
HAL Id: hal-01060114
https://hal.archives-ouvertes.fr/hal-01060114

Submitted on 2 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New IPv6 Identification Paradigm: Spreading of
Addresses Over Time

Florent Fourcot, Laurent Toutain, Frédéric Cuppens, Nora
Cuppens-Bouhlahia, Stefan Köpsell

To cite this version:
Florent Fourcot, Laurent Toutain, Frédéric Cuppens, Nora Cuppens-Bouhlahia, Stefan Köpsell. New
IPv6 Identification Paradigm: Spreading of Addresses Over Time. ICNS 2014 : the tenth International
Conference on Networking and Services, Apr 2014, Chamonix, France. pp.74 - 83. �hal-01060114�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49600239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01060114
https://hal.archives-ouvertes.fr

New IPv6 Identification Paradigm:

Spreading of Addresses Over Time

Florent Fourcot, Laurent Toutain

Frédéric Cuppens and Nora Cuppens-Boulahia

Institut Mines-Télécom; Télécom Bretagne

Université européenne de Bretagne

Email: {first}.{last}@telecom-bretagne.eu

Stefan Köpsell

TU Dresden; Faculty of Computer Science

Email: stefan.koepsell@tu-dresden.de

Abstract—The identification of packet flows is a very important
feature to provide security on the Internet. This flow identification
is traditionally done by the well-know five tuple source IP address,
destination IP address, transport layer protocol number and
the two source/destination identifiers of transport layer protocols
(named ports on UDP and TCP). Unfortunately, the IP source
address is not reliable at all. However, we can use new security
paradigms based on new IPv6 properties. In particular, IPv6
introduces a large address space. Our solution takes the benefit
of this space with a high frequency rotation of IP addresses,
that we call spreading. This spreading improves the security
since only the sender and the receiver are able to generate and
follow this temporal sequence. An attacker will not be able to
successfully insert malicious packets into a flow or to initialize a
flow. It protects against session initialization flooding and against
attacks on established connections. In this paper, we describe
the architecture of our solution and the protocol to initiate a
connection and also performance evaluation of our spreading.

Keywords–IPv6; security; flow identification; spoofing.

I. INTRODUCTION

A. Flow identification in the current Internet

Flow identification is the base of some Internet mecha-
nisms, like security (filtering of packets) and priority policies
for Quality of Service. But since the Internet is a datagram
network and IP is not a connection oriented protocol, the
notion of flow is not explicit at the network layer. Each
packet is independent, and two similar packets can follow two
different routes. It is why a flow is defined in the RFC 2722 [1]
as “an artificial logical equivalent to a call or connection”. It is
“artificial”, and there are no easy ways to discriminate a flow
in an IP network.

At the transport layer, the concept of flow is more natural.
This is a mandatory function to sort packets, reassemble seg-
ments and detect errors, like the popular protocol Transmission
Control Protocol (TCP) [2] does. To have this notion of flow,
one can use Transport Layer addresses, named ports in case
of TCP.

This is why we need a tuple of five elements in order to
extract the notion of flow on the network. The first two are the
source’s and destination’s IP addresses, directly available in the
IP headers. The next one is the transport layer number, avail-
able in the field next header for a Internet Protocol version
6 (IPv6) packet without extensions. With the knowledge of the
transport protocol, it is possible to parse the transport header

and also to read the port numbers. They complete the tuple,
already filled with the three identifiers of IP header.

This well known five tuple is the basic identification of a
flow. The identification can be more complex. For example, a
stateful firewall will follow the TCP states of each connection,
and it will discard packets if they do not follow the TCP
standard.

B. Address spreading benefits

These five members of the identification tuple
(IPsrc, IPdst, NextHeader, Portsrc, Portdst) are not
authentic by nature. The source IP address and the source
port especially can be manipulated easily by an attacker. If
an attacker is able to send packets with a spoofed source IP
address, he will be in good position to try TCP reset attacks,
to inject packets on the destination network, to try a targeted
attack to the destination, etc.

With IPv6, the large IP address space allows new secu-
rity opportunities, like Cryptographically Generated Address
(CGA) [3]. If all IPv4 solutions had to minimize the number of
IP addresses in use, it is now possible to use a lot of addresses.
Our solution provides security thanks to the spreading of
addresses. In our solution, source and destination IP addresses
of a flow are renewed frequently, according to a temporal
sequence. If this sequence is known only by the sender and
the receiver, it adds a new identification feature.

Since we only modify IP addresses, our solution is pretty
simple. It does not need some complex encapsulation (like
IPsec tunnel does), and can be followed by a firewall with the
knowledge of a shared secret.

C. Attacker model

Our attacker can inject some traffic with a spoofed source
IP address. He can be on the transmission path and also able
to read the legitimate traffic.

We do not try to protect against a rebuilding of a flow. This
means that the attacker can use upper layers information like
TCP ports and sequence numbers to rebuild the real flow. Our
protection is against the spoofing: our spreader will recognize
packets from the attacker. However, we provide a protection
against correlation of flows, since we obfuscate addresses. An
attacker can not guess the real source and destination addresses
of a flow, and can not group several flows to one source or
destination just with the help of the information available at
the network layer.

routing interface

prefix indentifier

+-------------------+-----------------+

| n bits | 128-n bits |

+-------------------+-----------------+

Figure 1: The two parts of IPv6 addresses

D. The two IPv6 address parts

An IPv6 address is divided in two parts, depicted in
Figure 1. The routing part (usually called “prefix”) is not
rewritable without connectivity issues, since such modification
on the destination address will prevent upstream routers to send
packets to the destination. In the same way, the source address
has to be compliant with the anti-spoofing rules of the RFC
2827 [4] and could not be arbitrary rewritten.

There is no recommended size of prefix for a end network
[5], but the length can not be more than 64 bits for compatibil-
ity with the IPv6 autoconfiguration. Indeed, the IPv6 Stateless
Address Autoconfiguration (SLAAC) derives the second part
of the address (named interface identifier) from the hardware
MAC address to an identifier of 64 bits. A prefix larger than
64 bits breaks this autoconfiguration.

We choose to rewrite only the last 64 bits of each address,
giving a total of 128 bits. Since 64 bits is the maximum size
for a prefix compatible with autoconfiguration, this value will
be compatible with almost all networks.

E. Related work

There is some previous work on dynamical IPv6 addresses.
The nearest of our work is the “Moving target IPv6 Defense”
publication [6]. This solution uses an User Datagram Protocol
(UDP) tunnel to often rotate addresses and to encapsulate the
real IP packet. An encryption is optional to protect the payload
of the packet. The main drawback of this paper is the choice
to make an encapsulation. It means that the solution has to
fragment big packets to prevents Maximum Transmission Unit
(MTU) problems and to reassemble it at the end of the tunnel.
On the other hand, additional headers can have a bandwidth
performance impact. This proposition does not use a temporal
window for old address to prevent false positive.

An other idea is the publication “An Architecture for
Network Layer Privacy” [7]. It uses an Site Multihoming by
IPv6 Intermediation (SHIM6) extension to spread addresses
over time. Since SHIM6 is an end-to-end solution, the end
device has to allocate all possible addresses before using
the connection. It is probably not desirable that a computer
allocates 1000 addresses on one network interface, because it
will send a lot of Neighbor Discovery packet.

An other paper [8] uses SHIM6 for a protection against
deny of services. The idea is to switch from an address (under
attack) to another one (not under attacks) for all connections
already established.

F. Organization of this paper

In this paper, we first presents some problems of address
spreading and our solution of architecture to overcome them

Figure 2: Spreading of addresses without extra device

in Section II. Second, we introduce principles of the spreading
and some notations in Section III. We describe step by step
the initialization of a connection in Section IV, that we com-
plete with a description of packet processing on spreaders in
Section V. We introduce the theoretical source of performance
issues in Section VI. We close the paper with the description
of performance evaluation in Section VII.

II. LOCALIZATION OF THE SPREADER

A. Difficulties to spread addresses on the end devices

The first idea of spreading is to generate and follow the
address sequence on the end devices (see Figure 2). This
strategy allows a end-to-end security, and the computer does
not need to delegate the security to someone.

However, this solution implies an upgrade of the local
router. The main issue arises if the end device does not get
a delegated prefix, but share the local prefix with several end
devices. The use of a lot of addresses will:

• flood the network with Neighbor Discovery packets.
The router is not aware of the spreading, and can not
know the link between the temporal sequence of IP
addresses and the static MAC address;

• saturate the Neighbor table of the router. With fre-
quently switching of addresses, the router will not be
able to store all mappings between IP addresses and
MAC addresses;

• introduce a latency at each IP address switching, due
to the Neighbor Discovery.

To solve these issues, a solution is to patch the router to
follow the sequence of IP destination addresses in the Neighbor
table. Thus, the router does not need to know the sequence of
source addresses received from the Internet, and is not able to
insert a packet in a flow.

B. The prefix delegation solution

With IPv6, we could have enough addresses to delegate one
address prefix to each end device. It solves the problem of the
mapping between MAC addresses and IP addresses, since the
intermediate only send all IP packets matching a prefix to a
MAC address.

In this case, the end device is in charge of Interface
Identifiers management and can actually be seen as a “router”,
and it is the same architecture at the network layer shown
in Figure 3. The delegation of address prefixes is the best

Figure 3: Architecture of the solution: spreader on the border of the
local network

Figure 4: Architecture of the solution: spreader at the border of the
trusted zone

architecture for the simplicity of the solution and from a
security point of view. However, we need to provide a solution
for a standard network without delegation of prefixes.

C. Simplification with a spreader on the path

For a first approach, we propose to simplify the problem
by adding some new “spreaders”, devices on the path of
the communication. These devices are able to rewrite a flow
of packets with stable addresses to a flow of packet with
dynamical addresses. The spreader can be directly on the
border of the network (see Figure 3) or at the border of the
trusted zone (see Figure 4).

The first positive argument for this architecture is the
simplicity to deploy the solution. An administrator does not
need to upgrade and configure each end device, but can simply
insert the spreader in the network. It has the same benefit than
a modified router following the relation between IP and MAC
address, and less drawback.

The second point is the ability of bad packets filtering.
Since malicious packets consume resources, and can be send
to simply saturate the bandwidth of the network, we have to
discriminate malicious packets as soon as possible. With an
introduction of the spreader at the border of the trust zone, we
achieve efficiently this goal.

We choose this architecture for this paper to simplify
concepts and experimentations.

III. GENERAL PRINCIPLES

A. Prerequisite of the solution

To enable the spreading, we need at least to configure two
networks, for the mapping between the dynamical addresses

Figure 5: Digital timing diagram of a connection initialization

and stable identifiers.

This configuration is done by adding one spreader at the
border of each network. The two spreaders have to share a
secret, that an attacker can not guess. The communication of
this secret is out-of-scope of this paper.

B. Initialization of the spreader

The initialization of the spreader has to create a config-
uration for each compatible peer with a shared secret. This
configuration contains the prefix list of the destination (to catch
packets to be rewritten) and a function to derive cryptographic
keys from the shared secret.

C. Exchange of session data

One of our goals is to spread each flow of data with a
unique sequence of addresses, make it more difficult for an
attacker to group all flows of one end device. To provide it,
both spreaders have to exchange session data at each flow
initialization. There are several ways to accomplish it. The
first one is to add several extras packets to initiate a context
for each flow. It increases latency of connection initialization,
and costs some bandwidth.

The second one is to add extra information on a real
packet, like by adding one extra IPv6 extension header. Since
this extension will be added by the spreader and not by the
end devices, it could result in some maximal transport unit
problem. Indeed, we can not add this header on a big packet,
and have two choices. The first one is to fragment the packet
on the spreader, IPv6 RFCs do not allow this solution. The
second one is to send a “too big” error to the end devices,
which reduce the performance of all packets for the session.

These solutions are not satisfying. We choose another
one, our spreaders encode all information in IPv6 source and
destination addresses, and do not add any extra data to packets
payload. It limits the amount of exchangeable data, but does
not have any cost of bandwidth or latency due to extra packets.

D. Notations

The description of the protocol follows the same steps than
a TCP connection initialization, depicted in Figure 5.

We introduce the following notation for the packet rewrit-
ing (summarized in Table I): PA and PB are the prefixes
of networks for hosts A and B. IPA and IPB are the real
IP addresses of host A and B, concatenation of prefixes and
interface identifiers IIDA and IIDB . IPn

src is the rewritten
source IP address of the packet in step n, and IPn

dst the
destination IP address in the same step. Since we can not
rewrite the prefixes, IPn

src and IPn
dst are concatenation of one

stable prefix (PA or PB) and one rewritten value.

TABLE I: IP ADDRESSES NOTATION

Local network On the Internet

Steps
Real IP

Source

Real IP

Destina-

tion

Rewritten IP

source

Rewritten IP

Destination

1a

→ 1b

SYN

IPA IPB

IP 1

src
=

PA|IID1

src

IP 1

dst
=

PB |IID1

dst

2a

→ 2b

SYN,

ACK

IPB IPA

IP 2

src
=

PB |IID2

src

IP 2

dst
=

PA|IID2

dst

3a

→ 3b

ACK

IPA IPB

IP 3

src
=

PA|IID3

src

IP 3

dst
=

PB |IID3

dst

IV. STEP BY STEP INITIALIZATION

A. Initialization of a connection - first packet

1) Symmetrical rewrite on spreaders: The rewriting begins
with step 1a, when the spreader receives a packet with an
destination IP address matching one of the prefix in the
spreader configuration.

At the first packet of a connection, the local spreader
computes new source and destination IP addresses with the
help of a cryptographic function. We choose the Advanced
Encryption Standard (AES) encryption, but it could be another
one allowing encryption of blocks length of 128 bits.

The AES function takes as input a block of both interface
identifiers of hosts A and B, and the actual key K(t) derived
from the shared secret for the encryption. This AES function
has an output of 128 bits, that the spreader divides in two
blocks of 64 bits to replace last 64 bits of IPA and IPB .

IID1
src = AES(IIDA|IIDB ,K(t))[0− 63] (1)

IID1
dst = AES(IIDA|IIDB ,K(t))[64− 127] (2)

After the rewriting of addresses, the packet follows the stan-
dard routing and filtering process. This ends step 1a.

On the destination spreader, stable addresses are recom-
puted in the same way (AES is a symmetric function) in the
step 1b. After the computing, the destination spreader checks
the validity of the transport layer checksum (this checksum is
mandatory for UDP and TCP with IPv6). If the checksum is
valid, the packet follows the standard policy of routing and
filtering.

If the checksum value is not valid, it can of course be
a sign of transmission problem. One other possible cause of
this invalid checksum is a try of an attacker to inject one
packet in the network, with a spoofing of the source address.
Indeed, IPv6 addresses are part of the checksum computation
and if addresses after the second spreader are not the same than

addresses sent by the source device, it invalids the checksum.
Since the attacker does not know the shared secret, he can not
compute the AES encryption and the generated packet will be
detected by the spreader.

In more details, the Table II depicts the status of the
checksum around the Internet. It looks invalid between the
two spreaders, but this is not a problem since nobody needs to
have a look on the checksum in the path of the communication.
On the contrary, we see in Table III that the checksum of a
spoofed packet looks valid on the Internet, but invalid after the
rewriting of the second spreader.

TABLE II: CHECKSUM VALIDITY FOR A REAL PACKET

Position
Checksum

validity
Remarks

Local Network Valid Computed by the end device

Internet Invalid
Addresses have been rewritten, it

invalids the checksum

Remote

Network
Valid

Addresses have been rewritten by

the second spreader

TABLE III: CHECKSUM VALIDITY - SPOOFED PACKET

Position
Checksum

validity
Remarks

Attacker’s

Network
Valid Computed by the attacker

Internet Valid
No rewriting if the attacker is not

aware of protection

Remote

Network
Invalid

Addresses have been rewritten by

the second spreader

2) Security analyze of the rewriting: If the attacker is aware
of this spoofing protection, he can try to guess the checksum
modification added by the AES encryption of spreaders. The
length of the checksum field is 16 bits, which it gives one
chance on 65 536 to find the good one. This value is only
valid for a short time and for a given address couple, the next
value of K(t) at t+1 will give another checksum modification
implied by the AES encryption.

This security mechanism is not good enough to filter all
packets of an attacker, and some packets can bypass this
protection. But it is important to notice that if the checksum
is valid, the attacker can not guess the rewritten addresses and
can not know what is the rewritten destination address. The
chance to successfully contact a real computer with a valid
address is very low. Indeed, if we assume that the rewriting
is fully random, an attacker has first to bypass the checksum
(one chance on 65 536). If the checksum is valid, a targeted
attack on a computer with an address on the remote network
has one chance on 264 to reach the targeted computer, since
an attacker can not guess the rewritten value after the AES
decryption.

B. Initialization of the connection - reply of the remote

The goal of the addresses rewriting on the first packet is to
protect an initialization of a connection by an attacker. For the

TABLE IV: REWRITING IN INITIALIZATION STEPS

Steps Rewritten IID Source Rewritten IID Destination

1a

→ 1b

SYN

IID1

src
=

AES(IIDA|IIDB ,
K(t))[0 − 63]

IID1

dst
=

AES(IIDA|IIDB ,
K(t))[64 − 127]

2a

→ 2b

SYN,

ACK

IID2

src
= random()

IID2

dst
=

g(t, secret, IID1

src
)

3a

→ 3b

ACK

IID3

src
=

g(t, secret, IID1

src
)

IID3

dst
=

g(t, secret, IID2

src
)

next packets, we create a pseudo-random sequence for each
flow of data, generated by a function g. This function g is a
generator of a random temporal sequence, one example is a
hash function like SHA1.

This creation begins in step 2a. To accomplish it, the
second spreader rewrites the first reply packet of a client with
a random value as IP source, and a value computed from the
source IP address value in the first packet for the destination.

IID2
src = random() (3)

IID2
dst = g(t, secret, IID1

src) (4)

g takes as input the current time, the shared secret between
networks and another value with the same size than an IP
address. This rewriting introduces a random value for the
sequence, but the flow is still easy to identify for both spreaders
with the IP address destination sets to a value that the first
spreader can recognize.

In step 2b, the first spreader recognizes the IP destination
address IP 2

dst with the help of a context previously stored.
This packet is an acknowledgment of the initialization, the
spreading can now really begin. The spreader saves the value of
the IP source (randomized in step 2a) and rewrites the source
and destination IP addresses to the real stable value stored in
the context.

It ends the second step. The first spreader is now sure of
the initialization of the connection, and can use the random
value to bootstrap a new random sequence.

C. Initialization of the connection - Acknowledgment of the
second spreader

The step 3a begins at the next packet sent by the device
from the first network. Both source address and destination
address are now spread with:

IID3
src = g(t, secret, IID1

src) (5)

IID3
dst = g(t, secret, IID2

src) (6)

In step 3b, the second spreader recognizes the couple with the
help of the stored context. This packet is an acknowledgment
of the random value send in step 2a, and the second spreader
is now aware of the success of the initialization. Steps of
initialization are summarized in Table IV.

D. Rewriting during the life of the connection

After the step 3b, both spreaders follow the same
sequence of rewriting with g(t, secret, IID1

src) and
g(t, secret, IID2

src). The rewriting is symmetrical and
both end devices receive stable addresses. An attacker can not
inject some traffic since he does not have the knowledge of
the next addresses in use.

E. Definition of a flow, division of connections in several
temporal sequences

Our goal is to create one sequence of address for each
flow of data. By flow, we mean a sequence of packets where
informations of upper layers are enough for an attacker to
correlate and to rebuild the sequence.

The first trivial idea is to make one flow for each couple
of IPsrc, IPdst. It does not take a lot of resources, but do not
prevent correlation if more than one flow are send between
devices. Nevertheless, it can be desirable to obfuscate this
information.

IPv6 introduces a new header field to give information
about a flow of packets: the flow label field [9]. It is a 20 bits
header, that can be used for Quality of Service or other usages
(the RFC 6294 [10] tries to give of survey of usages). This
flow label can be rewritten on the path of the communication,
and is not part of the checksum. Other usages than Quality
of Service are allowed, which means that we respect standard
specifications [9] with our proposition.

This is why we define a flow by a tuple of
(IPsrc, IPdst, f lowlabel). If the end device set a different
value for two flows, it will be spread into two different
sequences. The flow label is set by the end device itself, which
has enough information to know if a sequence of packets
should not be grouped with another connection.

V. DETAILED PROCESSING ON SPREADERS

Our description of the protocol in Section IV is the ideal
situation. We do not have any loss of packets, and the end
devices use the TCP protocol. It helps to understand how
our protocol works, since it follows the same handshake
mechanism than TCP.

But we have to be robust against loss of packets and
retransmission of data. In the same way, we have to be com-
patible with transport protocols, like UDP, where a connection
does not follow a rigorous initialization procedure, or ICMP
with short session like a simple Echo request. We detail in
this section the processing of packets in spreaders, which
actually support loss of packets and is transport layer protocol
independent.

A. Detailed steps of packets processing (outgoing packets)

The processing of packets from the local network to the
Internet is depicted in Figure 6. For each outgoing packet, the
spreader extracts the tuple (IPsrc, IPdst, f lowlabel) (step 1).
It checks if one context already exists (step 2) and if we already
received an acknowledgment (step 3). If both conditions are
true, we are in the case of an established connection and we
can rewrite IPsrc and IPdst with the help of the function g

Figure 6: Processing of outgoing packet (to the Internet).

and information stored in the context. After that, the packet
continues the standard processing.

If the context does not exist, we have to create one. It
contains the real IP source address and real IP destination
address, as well as the flow label value (step 5). We move
to step 6, the case of the context exists but we do not have yet
any acknowledgment. We have to use AES encryption with
K(t) to rewrite IP addresses.

Since the rewritten IPsrc is used as parameter for a reply
from the remote network, we have to store it (step 7 and
step 9). We can store more than one address if we send severals
packets before we receive any acknowledgment. The packet
follows afterwards the standard packet processing.

B. Detailed steps of packets processing (incoming packets)

The Figure 7 depicts the packet processing for all packets
from the Internet. The processing of incoming packets begins
with the extraction of the couple (IPsrc, IPdst). We do not
extract the flow label, this value can not be trusted outside
of the local network. This flow label will be rewritten to an
internal value to make the future flow identification of local
packets going to the Internet. The goal is to know if a context
already exists for this connection (step 2 and 3). If this is the
first packet for this context, it is an acknowledgment of the
initialization and we have to change the status of the context
(step 8). We end the processing with the rewriting of dynamical
addresses to stable addresses and we return the packet for
standard processing (step 6).

If we do not have a context, we have to try a decryption of
IP addresses with the AES function and K(t) in step 7. This
decryption is followed by the computation and the verification
of the transport layer protocol checksum in step 9. A bad
checksum implies to drop the packet, since it is probably a
try of an attacker to send a packet with a spoofed address. If

Figure 7: Processing of incoming packet (from the Internet).

it is valid, we initiate a context (step 10) and we return the
rewritten packet for standard processing.

VI. THEORETICAL LOSS OF PACKETS

Our spreading solution drops packets if they are not
following the sequence of addresses. This spreading protects
against an attacker, but valid packets sent by the real device
can be dropped. Indeed, the latency in the network is the main
problem: if a packet is too long in transmission across the
network, it will be drop by the receiver, since he had already
switched to the next addresses.

The second source of problems is the time desynchroniza-
tion between two spreaders: if the clocks are not synchronized,
a valid packet will be detected as spoofed even if the sender
is not an attacker.

In this section, we describe the theory of this packet loss.
We first estimate the loss of packets in case of latency in the
network with perfectly synchronized spreaders. Second, we
add the problem of time desynchronization between spreaders.
Next, we explore the consequences for a simple ICMP echo
request/echo reply communication. We conclude with solutions
to mitigate both problems.

A. Latency effect

The latency is the time needed for a packet to go from
the source to the destination. The latency can be less than one
millisecond on a local network (LAN), and several seconds
between both points on the Internet. If we assume that the
latency is stable for all packets and is the same in both

directions, it is easy to estimate the proportion of the packet
loss. All packets sent at the end of the lifetime of one address
will be drop by the receiver spreader. The duration of this
black hole in the communication is exactly the value of the
latency. If we consider that packets are uniformly send over
time, we have them a packet proportion loss of:

loss =
latency

lifetime
(7)

For example, with a configuration of 1 second for the
lifetime of addresses, with 100 ms of latency on the network,
10% of packets will be dropped in both direction of the
transmission between the spreader A and the spreader B.

B. Desynchronization effect

It is not easy to perfectly synchronize two computers on
the Internet. Even with the Network Time Protocol, clocks
of computers are not perfect and there are always a little
desynchronization. In one way of the transmission, this desyn-
chronization is good, since it reduces the observed latency
between both computers. In the other direction, the latency
is added to the latency and it implies a longer duration of
black hole for the communication.

If we assume that the spreader A is desynchronized in the
future with spreader B, the loss in the direction A to B is:

lossAB =
latency + desync

lifetime
(8)

In the other direction from B to A, the loss has been reduce
to:

lossBA =
|latency − desync|

lifetime
(9)

The perfect case for this direction is when the latency is equal
to the desynchronization, there are no more packet loss in this
direction. If the desynchronization is bigger than the latency,
some packets come too early to the spreader A (A did not yet
switch to the “new” address) and packets are dropped.

With the same configuration of 1 second for the lifetime
of addresses, with 100 ms of latency on the network, and
a desynchronization of 50 ms, 15% of packets are dropped
between A and B (150ms of black hole) and 5% between B
and A.

C. ICMP echo request/echo reply communication

The evaluation of packet loss in both directions is not
enough to evaluate the impact on a communication. On the
Internet, a unidirectional payload transmission is very unusual.
The most popular protocol TCP sends a lot of acknowledgment
packets even for a unidirectional transmission, and a simple
ICMP echo request is replied with an echo reply packet.

Our loss of packets is not distribute like a standard network
error, each packet does not have a probability of failure, but
the connection seems to be broken for a short duration, in one
or two ways.

0 200 400 600 800 1,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Addresses lifetime (milliseconds)

P
ro

p
o

rt
io

n
o

f
co

n
n

ec
ti

o
n

fa
il

ed Latency

10ms

20ms

50ms

100ms

150ms

Figure 8: ICMP echo failure rate in function of latency

For example, in case of ICMP echo transmission between
spreaders A and B, the total duration of one of packet echo
reply/request will dropped is

latency ∗ 2 + desync (10)

We plot in Figure 8 the theoretical ICMP echo request/reply
transmission failure for a given latency in function of address
lifetime, without any desynchronization of spreaders.

D. Temporal windows one old and next addresses

To reduce the loss of packets, it is possible to accept the old
address of time t−1 in a temporal windows where both current
address t and t − 1 addresses are accepted. With a temporal
windows larger than the latency, no packets are dropped by
synchronized spreaders.

In case of desynchronization smaller than the latency, we
have to add this desynchronization duration to the temporal
windows to accept all packets send in the communication. A
spreader can not know if a packet is delayed due to the latency
or due to a desynchronization problem.

If the desynchronization is larger than the latency, a
spreader will receive packets to early. To solve it, we can add
in the same way a temporal windows where both addresses of
t and t + 1 are valid. If a spreader receives a lot of packets
on the t + 1 address, it is a sign of desynchronization and it
could help to resynchronize both spreaders. We present our
experimental results on temporal windows to accept old and
future addresses in Section VII-D.

VII. PERFORMANCE TESTS

A. Test beds

1) Implementation: Our implementation is based on a
Netfilter module for Linux. It follows steps explained in
Section V. The implementation supports configuration of the
validity lifetime of one address as well than temporal windows
for packets out of the current time sequence.

1.8 2 2.2 2.4 2.6 2.8 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

Figure 9: RTT of UDP echo requests on the LAN

40 42 44 46 48 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

Figure 10: RTT of UDP echo requests on the 6to4 network

2) Networks tests: We have done several experimentations
on several test beds, and this paper presents results from two of
them. Our first test bed is the ideal one, in a LAN. The typical
round-trip delay time (RTT) is around 2 milliseconds (ms),
there are no loss or desequencing of packets. The Figure 9
depicts the cumulative distribution function of the RTT.

The second one is between a server in Germany using
a 6to4 tunnel and a server with native IPv6 connectivity in
France. The network has a poor quality: there are some natural
packet loss (around 1%) and desequencing (around 0.5% on
high network load). In our preliminary tests, the 6to4 tunnel
uses to be less congested in the night, and we ran our tests
in the night to avoid some random congestion issue. The
Figure 10 depicts the cumulative distribution function of the
RTT.

All devices of our networks are time synchronized on the
same Network Time Protocol server. It does not provide a
perfect synchronization.

B. Spreading consequences

1) Tests description: To evaluate the consequences of our
spreading, we ran for each network three tests. The first one

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Transmission Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

UDP

UDP spread

TCP-init

TCP-init spread

TCP-data

TCP-data spread

Figure 11: Consequences of a simple spreading on the LAN

send a standard UDP echo packet, it provides a good evaluation
of the network quality for the loss of packets and the latency.
The second one is a simple TCP handshake initialization,
without data transfer. The last one is a TCP connection with
data transfer (65535 bytes). Since TCP is the most popular
protocol on the Internet and that the test involves transfer of
data, it is the best test to evaluate the user experience on a
network with spreading. We set a timeout of 4 seconds on
both TCP tests, and we consider it loss after this time.

2) Simple spreading: Since computers are not perfectly
synchronized and due to the network latency, our spreading
implies some loss of packets and it has consequences on the
network quality. We set first a lifetime of one second for each
address, without any temporal windows for old and future
addresses. The Figure 11 depicts the results on the LAN and
Figure 12 on the 6to4 network.

On the LAN, there are no loss of UDP packet without
spreading. With spreading enabled, the percentage of failure
is around 4%. UDP does not provide retransmission of data
and the proportion of success does not increase with the time.

The TCP handshake needs three packets to be completed,
and the opening time of the majority of TCP connection is
consistent with the UDP test. Some openings are delayed, and
will be successfully completed with retransmission. They are
not displayed on Figure 11, but we observe the same kind of
results that are shown in the 6to4 network.

On the 6to4 network, loss of packets has big effect on TCP
performance. For the opening of the connection, we see some
steps corresponding to standard time of Linux retransmission
strategy for TCP.

3) High frequency addresses switching, consequences on
loss of packets: Of course, the lifetime of addresses has a
big impact on the quality of the connection. We tried lifetime
values between 50 ms and 2 seconds, and we summarize the
percentage of packet loss in Table V.

We compare it to the theoretical result of Section VI-C in
Figure 13. For the 6to4 network, the typical latency is around
21 ms, and we measure a desynchronization of 8 ms at the
end of the experiment, it gives us around 50 ms of black hole

0 1,000 2,000 3,000 4,000
0.6

0.7

0.8

0.9

1

Transmission Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

UDP

UDP spread

TCP-init

TCP-init spread

TCP-data

TCP-data spread

Figure 12: Consequences of a simple spreading on 6to4

TABLE V: PROPORTION OF PACKET LOSS

Lifetime LAN 6to4

50 ms 51% 100%

75 ms 13.2% 60%

100 ms 10% 48.8%

150 ms 9.7% 36.5%

200 ms 5.7% 28%

300 ms 3.9% 20.4%

500 ms 1.3% 14.3%

750 ms 1.1% 8.7%

1000 ms 0.3% 6.8%

2000 ms 0.1% 5.1%

for the transmission. Our experimental result is very close to
this theoretical result. But since the 6to4 network has some
natural packet loss, there are more failure than excepted when
the spreading effect decrease.

On the LAN, the latency is small, and the desynchro-
nization is the main issue. We measure a desynchronization
between 0 and 30 ms, it is not stable in time of experiences.
We took the middle value to plot the theoretical value with a
black hole of 17 ms at each address switching.

C. Delayed packets: temporal window for the last old address

To prevent loss of delayed packets, we add a temporal
window for the old address. In this temporal windows, the
old and the current addresses of a sequence are accepted by
the spreader. It is very efficient to decrease the loss of packets
on the 6to4 network, like we can see in Figure 14.

With a temporal windows larger than the sum of the latency
and the desynchronization of the network, we get the same
performance than without spreading.

As depicted in Figure 15, it is not enough to prevent loss of
packets on the LAN. The desynchronization is bigger than the

0 200 400 600 800 1,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Addresses lifetime (milliseconds)

P
ro

p
o

rt
io

n
o

f
co

n
n

ec
ti

o
n

fa
il

ed Real 6to4

Theory 6to4 l=50ms

Real LAN

Theory LAN l=17ms

Figure 13: Proportion of failed ICMP echo transmission

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

Transmission Time (seconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

Old address validity

No spreading

0 ms

4 ms

8 ms

20 ms

40 ms

Figure 14: TCP test with transmission of data on the 6to4 network
in function of temporal windows for the old address

latency and some packets come to early for a spreader. In this
case, we need to accept the previous address on the spreader
desynchronized in the future as well than the next address on
the other spreader.

D. Desynchronization: temporal window for next address

To solve the desynchronization issue on the LAN, we add
a temporal windows for the next address. During this temporal
windows, both actual address and next address of the sequence
are accepted by the spreader.

We plotted the results of UDP test in Figure 16, with a
lifetime of 200 ms and a temporal windows for the old address
of 60 ms.

Adding a temporal windows for the next address is not
enough to avoid any loose of packet. We need to accept the
old address on the spreader with a clock ahead of the real time.
We wrote in Table VI the loss of packets with respect of both
temporal windows for the old and the future address on the
LAN. Since the desynchronization is not stable in the time of
the experience, some values can be confusing. The loss can
decrease if we increase the temporal windows. However, if

2 2.2 2.4 2.6 2.8 3
0.8

0.85

0.9

0.95

1

Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

Old address validity

No spreading

0 ms

8 ms

40 ms

Figure 15: UDP test in function of temporal windows for the old
address on the LAN

2.2 2.4 2.6 2.8 3 3.2
0.9

0.92

0.94

0.96

0.98

1

RTT Time (milliseconds)

P
ro

p
o

rt
io

n
o

f
su

cc
es

sf
u

l
co

n
n

ec
ti

o
n

s

Next address advance

No spreading

0 ms

4 ms

12 ms

40 ms

Figure 16: Next address temporal windows on the LAN

both temporal windows are larger than the desynchronization,
there are no more loss of packets. A value of 64 milliseconds
is enough here.

VIII. CONCLUSION

The spreading of addresses is an innovative and new
solution to identify a connection. This is a new mechanism to
protect against spoofing attack. Our spreading protects against

TABLE VI: INFLUENCE OF NEXT AND OLD ADDRESSES ON
PACKET LOSS

% loss

Next address temporal windows (ms)

0 4 8 12 20 40 64 80

O
ld

a
d

d
re

ss
v
a

li
d

it
y 0 3.5 5 3.9 3.3 3.3 4.8 3 4.9

4 6 3.3 0.8 0.9 0.5 1.3 1.1 1.5

8 2.7 2.3 0.6 0.7 0.7 0.1 0 0

12 6.4 3 2 0 0 0 0 0

20 3 2.3 0.5 0 0 0 0 0

initialization of a connection from an attacker, as well than
injection of packet inside a established connection.

We described a complete protocol to securely initiate
connection between spreaders, with one initialization of tem-
poral sequences of addresses per flow. We did a step by
step description of the spreader internal functionality, and we
explain the theoretical loss of packets without any temporal
windows.

With the use of temporal windows for the old address, we
can protect against false positive detection of packets due to
the network latency. With the use of a temporal window for the
next address, we protect our solution against desynchronization
of devices. We can use this information to resynchronize
spreaders without external source of time.

Thanks to these temporal windows, we can achieve a very
high frequency of address switching. An address is valid only
for several duration of the latency in the network.

In the future works, we will evaluate algorithms to generate
sequence of addresses. To simplify the work of the network
administrator, the auto-configuration and the exchange of the
secret between the spreaders have to be considered.

REFERENCES

[1] N. Brownlee, C. Mills, and G. Ruth, “Traffic Flow Measurement:
Architecture,” RFC 2722 (Informational), Internet Engineering Task
Force, Oct. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2722.
txt

[2] J. Postel, “Transmission Control Protocol,” RFC 793 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated
by RFCs 1122, 3168, 6093, 6528. [Online]. Available: http:
//www.ietf.org/rfc/rfc793.txt

[3] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC
3972 (Proposed Standard), Internet Engineering Task Force, Mar.
2005, updated by RFCs 4581, 4982. [Online]. Available: http:
//www.ietf.org/rfc/rfc3972.txt

[4] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address
Spoofing,” RFC 2827 (Best Current Practice), Internet Engineering
Task Force, May 2000, updated by RFC 3704. [Online]. Available:
http://www.ietf.org/rfc/rfc2827.txt

[5] T. Narten, G. Huston, and L. Roberts, “IPv6 Address Assignment to
End Sites,” RFC 6177 (Best Current Practice), Internet Engineering
Task Force, Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/
rfc6177.txt

[6] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d:
A moving target ipv6 defense,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011 - MILCOM 2011, Nov 2011, pp. 1321–1326.

[7] M. Bagnulo, A. Garcia-Martinez, and A. Azcorra, “An architecture
for network layer privacy,” in Communications, 2007. ICC ’07. IEEE
International Conference on, June 2007, pp. 1509–1514.

[8] X. Cheng, J. Bi, and X. Li, “Swing - a novel mechanism inspired
by shim6 address-switch conception to limit the effectiveness of dos
attacks,” in Networking, 2008. ICN 2008. Seventh International Con-
ference on, April 2008, pp. 267–272.

[9] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “IPv6
Flow Label Specification,” RFC 6437 (Proposed Standard), Internet
Engineering Task Force, Nov. 2011. [Online]. Available: http:
//www.ietf.org/rfc/rfc6437.txt

[10] Q. Hu and B. Carpenter, “Survey of Proposed Use Cases
for the IPv6 Flow Label,” RFC 6294 (Informational), Internet
Engineering Task Force, Jun. 2011. [Online]. Available: http:
//www.ietf.org/rfc/rfc6294.txt

