ≤ p2
x−p3
p2−p3 , p2 < x ≤ p3

0 , x > p3.

(4)

In the JSP, we essentially need two operations on fuzzy quantities: the sum
and the maximum. These operations are obtained by extending the correspond-
ing operations on real numbers using the so-called Extension Principle. However,
computing the resulting expression is cumbersome, if not intractable [10].

For the sake of simplicity and tractability of numerical calculations, we fol-
low [7] to approximate the results of these operations by a TFN. In other words,
we evaluate the sum and maximum operations on only three defining points of
each TFN. The approximated sum coincides with the sum of TFNs as defined
by the Extension Principle; thus, for any pair of TFNs M and N , if S = M +N
denotes their sum, we have:

S =
(
m1 + n1, m2 + n2, m3 + n3

)
. (5)

Unfortunately, for the maximum of TFNs, there is no such simplified expres-
sion. For any two TFNs M and N , let F = N ∨M denote their [true] maximum,
and G = (m1 ∨ n1, m2 ∨ n2, m3 ∨ n3) its approximated value, an illustration of
the distinction between the maximum and its approximation is given in Fig. 1.
It is interesting to note that such an approximated maximum can trivially be
extended to the case of more than two TFNs [13].

0 1 2 3 4 5 6 7 8 9 10 11 12

0

0.25

0.5

0.75

1
M N

F G

universe of discourse

μ

Fig. 1. Exact (magenta) and approximated (red) maximum operations.

Besides being simple, it is clear that this approximation possesses another
nice property of preserving the support and modal value of the true maximum.
It is however remarkable that, at all α-cuts, the lower and upper bounds of



Solving Fuzzy JSPs with a Multiobjective Optimizer 5

the approximated maximum are either smaller than or equal to the lower and
upper bounds of the true maximum, respectively. More formally, let [f

α
, fα] and

[g
α
, gα] be the α-cuts of F and G, respectively, it holds that:

∀α ∈ [0, 1], f
α
≤ g

α
and fα ≤ gα . (6)

In possibility theory, the membership function µQ of a fuzzy quantity Q can
be interpreted as a possibility distribution on real numbers; and this allows us to
define the expected value of a fuzzy quantity. For a given TFN A =

(
p1, p2, p3

)
,

a typical model [20] for defining its expected value E[A] is given by:

E [A] =
1

4

(
p1 + 2p2 + p3

)
. (7)

Importantly, the expected value coincides with the neutral scalar substitute
of a fuzzy interval [28]. The neutral scalar substitute is among the most natural
defuzzification procedures proposed in the literature [3]. The expected value
can also be obtained as the center of gravity of its mean value, or using the area
compensation method proposed by Fortemps and Roubens [8]. Most importantly,
it induces a total ordering ≤E in the set of fuzzy intervals [3,7]. For any two fuzzy
intervals M and N , M ≤E N if and only if E[M ] ≤ E[N ]. Obviously, for any
two TFNs A =

(
a1, a2, a3

)
and B =

(
b1, b2, b3

)
, if ai ≤ bi ∀i, then A ≤E B;

the reverse, however, does not hold.

2.3 Fuzzy Job-Shop Scheduling Problems

The fuzzy JSP considered in this study is the JSP with uncertain processing
times (durations). Since processing times of operations are fuzzy intervals, the
sum and maximum operations used to propagate constraints (in Eqs. 1 and 2)
are taken to be the corresponding operations on fuzzy intervals, and approxi-
mated for the particular case of TFNs as explained in Sect. 2.2. The obtained
schedule will be a fuzzy schedule in the sense that the starting and completion
times of all tasks as well as the makespan are all fuzzy intervals. However, the
task processing ordering σ that determines the schedule s is crisp—there is no
uncertainty regarding the order in which the tasks have to be processed.

In order to demonstrate the graphical representation of a fuzzy JSP and a
particular schedule for one of its instances, let’s consider an instance with 3 jobs
and 3 machines, having the following machine allocation and fuzzy processing
time matrices:

p =

 (3, 4, 6) (2, 3, 4) (1, 2, 5)
(1, 2, 4) (2, 3, 4) (1, 2, 3)
(2, 3, 5) (2, 3, 4) (1, 2, 4)

 , v =

1 2 3
1 3 2
2 1 3

 . (8)

For a task processing order σ = (θ31, θ11, θ32, θ12, θ21, θ33, θ13, θ22, θ23),
we have the corresponding Gantt chart as shown in Fig. 2. This Gantt chart
uses each particular color for all tasks that belong to each particular job; tasks
associated with different jobs are accordingly colored differently.



6 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

M3

M2

M1

1 26 time1610

Makespan

17

θ12

Fig. 2. A sample Gantt chart for a fuzzy JSP instance.

Since we could build a feasible schedule s from a feasible task processing
order σ, we would therefore restate the goal of the fuzzy job-shop problem as
finding an optimal task processing order σ, in the sense that the makespan for
the schedule derived from that task processing order is minimal.

In [10], the authors employed a single-objective genetic algorithm that is
enhanced by a local search to optimize the expected value of the makespan.
However, the expected value does not account for the width of a makespan. For
instance, the expected value cannot distinguish between two fuzzy makespans
A = (2, 6, 10) and B = (4, 6, 8), since both have the same expected value 6, but
one would think B = (4, 6, 8) is better because it is less uncertain and thus it
provides more accurate information on the possible values of the makespan.

On the other hand, the approximated maximum operator has identical sup-
port and modal value to its exact version. As a consequence, the induced fuzzy
makespan also has identical support and modal value to the exact fuzzy makespan.
Thanks to this nice property, we could try to take into consideration the three
exact vertices of a fuzzy makespan—instead of its approximated expected value—
in searching for an optimal schedule to the JSP. Such an idea naturally calls for
the use of a multiobjective optimization algorithm. As more information from
the exact fuzzy makespan is considered, the schedule obtained under this per-
spective is expected to be more reliable and robust than those returned when
considering only the modal value or the expected value of the makespan.

3 An Evolutionary Approach to the Fuzzy JSPs

In order to apply a genetic algorithm to solving a combinatorial problem in gen-
eral and a JSP in particular, we need to define a chromosome encoding strategy.
Among different proposals available in the literature, the two most popular en-
coding schemes are the conventional permutations (CP) [2] and permutations
with repetition (PR) [1]. In both cases, a chromosome expresses a total ordering
of all operations of the problem [26]. For example, if we have a problem with
n = 3 jobs and m = 4 machines, one possible ordering is given by the permu-
tation (θ21, θ11, θ12, θ31, θ32, θ22, θ33, θ13, θ23, θ24, θ14, θ34), where θij repre-
sents the task j of the job i (where i = 1, 2, 3; and j = 1, 2, 3, 4). In the CP
scheme, operations are codified by the numbers 1, 2, · · · , n ×m, starting from
the first job, so that the previous ordering would be codified by the chromo-



Solving Fuzzy JSPs with a Multiobjective Optimizer 7

some (5, 1, 2, 9, 10, 6, 11, 3, 7, 8, 4, 12). Whereas in the PR encoding scheme,
an operation is codified just by its job number; hence the previous order would
be given by (2, 1, 1, 3, 3, 2, 3, 1, 2, 2, 1, 3) [26]. Also in [26], the authors have
demonstrated that PR scheme is better than the CP. Taking that result, we will
use the PR encoding scheme in this work.

After initialized randomly, each chromosome undergoes the crossover and
mutation stages. New chromosome will then be created and selected to the next
generation based on their fitness values—which are the expected makespans of
the schedule they encode—by the well-known binary tournament selection strat-
egy. To create new offspring, the job order crossover (JOX) [1,12] and a simple
swap mutation are employed. Specifically, given any two parents, the JOX se-
lects a random subset of jobs from the first parent and copies the associated
genes to the offspring at the same positions as they appear in that parent. Then,
the remaining genes are taken from the second parent such that they maintain
their relative ordering. The second offspring is produced in the same manner
but considering the second parent first. Following the JOX, the simple swap mu-
tation operator randomly selects and swaps two consecutive genes that encode
two different jobs (i.e. having different values). For the single-objective GA, the
generational-with-elitism survivor selection is employed; that is, the whole off-
spring population replaces the parent population except for the best chromosome
in the parent population being copied directly to the offspring population.

The feasible search space for a JSP is usually very large; we therefore need to
enrich GAs with some advanced algorithm that can somehow limit the feasible
space to a narrower one but still guarantee the existence of optimal schedules.
The algorithm proposed by Giffler and Thompson [9]—which is commonly re-
ferred to as the G&T algorithm—is the best known algorithm for that aim. In
fact, this algorithm can be regarded as a transfer function that transforms a
candidate schedule to a very similar yet better one in terms of makespan. In
this sense, different candidate schedules might be transformed to a unique bet-
ter schedule by this algorithm. In this work, for both single- and multi-objective
GAs, we use the extended G&T algorithm for the fuzzy JSP as proposed in [13].

Our main aim in this work is to optimize simultaneously the three vertices of
a makespan. Thus, we need to employ a technique in evolutionary multiobjec-
tive optimization (EMO) to handle these three objectives all at the same time,
and to evolve a population of candidate solutions over generations in such a
way that they get gradual improvements in all objectives. With the framework
presented above for a single-objective GA, it is straightforward to extend the
algorithm to a multiobjective version by the application of one of the existing
EMO techniques. Among various EMO algorithms, the non-dominated sorting
genetic algorithm (NSGA-II) [25,5,6] has gained a lot of popularity in the last
few years, and becomes a landmark against which other EMO algorithms are
often compared. In this work, we will therefore employed NSGA-II as a multiob-
jective optimizer to address the fuzzy JSP. The job order crossover and simple
swap mutation described above will replace the simulated binary crossover and
polynomial mutation in the original design of NSGA-II [6].



8 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

4 Analyzing the Tolerance for Knowledge Representation

A set of experiments has been conducted to examine the ability of the proposed
approach to tolerate the imprecision inherent in representing the expert knowl-
edge about task processing times by TFNs. This imprecision is due to the fact
that the expert might not be completely sure about his specification of the fuzzy
numbers. In other words, the specification of a fuzzy number is fuzzy itself. The
location of the modal value as well as the support of a TFN is naturally imprecise.
Accordingly, for a certain task, the processing time might be specified by various
fuzzy numbers that are slightly different from each other. Another context can
also be the case, that is, when more-than-one experts are jointly specifying the
processing times of tasks. Obviously, they may have different knowledge about
the tasks, and therefore the TFNs specified by each of them might be different
from those specified by the others.

In the experiments, we have selected three typical benchmark instances from
a famous library of 40 instances proposed by Lawrence [18]. On the other hand,
three genetic algorithms that share common components have been implemented
to enable a fairer comparative analysis. These algorithms are: (1) GAcrisp is
the single-objective genetic algorithm considering only the most probable pro-
cessing time of tasks, which is equivalent to a crisp JSP; (2) GAfuzzy is the
single-objective genetic algorithm considering the expected value of the fuzzy
makespan as the objective function; and (3) NSGAII is the multi-objective ge-
netic algorithm (i.e. NSGA-II) considering at the same time the three vertices
of a fuzzy makespan as its objectives. In all algorithms, we have used the binary
tournament selection, the JOX with a crossover rate of 0.85, and the simple
swap mutation with a mutation rate of 0.1; a randomly initialized population
with 100 chromosomes will evolve across 100 generations.

The three benchmark instances that have been used are LA04 (10×5), LA09
(15×5), and LA18 (10×10). For each benchmark, we randomly sample 10 fuzzy
instances in the following manner. The modal value (p2) for each fuzzy pro-
cessing time (pij) is sampled uniformly at random in an interval having the
crisp processing time as its center (p), with the lower and upper bounds being
95%p and 105%p. Then, the left (p1) and right (p3) extremes of that fuzzy pro-
cessing time is uniformly sampled at random in the intervals [50%p, 95%p] and
[105%p, 150%p], respectively. An example to illustrate this procedure is given
in Fig. 3. In this illustration, the red triangle is a randomly sampled fuzzy pro-
cessing time, which has the three vertices being sampled in the blue, violet, and
green intervals.

For each benchmark, each of the ten sampled fuzzy instances is tested on
the three algorithms, repeated 10 times with different initial populations in each
repetition. With 3 algorithms tested on 3 benchmarks having 10 sampled fuzzy
instances for each, and repeated 10 runs, we have done 3×3×10×10 = 900 runs.

For GAcrisp and GAfuzzy, we obtain a single best solution in each of the runs.
This is however not the case for NSGAII; NSGAII returns a set of non-dominated
solutions in the last generation. To facilitate the comparison with GAcrisp and
GAfuzzy, a single best solution from the obtained Pareto-optimal set must be



Solving Fuzzy JSPs with a Multiobjective Optimizer 9

t

p3

p2

p1

p[50%p, 95%p] [105%p, 150%p]

crisp pij

fuzzy pij
sampled

Fig. 3. Sampling fuzzy processing time.

nominated. For that purpose, we calculate the expected value of each solution
in the Pareto-optimal set and select the one with the best (minimal) expected
value of the makespan. In this way, we could reach a single best solution in each
run of all the algorithms, and the results from the 10 runs can be summarized
by box plots as presented in Fig. 4 for LA04. In this figure, each box contains 10
results from the 10 runs of a corresponding algorithm on a single sampled fuzzy
instance. Also, the three algorithms referred to as Crisp, Fuzz, and NSGAII are
the GAcrisp, GAfuzzy, and NSGAII, respectively. In addition, the ten sampled
fuzzy instances are enumerated as Fuzz Samp 1 to Fuzz Samp 10.

m
ak

es
pa

n

600

650

700

Crisp Fuzz NSGAII

Fuzz Samp 1

Crisp Fuzz NSGAII

Fuzz Samp 2

Crisp Fuzz NSGAII

Fuzz Samp 3

Crisp Fuzz NSGAII

Fuzz Samp 4

Crisp Fuzz NSGAII

Fuzz Samp 5

Fuzz Samp 6 Fuzz Samp 7 Fuzz Samp 8 Fuzz Samp 9

600

650

700

Fuzz Samp 10

Fig. 4. Results on asymmetrically sampled fuzzy versions of LA04 (10×5).

Taking a look at Fig. 4, it is not difficult to realize that Crisp—which is the
GA working with only the most probable task processing time in the sampled
fuzzy instances—has makespans varying from instance to instance; whereas, the
other two algorithms, i.e. Fuzz and NSGAII, are less sensitive to the random
sampling. In addition, their expected makespans are much better (lower) than
those of the Crisp on average. It should be noticed that, due to the space



10 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

limitation, only the boxplot for LA04 is presented here; the similar plots for
LA09 and LA18 also exhibit completely the same trend.

The comparison between Fuzz (i.e. the GA working with the expected fuzzy
makespan) and NSGAII (i.e. the NSGA-II working with the three vertices of the
fuzzy makespan) is however not intuitive. In fact, their results are close together
for LA04 and LA18; and for LA09, their results look identical. (Notice again that
the results for LA09 and LA18 are not shown here). Besides, the boxes for Crisp
is larger than those for the other algorithms, which would suggest that under the
current experimental setting of the algorithms (100 chromosomes evolved over
100 generations), Fuzz and NSGAII converge better than Crisp. Consequently,
their results from different runs do not vary so much as those of the Crisp.
Nonetheless, we have initialized the three algorithms by the same random seeds
and they also share the same common structural components of the GA. In such
a context, a more plausible explanation could be that, taking into consideration
the triangular fuzzy processing time of tasks instead of only the most probable
one, we could always gain benefits regardless of whether the expected value or
all the three vertices of a makespan is utilized as the objective function(s).

What still remains interesting to know is how these algorithms perform on
average in terms of the mean and variation of makespans over all the sampled
fuzzy instances. To answer this question, we first take the mean (or median,
alternatively) of each box, i.e. we are averaging the 10 runs. Then we calculate the
mean and standard deviation of these ten means (or ten medians, alternatively).
In other words, we are averaging the results of the 10 sampled fuzzy instances.
As we have run each test only 10 times, the use of median could be a better
estimate of the actual performance of the algorithms. Respective results from
these calculations are fully presented in Table 1.

Table 1. Mean and standard deviation (SD) of approximated makespans of all fuzzy
samples. For each fuzzy sample, the approximated makespan is either the mean or
median makespan over all 10 runs of an algorithm. Numbers in brackets are SD.

Instance
Average
over runs

Algorithm

GAcrisp GAfuzzy NSGAII

LA04
mean 655.9 (11.14) 614.3 (6.56) 617.4 (8.34)

median 642.3 (19.49) 614.7 (5.90) 616.8 (9.34)

LA09
mean 980.9 (11.04) 952.8 (7.51) 952.8 (7.51)

median 975.1 (14.23) 952.8 (7.51) 952.8 (7.51)

LA18
mean 958.8 (13.30) 886.7 (12.09) 894.2 (8.16)

median 956.3 (21.28) 884.5 (14.30) 891.6 (9.74)

The results shown in Table 1 suggest that NSGA-II has a promising ability
to tolerate the imprecision in representing the expert’s knowledge about the
fuzzy processing time. Under different randomly sampled fuzzy processing time,
the final results of NSGA-II clearly exhibit less variation than those of GAcrisp



Solving Fuzzy JSPs with a Multiobjective Optimizer 11

on all the benchmarks. However, more extensive experiments are advocated in
order to draw a further conclusion about whether NSGA-II is better than the
single-objective GA using the expected value of the makespan as its objective
function. In fact, NSGAII has the same variation as GAfuzzy on the benchmark
LA09, and a better (smaller) variation on LA18, but a worse (larger) variation
on LA04, in comparison with GAfuzzy.

5 Conclusions

In this work, we have investigated the application of a multi-objective genetic
algorithm — the NSGA-II — to solving JSPs with uncertain durations, where
uncertainty is modeled by triangular fuzzy numbers. The novelty of the investiga-
tion is that, we have considered the three vertices of a triangular fuzzy makespan
all at the same time as three objectives of NSGA-II, rather than just using a
representative which is the expected value as in previous work.Such a new pro-
posal is often preferable to the existing approach in terms of offering the decision
maker more options in selecting a scheduling strategy according to his preference
to the earliest, most probable, or latest completion time. To validate the pro-
posed multi-objective approach, a set of experiments has been performed. Even
though the simulation results on a limited number of benchmarks do not strongly
demonstrate the superiority of the proposal, they have provided some evidence
for the imprecision tolerance ability of the obtained schedules with respect to the
knowledge representation of the experts. The results have also suggested that a
more comprehensive validation on a larger set of benchmark instances as well as
a more extensive simulation would bring about a clear insight into the difference
between the proposal and other available approaches.

References

1. Bierwirth, C.: A generalized permutation approach to job shop scheduling with
genetic algorithms. OR Spektrum 17(2-3), 87–92 (Sep 1995)

2. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7(1), 1–17 (1999)

3. Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets.
Fuzzy Sets and Systems 15(1), 1–19 (1985)

4. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling prob-
lems using genetic algorithms—I. representation. Computers & Industrial Engi-
neering 30(4), 983–997 (1996)

5. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel
Problem Solving from Nature PPSN VI, pp. 849–858 (2000)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

7. Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE
Transactions on Fuzzy Systems 5(4), 557–569 (1997)



12 T.-D. Tran, R. Varela, I. González-Rodŕıguez, and E.-G. Talbi

8. Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area
compensation. Fuzzy Sets and Systems 82(3), 319–330 (1996)

9. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling prob-
lems. Operations Research 8(4), 487–503 (1960)

10. Gonzalez-Rodriguez, I., Puente, J., Vela, C., Varela, R.: Semantics of schedules for
the fuzzy job-shop problem. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans 38(3), 655–666 (2008)

11. Gonzalez-Rodriguez, I., Vela, C., Puente, J.: A memetic approach to fuzzy job shop
based on expectation model. In: IEEE Int. Conf. on Fuzzy Systems. pp. 1–6 (2007)

12. González, M., Vela, C., Varela, R.: Scheduling with memetic algorithms over the
spaces of semi-active and active schedules. Lecture Notes in Computer Science,
vol. 4029, pp. 370–379. Springer Berlin / Heidelberg (2006)

13. González-Rodŕıguez, I., Vela, C., Puente, J.: A genetic solution based on lexico-
graphical goal programming for a multiobjective job shop with uncertainty. Journal
of Intelligent Manufacturing 21(1), 65–73 (2010)

14. González-Rodŕıguez, I., Vela, C.R., Puente, J., Hernández-Arauzo, A.: Improved
local search for job shop scheduling with uncertain durations. In: Nineteenth Int.
Conf. on Automated Planning and Scheduling (ICAPS-2009). pp. 154–161 (2009)

15. Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.C.: A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of Operational
Research 167(1), 77–95 (2005)

16. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future.
European Journal of Operational Research 113(2), 390–434 (1999)

17. Jensen, M.T.: Improving robustness and flexibility of tardiness and total flow-time
job shops using robustness measures. Applied Soft Computing 1(1), 35–52 (2001)

18. Lawrence, S.: Supplement to “Resource constrained project scheduling: An ex-
perimental investigation of heuristic scheduling techniques”. Tech. rep., GSIA,
Carnegie Mellon University, Pittsburgh PA (1984)

19. Lin, F.T., Yao, J.S.: Using fuzzy numbers in knapsack problems. European Journal
of Operational Research 135(1), 158–176 (2001)

20. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value
models. IEEE Transactions on Fuzzy Systems 10(4), 445–450 (2002)

21. Nakano, R., Yamada, T.: Conventional genetic algorithm for job shop problems.
In: Proceedings of ICGA. pp. 474–479 (1991)

22. Park, B.J., Choi, H.R., Kim, H.S.: A hybrid genetic algorithm for the job shop
scheduling problems. Computers & Industrial Engineering 45(4), 597–613 (2003)

23. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edn.
(2008)

24. Puente, J., Vela, C.R., González-Rodŕıguez, I.: Fast local search for fuzzy job shop
scheduling. In: Proceedings of ECAI 2010. pp. 739–744. IOS Press (2010)

25. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

26. Varela, R., Serrano, D., Sierra, M.: New codification schemas for scheduling with
genetic algorithms. In: Mira, J., Álvarez, J. (eds.) Artificial Intelligence and Knowl-
edge Engineering Applications: A Bioinspired Approach, Lecture Notes in Com-
puter Science, vol. 3562, pp. 15–20. Springer Berlin / Heidelberg (2005)

27. Vázquez, M., Whitley, D.: A comparison of genetic algorithms for the static job
shop scheduling problem. In: Parallel Problem Solving from Nature PPSN VI,
LNCS, vol. 1917, pp. 303–312. Springer Berlin / Heidelberg (2000)

28. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Informa-
tion Sciences 24(2), 143–161 (1981)


	Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective Optimizer
	Introduction
	Job-Shop Scheduling with Uncertain Durations
	Crisp Job-Shop Scheduling Problems
	Modeling Uncertain Durations with TFNs
	Fuzzy Job-Shop Scheduling Problems

	An Evolutionary Approach to the Fuzzy JSPs
	Analyzing the Tolerance for Knowledge Representation
	Conclusions


