
HAL Id: hal-01059423
https://hal.inria.fr/hal-01059423

Submitted on 31 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal proofs of code generation and verification tools
Xavier Leroy

To cite this version:
Xavier Leroy. Formal proofs of code generation and verification tools. SEFM 2014 - 12th Interna-
tional Conference Software Engineering and Formal Methods, Sep 2014, Grenoble, France. pp.1-4,
�10.1007/978-3-319-10431-7_1�. �hal-01059423�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49600818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01059423
https://hal.archives-ouvertes.fr


Formal proofs of code generation and

verification tools

Xavier Leroy

Inria Paris-Rocquencourt, France

Abstract. Tool-assisted verification of critical software has great po-
tential but is limited by two risks: unsoundness of the verification tools,
and miscompilation when generating executable code from the sources
that were verified. A radical solution to these two risks is the deductive
verification of compilers and verification tools themselves. In this invited
talk, I describe two ongoing projects along this line: CompCert, a veri-
fied C compiler, and Verasco, a verified static analyzer based on abstract
interpretation.

Abstract of invited talk

Tool-assisted formal verification of software is making inroads in the critical soft-
ware industry. While full correctness proofs for whole applications can rarely be
achieved [6, 12], tools based on static analysis and model checking can already
establish important safety and security properties (memory safety, absence of
arithmetic overflow, unreachability of some failure states) for large code bases
[1]. Likewise, deductive program verifiers based on Hoare logic or separation logic
can verify full correctness for crucial algorithms and data structures and their
implementations [11]. In the context of critical software that must be qualified
against demanding regulations (such as DO-178 in avionics or Common Crite-
ria in security), such tool-assisted verifications provide independent evidence,
complementing that obtained by conventional verification based on testing and
reviews.

The trust we can put in the results of verification tools is limited by two risks.
The first is unsoundness of the tool: by design or by mistake in its implementa-
tion, the tool can fail to account for all possible executions of the software under
verification, reporting no alarms while an incorrect execution can occur. The
second risk is miscompilation of the code that was formally verified. With a few
exceptions [3], most verification tools operate over source code (C, Java, . . . ) or
models (Simulink or Scade block diagrams). A bug in the compilers or code gen-
erators used to produce the executable machine code can result in an incorrect
executable being produced from correct source code [13].

Both unsoundness and miscompilation risks are known in the critical software
industry and accounted for in DO-178 and other regulations [7]. It is extremely
difficult, however, to verify an optimizing compiler or sophisticated static an-
alyzer using conventional testing. Formal verification of compilers, static ana-
lyzers, and related tools provides a radical, mathematically-grounded answer to



2 Xavier Leroy

these risks. By applying deductive program verification to the implementations
of those tools, we can prove with mathematical certainty that they are free of
miscompilation and unsoundness bugs. For compilers and code generators, the
high-level correctness statement is semantic preservation: every execution of the
generated code matches one of the executions of the source code allowed by
the semantics of the source language. For static analyzers and other verification
tools, the high-level statement is soundness: every execution of the analyzed code
belongs to the set of safe executions inferred and verified by the tool. Combining
the two statements, we obtain that every execution of the generated code is safe.

In this talk, I give an overview of two tool verification projects I am involved
in: CompCert and Verasco. CompCert [8, 9] is a realistic, industrially-usable
compiler for the C language (a large subset of ISO C 1999), producing assembly
code for the ARM, PowerPC, and x86 architectures. It features careful code gen-
eration algorithms and a few optimizations, delivering 85% of the performance of
GCC at optimization level 1. While some parts of CompCert are not verified yet
(e.g. preprocessing), the 18 code generation and optimization passes come with
a mechanically-checked proof of semantics preservation. Verasco [2] is an ongo-
ing experiment to develop and prove sound a static analyzer based on abstract
interpretation for the CompCert subset of C. It follows a modular architecture
inspired by that of Astrée: generic abstract interpreters for the C#minor and
RTL intermediate languages of CompCert, parameterized by an abstract domain
of execution states, itself built as a combination of several numerical abstract
domains such as integer intervals and congruences, floating-point intervals, and
integer linear inequalities (convex polyhedra).

Both CompCert and Verasco share a common methodology based on interac-
tive theorem proving in the Coq proof assistant. Both projects use Coq not just
for specification and proving, but also as a programming language, to implement
all the formally-verified algorithms within Coq’s Gallina specification language,
in pure functional style. This way, no program logic is required to reason about
these implementations: they are already part of Coq’s logic. Executability is not
lost: Coq’s extraction mechanism produces executable OCaml code from those
functional specifications.

CompCert and Verasco rely crucially on precise, mechanized operational se-
mantics of the source, intermediate, and target languages involved, from Comp-
Cert C to assembly languages. These semantics play a crucial role in the cor-
rectness statements and proofs. In a sense, the proofs of CompCert and Verasco
reduce the problem of trusting these tools to that of trusting the semantics in-
volved in their correctness statements. An executable version of the CompCert C
semantics was built to enable testing of the semantics, in particular random test-
ing using Csmith [13].

Not all parts of CompCert and Verasco need to be proved: only those parts
that affect soundness, but not those part that only affect termination, preci-
sion of the analysis, or efficiency of the generated code. Leveraging this effect,
complex algorithms can often be decomposed into an untrusted implementation
followed by a formally-verified validator that checks the computed results for



Formal proofs of code generation and verification tools 3

soundness and fails otherwise. For example, CompCert’s register allocation pass
is composed of an untrusted implementation of the Iterated Register Coalescing
algorithm, followed by a validation pass, proved correct in Coq, that infers and
checks equalities between program variables and registers and stack locations
that were assigned to them [10]. Likewise, Verasco’s relational domain for lin-
ear inequalities delegates most computations to the Verasco Polyhedral Library,
which produces Farkas-style certificates that are checked by Coq-verified valida-
tors [4]. Such judicious use of verified validation a posteriori is effective to reduce
overall proof effort and enable the use of sophisticated algorithms.

In conclusion, CompCert and especially Verasco are ongoing experiments
where much remains to be done, such as aggressive loop optimization in Comp-
Cert and scaling to large analyzed programs for Verasco. In parallel, many other
verification and code generation tools also deserve formal verification. A no-
table example is the verified verification condition generator of Herms et al [5].
Nonetheless, the formal verification of code generation and verification tools ap-
pears both worthwhile and feasible within the capabilities of today’s interactive
proof assistants.

Acknowledgments. This work is supported by Agence Nationale de la Recherche,
grant ANR-11-INSE-003.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation 2003. pp. 196–207. ACM Press (2003)

2. Blazy, S., Maronèze, A., Pichardie, D.: Formal verification of a C value analysis
based on abstract interpretation. In: Static Analysis, 20th International Sympo-
sium (SAS 2013). Lecture Notes in Computer Science, vol. 7935, pp. 324–344.
Springer (2013)

3. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-
life processor. In: Embedded Software, First International Workshop, EMSOFT
2001. LNCS, vol. 2211, pp. 469–485. Springer (2001)

4. Fouilhé, A., Monniaux, D., Périn, M.: Efficient generation of correctness certifi-
cates for the abstract domain of polyhedra. In: Static Analysis, 20th International
Symposium (SAS 2013). LNCS, vol. 7935, pp. 345–365. Springer (2013)

5. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condi-
tion generator. In: Verified Software: Theories, Tools, Experiments (VSTTE 2012).
LNCS, vol. 7152, pp. 2–17. Springer (2012)

6. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an operating-system kernel. Comm. ACM
53(6), 107–115 (2010)

7. Kornecki, A.J., Zalewski, J.: The qualification of software development tools from
the DO-178B certification perspective. CrossTalk 19(4), 19–22 (Apr 2006)

8. Leroy, X.: Formal verification of a realistic compiler. Comm. ACM 52(7), 107–115
(2009)



4 Xavier Leroy

9. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

10. Rideau, S., Leroy, X.: Validating register allocation and spilling. In: Compiler Con-
struction (CC 2010). LNCS, vol. 6011, pp. 224–243. Springer (2010)

11. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: FM 2009: Formal Methods. LNCS, vol. 5850, pp. 532–546.
Springer (2009)

12. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Programming Language Design and Implementa-
tion 2010. pp. 99–110. ACM Press (2010)

13. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011. pp. 283–294. ACM Press
(2011)


