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Asymptoti behaviour of extreme geometri quantilesand their estimation under moment onditionsStéphane Girard(1) & Gilles Stup�er(2)
(1) Team Mistis, Inria Grenoble Rh�ne-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier edex, Frane

(2) Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,13002 Marseille, FraneAbstrat. A popular way to study the tail of a distribution is to onsider its extreme quantiles.While this is a standard proedure for univariate distributions, it is harder for multivariate ones, pri-marily beause there is no universally aepted de�nition of what a multivariate quantile should be. Inthis paper, we fous on extreme geometri quantiles. Their asymptotis are established, both in diretionand magnitude, under suitable moment onditions, when the norm of the assoiated index vetor tendsto one. In partiular, it appears that if a random vetor has a �nite ovariane matrix, then the mag-nitude of its extreme geometri quantiles grows at a �xed rate. We take advantage of these results tode�ne an estimator of extreme geometri quantiles of suh a random vetor. The onsisteny and asymp-toti normality of the estimator are established and our results are illustrated on some numerial examples.AMS Subjet Classi�ations: 62H05, 62G20, 62G32.Keywords: Extreme quantile, geometri quantile, onsisteny, asymptoti normality.1 IntrodutionLet X be a random vetor in R
d. Up to now, several de�nitions of multivariate quantiles of X have beenproposed in the statistial literature. We refer to Ser�ing (2002) for a review of various possibilities for thisnotion. Here, we fous on the notion of �spatial� or �geometri� quantiles, introdued by Chaudhuri (1996),whih generalises the haraterisation of a univariate quantile shown in Koenker and Bassett (1978). Fora given vetor u belonging to the unit open ball Bd of Rd, where d ≥ 2, a geometri quantile with indexvetor u is any solution of the optimisation problem de�ned by

argmin
q∈Rd

E(φ(u,X − q)− φ(u,X)), (1)1



with the loss funtion φ : Rd×R
d → R, (u, t) 7→ ‖t‖+ 〈u, t〉, where 〈·, ·〉 is the usual salar produt on R

dand ‖ ·‖ is the assoiated Eulidean norm. Note that q(u) ∈ R
d possesses both a diretion and magnitude.It an be seen that geometri quantiles are in fat speial ases ofM�quantiles introdued by Brekling andChambers (1988) whih were further analysed by Kolthinskii (1997). Besides, suh quantiles have variousstrong properties. First, the quantile with index vetor u ∈ Bd is unique whenever the distribution of Xis not onentrated on a single straight line in R

d (see Chaudhuri, 1996, or Theorem 2.17 in Kemperman,1987). Seond, although they are not fully a�ne equivariant, they are equivariant under any orthogonaltransformation (Chaudhuri, 1996). Third, geometri quantiles haraterise the assoiated distribution.Namely, if two random variables X and Y yield the same quantile funtion q, then X and Y havethe same distribution (Kolthinskii, 1997). Finally, for u = 0, the well-known L2−geometri median isobtained, whih is the simplest example of a �entral� quantile (see Small, 1990). We point out that onemay ompute an estimation of the geometri median in an e�ient way, see Cardot et al. (2013).These properties make geometri quantiles reasonable andidates when trying to de�ne multivariate quan-tiles, whih is why their estimation was studied in several papers. We refer for instane to Chaud-huri (1996), who established a Bahadur expansion for the estimator of geometri quantiles obtained bysolving the sample ounterpart of problem (1). Chakraborty (2001) then introdued a transformation-retransformation proedure to obtain a�ne equivariant estimates of multivariate quantiles. This notionwas extended to a multiresponse linear model by Chakraborty (2003). Reently, Dhar et al. (2014) de�neda multivariate quantile-quantile plot using geometri quantiles. Conditional geometri quantiles an alsobe de�ned by substituting a onditional expetation to the expetation in (1). We refer to Cadre andGannoun (2000) for the estimation of the onditional geometri median and to Cheng and de Gooijer(2007) for the estimation of an arbitrary onditional geometri quantile. The estimation of a onditionalmedian when there is an in�nite-dimensional ovariate is onsidered in Chaouh and Laïb (2013).Our fous in this paper is rather on extreme geometri quantiles, obtained when ‖u‖ → 1. The theory ofunivariate extreme quantiles is well established, see for instane the monograph by de Haan and Ferreira(2006). On the ontrary, the few works on extreme multivariate quantiles rely on the study of extreme levelsets of the probability density funtion of X when it is absolutely ontinuous with respet to the Lebesguemeasure. We refer for instane to Cai et al. (2011) for an appliation to the estimation of extreme riskregions for �nanial data or to Einmahl et al. (2013) who fous on the ase of bivariate distributionswith an appliation to insurane data. One an also analyse extreme quantiles of multivariate datasetsby seleting a univariate variable and onsidering the other variables as ovariates. This amounts toestimating onditional univariate extreme quantiles: for a �nite-dimensional ovariate, this problem isonsidered in Daouia et al. (2013), the ase of a funtional ovariate being addressed in Gardes andGirard (2012).In this study, we provide an equivalent of the diretion and magnitude of the extreme geometri quantile2



q(u), ‖u‖ → 1 under suitable moment onditions. A partiular orollary of our results is that the magnitudeof the extreme geometri quantiles of a random vetor X having a �nite ovariane matrix grows at a�xed rate. Moreover, in this ase, the magnitude of the extreme geometri quantiles is asymptotiallyharaterised by the ovariane matrix of X . This property opens the door to the de�nition of an extremequantile estimator, whose asymptoti properties are studied in this work.The outline of the paper is as follows. Asymptoti properties of geometri quantiles are stated in Setion 2.An appliation to the estimation of extreme geometri quantiles is given in Setion 3. Some examplesand illustrations of our results are presented in Setion 4. Setion 5 o�ers a ouple of onluding remarks.Proofs are deferred to Setion 6.2 Asymptoti behaviour of extreme geometri quantilesFrom now on, we assume that the distribution of X is not onentrated on a single straight line in R
d andnon-atomi. We shall reformulate the optimisation problem (1) as

argmin
q∈Rd

ψ(u, q)where ψ : Rd × R
d → R, (u, q) 7→ E(φ(u,X − q)− φ(u,X)) an be rewritten as

ψ(u, q) = E(‖X − q‖ − ‖X‖)− 〈u, q〉. (2)Chaudhuri (1996) proved that in this ontext, the solution q(u) of (1), namely the geometri quantile withindex vetor u, exists and is unique for every u ∈ Bd. De�ne further that t/‖t‖ = 0 if t = 0; if u ∈ R
d issuh that there is a solution q(u) ∈ R

d to problem (1), then the gradient of q 7→ ψ(u, q) must be zero at
q(u), that is

u+ E

(
X − q(u)

‖X − q(u)‖

)
= 0. (3)This ondition immediately entails that if u ∈ R

d is suh that problem (1) has a solution q(u), then
‖u‖ ≤ 1. In fat, we an prove a stronger result:Proposition 1. The optimisation problem (1) has a solution if and only if u ∈ Bd.Moreover, remarking that the funtion ψ(u, ·) is stritly onvex, Chaudhuri (1996) proved the followingharaterisation of a geometri quantile: for every u ∈ Bd, q(u) is the solution of problem (1) if and onlyif it satis�es equation (3). In partiular, this entails that the funtion G : Rd → Bd de�ned by

∀q ∈ R
d, G(q) = −E

(
X − q

‖X − q‖

)is a ontinuous bijetion. Proposition 2.6(iii) in Kolthinskii (1997) shows that the inverse of the funtion
G, i.e the geometri quantile funtion u 7→ q(u), is also ontinuous on Bd.In most ases however, omputing expliitly the funtion G is a hopeless task, whih makes it impossibleto obtain a losed-form expression for the geometri quantile funtion. It is thus of interest to prove3



general results about the geometri quantile q(u), espeially regarding its diretion and magnitude. Our�rst main result fouses on the speial ase of spherially symmetri distributions.Proposition 2. If X has a spherially symmetri distribution then:(i) The map u 7→ q(u) ommutes with every linear isometry of Rd. Espeially, the norm of a geometriquantile q(u) only depends on the norm of u.(ii) For all u ∈ Bd, the geometri quantile q(u) has diretion u if u 6= 0 and q(0) = 0 otherwise.(iii) The funtion ‖u‖ 7→ ‖q(u)‖ is a ontinuous inreasing funtion on [0, 1).(iv) It holds that ‖q(u)‖ → ∞ as ‖u‖ → 1.Although the �rst and third statement of Proposition 2 annot be expeted to hold true for a randomvariable whih is not spherially symmetri, one may wonder if the seond and fourth statement, namelythat a geometri quantile shares the diretion of its index vetor and that the norm of the geometriquantile funtion tends to in�nity on the unit sphere, an be extended to the general ase. The nextresult, whih examines the behaviour of the geometri quantile funtion near the boundary of the openball Bd, provides an answer to this question.Theorem 1. Let Sd−1 be the unit sphere of Rd.(i) It holds that ‖q(v)‖ → ∞ as ‖v‖ → 1.(ii) Moreover, if v → u with u ∈ Sd−1 and v ∈ Bd then q(v)/‖q(v)‖ → u.Theorem 1 shows two properties of geometri quantiles: �rst, the norm of the geometri quantile q(v)with index vetor v diverges to in�nity as ‖v‖ ↑ 1. In other words, Proposition 2(iv) still holds forany distribution. This is a rather intriguing property of geometri quantiles, sine it holds even if thedistribution of X has a ompat support. A related point is the fat that sample geometri quantiles donot neessarily lie within the onvex hull of the sample, see Brekling et al. (2001) for a ounter-example.Seond, if v → u ∈ Sd−1 then the geometri quantile q(v) has asymptoti diretion u. Proposition 2(ii)thus remains true asymptotially for any distribution.It is possible to speify the onvergenes obtained in Theorem 1 under moment assumptions. Theorem 2provides a �rst-order expansion of the diretion and of the magnitude of an extreme geometri quantile
q(αu) in the diretion u, where u is a unit vetor and α tends to 1.Theorem 2. Let u ∈ Sd−1.(i) If E‖X‖ <∞ then q(αu)− {‖q(αu)‖u+ E(X − 〈X,u〉u)} → 0 as α ↑ 1.(ii) If E‖X‖2 <∞ and Σ denotes the ovariane matrix of X then

‖q(αu)‖2(1− α) → 1

2
(trΣ− u′Σu) > 0 as α ↑ 1.4



As a onsequene of Theorem 2, it appears that if X has a �nite ovariane matrix Σ then the magnitudeof an extreme geometri quantile in the diretion u is determined (in the asymptoti sense) by Σ. In otherwords, sine the asymptoti diretion of an extreme geometri quantile in the diretion u is exatly u byTheorem 1, it follows that the extreme geometri quantiles of two probability distributions whih admitthe same �nite ovariane matrix are asymptotially equivalent. Furthermore, we observe that
‖q(βu)‖
‖q(αu)‖ =

(
1− α

1− β

)1/2

(1 + o(1))when α → 1 and β → 1. In other words, given an arbitrary extreme geometri quantile, one an deduethe asymptoti behaviour of every other extreme geometri quantile sharing its diretion, independentlyof the distribution. This is fundamentally di�erent from the univariate ase when deduing the value of anextreme quantile from another one requires the knowledge of the extreme-value index of the distribution,see de Haan and Ferreira (2006), Chapter 4. Our results an atually be used to de�ne a onsistent andasymptotially Gaussian estimator of extreme geometri quantiles, as shown in Setion 3 below.3 An estimator of extreme geometri quantilesLet X1, . . . , Xn be independent random opies of a random vetor X having a �nite ovariane matrix Σ.It follows from Theorem 2 that any extreme geometri quantile q(αu) of X , with α ↑ 1 and u ∈ Sd−1 anbe approximated by:
qeq(αu) := (1 − α)−1/2

[
1

2
(tr Σ− u′Σu)

]1/2
u. (4)This an be used to de�ne an estimator of the extreme geometri quantiles of X : let Xn = n−1

∑n
k=1Xkbe the sample mean and

Σ̂n =
1

n

n∑

k=1

(Xk −Xn)(Xk −Xn)
′be the empirial estimator of the ovariane matrix Σ of X . Let further (αn) be an inreasing sequeneof positive real numbers tending to 1. Our estimator q̂n(αnu) of q(αnu) is then

q̂n(αnu) = (1− αn)
−1/2

[
1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2
u.The onsisteny of q̂n(αnu) is examined in the next result.Theorem 3. Let u ∈ Sd−1 and assume that αn ↑ 1. If E‖X‖2 <∞ then

√
1− αn (q̂n(αnu)− q(αnu)) → 0 almost surely as n→ ∞.This result atually means that the extreme geometri quantile estimator is relatively onsistent in thesense that

q̂n(αnu)− q(αnu)

‖q(αnu)‖
→ 0 almost surely as n→ ∞,5



sine ‖q(αnu)‖−1 = O(
√
1− αn), see Theorem 2(ii). This normalisation ould be expeted sine thequantity to be estimated diverges in magnitude. Under the additional assumption that X has a �nitefourth moment, an asymptoti normality result an be established for this estimator:Theorem 4. Let u ∈ Sd−1 and assume that αn ↑ 1 is suh that n(1− αn) → 0. If E‖X‖4 <∞ then
√
n(1− αn) (q̂n(αnu)− q(αnu))

d−→ Z as n→ ∞where Z is a Gaussian entred random vetor.Let us highlight that the ovariane matrix of the Gaussian limit in Theorem 4 essentially depends onthe ovariane matrix M of the Gaussian limit of √n(Σ̂n − Σ), see the proof in Setion 6. Although thematrix M has a heavy and ompliated expression (see e.g. Neudeker and Wesselman, 1990), it anbe estimated when E‖X‖4 < ∞, whih makes it possible to onstrut asymptoti on�dene regions forextreme geometri quantiles.Extreme geometri quantiles an thus be onsistently estimated by q̂n(αnu), whatever the �order� αn, andan asymptoti normality result is obtained when αn ↑ 1 quikly enough. The proposed estimator is thusable to extrapolate arbitrarily far from the original sample. This is very di�erent from the univariate ase,where the empirial quantile q̂n(αn) = inf{t ∈ R | F̂ (t) ≥ αn}, dedued from the empirial umulativedistribution funtion F̂ , estimates the true quantile q(αn) onsistently only if αn onverges to 1 slowlyenough. The extrapolation with faster rates αn is then handled assuming that the underlying distributionfuntion is heavy-tailed and by using adapted estimators, see e.g. Weissman (1978) and the monographby de Haan and Ferreira (2006).4 Numerial illustrationsIn this setion, our main results are illustrated, partiularly Theorems 2, 3 and 4 in the bivariate ase
d = 2 to make the display easier. In this framework, u ∈ S1 an be represented by an angle and we maywrite u = uθ = (cos θ, sin θ), θ ∈ [0, 2π). The iso-quantile urves Cq(α) = {q(αuθ), θ ∈ [0, 2π)} and theirestimates Cq̂n(α) = {q̂n(αuθ), θ ∈ [0, 2π)} an then be onsidered in order to get a grasp of the behaviourof extreme quantiles in every diretion. The following two distributions are onsidered for the randomvetor X :

• the entred Gaussian multivariate distribution N (0, vX , vY , vXY ), with probability density funtion:
∀x, y ∈ R, f(x, y) =

1

2π
√
det Σ

exp


−1

2


 x

y




′

Σ−1


 x

y




 with Σ =


 vX vXY

vXY vY


 .

• a double exponential distribution E(λ−, µ−, λ+, µ+), with λ−, µ−, λ+, µ+ > 0, whose probability6



density funtion is:
∀x, y ∈ R, f(x, y) =





λ+µ+

4
e−λ+|x|−µ+|y| if xy > 0,

λ−µ−

4
e−λ

−
|x|−µ

−
|y| if xy ≤ 0.In this ase, X is entred and has ovariane matrix

Σ =




1

λ2−
+

1

λ2+

1

2

[
1

λ+µ+
− 1

λ−µ−

]

1

2

[
1

λ+µ+
− 1

λ−µ−

]
1

µ2
−

+
1

µ2
+


 .In our study, three di�erent sets of parameters were used for eah distribution, in order that the relatedovariane matries oinide:

• N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherial ovariane matries;
• N (0, 1/8, 3/4, 0) and E(4, 2

√
2/3, 4, 2

√
2/3) with diagonal ovariane matries;

• N (0, 1/2, 1/2, 1/6) and E(2
√
3, 2

√
3, 2
√
3/5, 2

√
3/5) with full ovariane matries.In eah ase, we arry out the following omputations:

• for eah α ∈ {0.99, 0.995, 0.999}, the true quantile urves Cq(α) obtained by solving problem (1) nu-merially, as well as their analogues Cqeq(α) using approximation (4) are omputed. The normalisedsquared approximation error
e(α) = (1 − α)

∫ 2π

0

‖qeq(αuθ)− q(αuθ)‖2 dθis then reorded.
• for eah value of α, we draw N = 1000 repliations of an n−sample (X1, . . . , Xn) of independentopies of X , with n ∈ {100, 200, 500}. The estimated quantile urves Cq̂(j)n (α) orresponding to the
j−th repliation and the assoiated normalised squared error

E(j)
n (α) = (1 − α)

∫ 2π

0

∥∥∥q̂(j)n (αuθ)− q(αuθ)
∥∥∥
2

dθare omputed as well as the mean squared error En(α) = N−1
∑N

j=1 E
(j)
n (α).The true quantile urves, as well as the approximated and the estimated ones are displayed on Figures 1�6in the ase n = 200 and α = 0.995. The true quantile urves look very similar on Figures 1 and 4,on Figures 2 and 5 and Figures 3 and 6. This is in aordane with Theorem 2: eventually, extremegeometri quantiles only depend on the ovariane matrix of the underlying distribution. Moreover, theapproximated quantiles urves are lose to the true ones in all ases, and the estimated quantile urvesare satisfying in all situations with a moderate variability. Similar results were observed for n = 100, 5007



and α = 0.99, 0.999. We do not report the graphs here for the sake of brevity; we do however displaythe approximation and estimation errors in Table 1. Unsurprisingly, the estimation error En(α) dereasesas the sample size n inreases. Both approximation and estimation errors e(α) and En(α) have a stablebehaviour with respet to α.5 Conluding remarksIn this paper, we established the asymptotis, both in diretion and magnitude, of extreme geometriquantiles. A partiular onsequene of our results is that if the underlying distribution possesses a �niteovariane matrix Σ, then an extreme geometri quantile may be estimated aurately, no matter howextreme it is, with the help of the standard empirial estimator of Σ. This is supported by our numerialresults.This work, however, was arried out under moment onditions suh as the existene of �nite �rst andseond-order moments for ‖X‖. It would de�nitely be interesting to see if our onlusions arry over, tosome extent, to the ase when these assumptions are violated. Furthermore, although geometri quantilesmake an appealing andidate for multivariate quantiles, they lak a ouple of nie properties suh asa�ne equivariane, for instane. To takle this issue, one may apply a transformation-retransformationproedure, see Ser�ing (2010); suh proedures admit sample analogues, see for instane Chakraborty etal. (1998) and Chakraborty (2001). Future work on extreme geometri quantiles thus inludes buildingand studying an analogue of our estimator for transformed-retransformed data.6 ProofsSome preliminary results are olleted in Paragraph 6.1, their proofs are postponed to Paragraph 6.3. Theproofs of the main results are provided in Paragraph 6.2.6.1 Preliminary resultsThe �rst lemma provides some tehnial tools neessary to show Theorem 2(ii).Lemma 1. Let ϕ : Rd × R+ × Sd−1 → R be the funtion de�ned by
ϕ(x, r, v) = r2

[
1 +

〈x− rv, v〉
‖x− rv‖

]
.Then for all v ∈ Sd−1, ϕ(·, ·, v) is nonnegative and we have that

∀x ∈ R
d, ∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 and ∀r > ‖x‖, ϕ(x, r, v) ≤ ‖x‖2.In partiular, ϕ(x, r, v) ≤ 2‖x‖2 for every (x, r, v) ∈ R

d × R+ × Sd−1.The next lemma is the �rst step to prove Theorem 2(i).8



Lemma 2. Let u ∈ Sd−1. If E‖X‖ <∞ then, for all v ∈ R
d,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , v
〉

→ −E〈X − 〈X, u〉u, v〉 as α ↑ 1.Lemma 3 below is a result whih is similar to Lemma 2.Lemma 3. Let u ∈ Sd−1. If E‖X‖2 <∞ then
‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
→ −1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1.Lemma 4 is the �rst step to prove Theorem 4. It is essentially a re�nement of Lemma 2.Lemma 4. Let u ∈ Sd−1. If E‖X‖2 <∞ then, for all v ∈ R
d,

‖q(αu)‖
[
‖q(αu)‖

〈
αu− q(αu)

‖q(αu)‖ , v
〉
+ E〈X − 〈X, u〉u, v〉

]

→ 〈u, v〉Var〈X, u〉 − 1

2
〈u, v〉E‖X − 〈X, u〉u‖2 + 〈u, v〉‖E(X − 〈X, u〉u)‖2 − Cov(〈X, u〉, 〈X, v〉)as α ↑ 1.Lemma 5 below is a re�nement of Lemma 3. It is the seond step to prove Theorem 4.Lemma 5. Let u ∈ Sd−1. If E‖X‖3 <∞ then

‖q(αu)‖
(
‖q(αu)‖2

〈
αu − q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+

1

2
E‖X − 〈X, u〉u‖2

)

→ ‖E(X − 〈X, u〉u)‖2 − E(〈X, u〉‖X − 〈X, u〉‖2) as α ↑ 1.6.2 Proofs of the main resultsProof of Proposition 1. From Chaudhuri (1996), it is known that if u ∈ Bd then problem (1) has aunique solution q(u) ∈ R
d. To prove the onverse part of this result, use equation (3) to get

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥ = ‖u‖.Introdue the oordinate representations X = (X1, . . . , Xd) and q(u) = (q1(u), . . . , qd(u)). The Cauhy-Shwarz inequality yields
‖u‖2 =

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥
2

=

d∑

i=1

[
E

(
Xi − qi(u)

‖X − q(u)‖

)]2
≤

d∑

i=1

E

(
(Xi − qi(u))

2

‖X − q(u)‖2
)

= 1.Furthermore, equality holds if and only if for all i ∈ {1, . . . , d}, there exists µi ∈ R suh that
Xi − qi(u)

‖X − q(u)‖ = µialmost surely. In partiular, if w = (µ1, . . . , µd), this entails X ∈ D = q(u) + Rw almost surely, whihannot hold sine the distribution of X is not onentrated in a single straight line in R
d. It follows thatneessarily ‖u‖2 < 1, whih is the result. 9



Proof of Proposition 2. (i) Note that (3) implies that, for any linear isometry h of Rd and every u ∈ Bd,
h(u) + E

(
h(X)− h ◦ q(u)
‖X − q(u)‖

)
= 0.Sine h is a linear isometry, the random vetors X and h(X) have the same distribution and the equality

‖X − q(u)‖ = ‖h(X)− h ◦ q(u)‖ holds almost surely. It follows that
h(u) + E

(
X − h ◦ q(u)

‖X − h ◦ q(u)‖

)
= 0.Sine h(u) ∈ Bd, it follows that h ◦ q(u) = q ◦ h(u), whih ompletes the proof of the �rst statement.(ii) To prove the seond part of Proposition 2, start by noting that sine X and −X have the samedistribution, it holds that E (X/‖X‖) = 0. The ase u = 0 is then obtained via (3). If u 6= 0, up to usingthe �rst part of the result with a suitable linear isometry, we shall assume without loss of generality that

u = (u1, 0, . . . , 0) for some onstant u1 ∈ (0, 1). It is then enough to prove that there exists some onstant
q1(u) > 0 suh that q(u) = (q1(u), 0, . . . , 0). To this end, let us remark that, on the one hand, if v1 ∈ Rand v = v1w ∈ R

d where w = (1, 0, . . . , 0) then
∀j ∈ {2, . . . , d}, E

(
Xj

‖X − v1w‖

)
= 0, (5)sine, for every j ∈ {2, . . . , d}, the random vetors X and (X1, . . . , Xj−1,−Xj, Xj+1, . . . , Xd) have thesame distribution. On the other hand, the dominated onvergene theorem entails that the funtion

v1 7→ E

(
X1 − v1

‖X − v1w‖

)is ontinuous, onverges to 1 at −∞, is equal to 0 at 0 and onverges to −1 at +∞. Thus, the intermediatevalue theorem yields that there exists some onstant q1(u) > 0 suh that
u1 + E

(
X1 − q1(u)

‖X − q1(u)w‖

)
= 0. (6)Consequently, olleting (5) and (6) yields

u+ E

(
X − q1(u)w

‖X − q1(u)w‖

)
= 0and it only remains to apply (3) to �nish the proof of the seond statement.(iii) To show the third statement, use the �rst result to obtain that the funtion g : ‖u‖ 7→ ‖q(u)‖ is indeedwell-de�ned; sine the geometri quantile funtion is ontinuous, so is g. Assume that g is not inreasing:namely, there exist u1, u2 ∈ Bd suh that ‖u1‖ < ‖u2‖ and ‖q(u1)‖ ≥ ‖q(u2)‖. Sine ‖q(0)‖ = 0, it isa onsequene of the intermediate value theorem that one may �nd u, v ∈ Bd suh that ‖u‖ < ‖v‖ and

‖q(u)‖ = ‖q(v)‖. Let h be an isometry suh that h(u/‖u‖) = h(v/‖v‖); then
‖q(h(u))‖ = ‖q(u)‖ = ‖q(v)‖ = ‖q(h(v))‖ and q(h(u))

‖q(h(u))‖ =
h(u)

‖h(u)‖ =
h(v)

‖h(v)‖ =
q(h(v))

‖q(h(v))‖ .10



In other words, q(h(u)) and q(h(v)) have the same diretion and magnitude, so that they are neessarilyequal, whih entails that h(u) = h(v) beause the geometri quantile funtion is one-to-one. This is aontradition beause ‖h(u)‖ = ‖u‖ < ‖v‖ = ‖h(v)‖, and the third statement is proven.(iv) Assume that ‖q(u)‖ does not tend to in�nity as ‖u‖ → 1; sine g is inreasing, it tends to a �nitepositive limit r. In other words, ‖q(u)‖ < r for every u ∈ Bd, whih is a ontradition sine the geometriquantile funtion maps Bd onto R
d, and the proof is omplete.Proof of Theorem 1. (i) If the �rst statement were false, then one ould �nd a sequene (vn) ontained in

Bd suh that ‖vn‖ → 1 and suh that (‖q(vn)‖) does not tend to in�nity. Up to extrating a subsequene,one an assume that (‖q(vn)‖) is bounded. Again, up to extration, one an assume that (vn) onvergesto some v∞ ∈ Sd−1 and that (q(vn)) onverges to some q∞ ∈ R
d. Moreover, it is straightforward to showthat for every u1, u2, q1, q2 ∈ R

d

|ψ(u1, q1)− ψ(u2, q2)| ≤ {1 + ‖u2‖} ‖q2 − q1‖+ ‖q1‖‖u2 − u1‖so that the funtion ψ is ontinuous on R
d × R

d. Reall then that the de�nition of q(vn) implies that forevery q ∈ R
d, ψ(vn, q(vn)) ≤ ψ(vn, q) and let n tend to in�nity to obtain

q∞ = argmin
q∈Rd

ψ(v∞, q).Beause v ∈ Sd−1, this ontradits Proposition 1, and the proof of the �rst statement is omplete:
‖q(v)‖ → ∞ as ‖v‖ → 1.(ii) Pik a sequene (vn) of elements of Bd onverging to u and remark that from (3),

vn + E

(
X − q(vn)

‖X − q(vn)‖

)
= 0for every integer n. Hene, for n large enough, the following equality holds:

vn + E

(∥∥∥∥
X

‖q(vn)‖
− q(vn)

‖q(vn)‖

∥∥∥∥
−1 [

X

‖q(vn)‖
− q(vn)

‖q(vn)‖

])
= 0. (7)Sine the sequene (q(vn)/‖q(vn)‖) is bounded it is enough to show that its only aumulation point is u.Let then u∗ be an aumulation point of this sequene. Sine ‖q(vn)‖ → ∞, we may let n → ∞ in (7)and use the dominated onvergene theorem to obtain u− u∗ = 0, whih ompletes the proof.Proof of Theorem 2. (i) Let (u,w1, . . . , wd−1) be an orthonormal basis of Rd and onsider the followingexpansion :

q(αu)

‖q(αu)‖ = b(α)u+

d−1∑

k=1

βk(α)wk (8)where b(α), β1(α), . . . , βd−1(α) are real numbers. It immediately follows that
q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖ {E(X)− 〈E(X), u〉u} = (b(α)− 1)u+

d−1∑

k=1

‖q(αu)‖βk(α)− E〈X,wk〉
‖q(αu)‖ wk. (9)11



Lemma 2 implies that
‖q(αu)‖

〈
αu− q(αu)

‖q(αu)‖ , wk

〉
= −‖q(αu)‖βk(α) → −E〈X,wk〉 as α ↑ 1 (10)for all k ∈ {1, . . . , d− 1}. Besides, let us note that q(αu)/‖q(αu)‖ ∈ Sd−1 entails

b2(α) +

d−1∑

k=1

β2
k(α) = 1. (11)Theorem 1 shows that b(α) → 1 as α ↑ 1 and thus (10) yields:

‖q(αu)‖(1− b(α)) =
1

2
‖q(αu)‖(1− b2(α))(1 + o(1)) =

1

2
‖q(αu)‖

d−1∑

k=1

β2
k(α)(1 + o(1)) → 0 as α ↑ 1. (12)Colleting (9), (10) and (12), we obtain

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖ {E(X)− 〈E(X), u〉u} = o

(
1

‖q(αu)‖

) as α ↑ 1whih is the �rst result.(ii) Reall (8) and use Lemma 2 to obtain
‖q(αu)‖

〈
αu − q(αu)

‖q(αu)‖ , wk

〉
→ −E〈X, wk〉 as α ↑ 1,for all k ∈ {1, . . . , d− 1}, leading to

‖q(αu)‖2β2
k(α) → [E〈X, wk〉]2 as α ↑ 1 (13)for all k ∈ {1, . . . , d− 1}. Reall (11) and use Lemma 3 to get

‖q(αu)‖2 [αb(α) − 1] → −1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1. (14)Sine (u, w1, . . . , wd−1) is an orthonormal basis of Rd, one has the identity

‖X − 〈X, u〉u‖2 =
d−1∑

k=1

〈X, wk〉2. (15)Colleting (13), (14) and (15) leads to
‖q(αu)‖2

[
1− αb(α) − 1

2

d−1∑

k=1

β2
k(α)

]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1.Therefore,
‖q(αu)‖2

[
1− αb(α)− 1

2

(
1− b2(α)

)]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1, (16)and easy alulations show that
1− αb(α)− 1

2

(
1− b2(α)

)
=

1

2

[
(1− α)(1 + α) + (α− b(α))2

]
. (17)12



Finally, in view of Lemma 2,
‖q(αu)‖

〈
αu − q(αu)

‖q(αu)‖ , u
〉

→ 0 as α ↑ 1whih is equivalent to
‖q(αu)‖2 (α− b(α))

2 → 0 as α ↑ 1. (18)Colleting (16), (17) and (18), we obtain
‖q(αu)‖2(1− α) → 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1.Remarking that, for every orthonormal basis (e1, . . . , ed) of Rd,
d∑

k=1

Var〈X, ek〉 =
d∑

k=1

e′kΣek = trΣ (19)proves that
‖q(αu)‖2(1− α) → 1

2
(tr Σ− u′Σu) ≥ 0 as α ↑ 1.Finally, note that if we had tr Σ − u′Σu = 0 then by (19) we would have that Var〈X, wk〉 = 0 for all

k ∈ {1, . . . , d − 1}. Thus the projetion of X onto the orthogonal omplement of Ru would be almostsurely onstant and X would be ontained in a single straight line in R
d, whih is a ontradition. Thisompletes the proof of Theorem 2.Proof of Theorem 3. Note that

√
1− αn q̂n(αnu) →

[
1

2
(trΣ− u′Σu)

]1/2
u (20)almost surely as n→ ∞. Moreover, by Theorems 1 and 2

√
1− αn q(αnu) =

√
1− αn‖q(αnu)‖

q(αnu)

‖q(αnu)‖
→
[
1

2
(tr Σ− u′Σu)

]1/2
u (21)almost surely as n→ ∞. Combining (20) and (21) ompletes the proof.Proof of Theorem 4. Consider the following representation:

√
n(1− αn) (q̂n(αnu)− q(αnu)) = T1,n + T2,n + T3,nwith T1,n =

√
n

([
1

2
{tr Σ̂n − u′Σ̂nu}

]1/2
−
[
1

2
{trΣ− u′Σu}

]1/2)
q(αnu)

‖q(αnu)‖
,

T2,n =
√
n

([
1

2
{trΣ− u′Σu}

]1/2
−
√
1− αn‖q(αnu)‖

)
q(αnu)

‖q(αnu)‖and T3,n = −
√
n(1− αn)‖q̂n(αnu)‖

(
q(αnu)

‖q(αnu)‖
− u

)
.

13



We start by examining the onvergene of T1,n. Observe �rst that
T1,n =

√
n

1√
2

{tr Σ̂n − u′Σ̂nu} − {trΣ− u′Σu}
{tr Σ̂n − u′Σ̂nu}1/2 + {trΣ− u′Σu}1/2

q(αnu)

‖q(αnu)‖

=
√
n
{tr Σ̂n − u′Σ̂nu} − {trΣ− u′Σu}

2
√
2{trΣ− u′Σu}1/2

u(1 + oP(1)) as n→ ∞in view of Theorem 1(i) and from the onsisteny of Σ̂n. Denote by M the Gaussian entred limit of
√
n(Σ̂n − Σ) (see e.g. Neudeker and Wesselman, 1990). Sine the map A 7→ trA − u′Au is linear, itfollows that

√
n
{tr Σ̂n − u′Σ̂nu} − {trΣ− u′Σu}

2
√
2{trΣ− u′Σu}1/2

d−→ Y as n→ ∞where Y is a entred Gaussian random variable. Now, learly Z := Y u is a Gaussian entred randomvetor and we have
T1,n

d−→ Z as n→ ∞. (22)The sequene T2,n is ontrolled in the following way: using Lemmas 4 and 5 and following the steps ofthe proof of Theorem 2(ii), we obtain
‖q(αnu)‖2(1− αn) =

1

2
(tr Σ− u′Σu) + O(‖q(αnu)‖−1) =

1

2
(tr Σ− u′Σu) + O(

√
1− αn) as n→ ∞.As a onsequene

‖T2,n‖ = O
(√

n(1− αn)
)
= o(1) as n→ ∞. (23)We onlude by ontrolling T3,n. Theorem 2 entails

‖T3,n‖ = OP

(√
n(1 − αn)

‖q̂n(αnu)‖
‖q(αnu)‖

)

= OP


√n(1− αn)

[
tr Σ̂n − u′Σ̂nu

tr Σ− u′Σu

]1/2
 = OP

(√
n(1 − αn)

)
= oP(1) as n→ ∞ (24)by the onsisteny of Σ̂n. Combining (22), (23) and (24) ompletes the proof.6.3 Proofs of the preliminary resultsProof of Lemma 1. The fat that ϕ is nonnegative and the inequality

∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 (25)are straightforward onsequenes of the Cauhy-Shwarz inequality. Furthermore, ϕ an be rewritten as
ϕ(x, r, v) = r2

[ ‖x− 〈x, v〉v‖2
‖x− rv‖ [‖x− rv‖ − 〈x− rv, v〉]

]
.Let us now remark that, if ‖x‖ < r, then, by the Cauhy-Shwarz inequality, 〈x− rv, v〉 = 〈x, v〉 − r < 0whih makes it lear that

ϕ(x, r, v)1l{‖x‖<r} ≤ r2
‖x− 〈x, v〉v‖2

‖x− rv‖2
1l{‖x‖<r} =: ψ(x, r, v)1l{‖x‖<r}. (26)14



Sine ‖x− rv‖2 = ‖x‖2 − 2r〈x, v〉 + r2, the funtion ψ(x, ·, v) is di�erentiable on (‖x‖, +∞) and someeasy omputations yield
∂ψ

∂r
(x, r, v) = 2r

[
‖x‖2 − r〈x, v〉

] ‖x− 〈x, v〉v‖4
‖x− rv‖4

.If 〈x, v〉 ≤ 0 then ψ(x, ·, v) is inreasing on (‖x‖, +∞) and thus
∀r > ‖x‖, ψ(x, r, v) ≤ lim

r→+∞
ψ(x, r, v) = ‖x− 〈x, v〉v‖2 ≤ ‖x‖2. (27)Otherwise, if 〈x, v〉 > 0 then ψ(x, ·, v) reahes its global maximum over [‖x‖, +∞) at ‖x‖2/〈x, v〉 andtherefore,

∀r > ‖x‖, ψ(x, r, v) ≤ ψ

(
x,

‖x‖2
〈x, v〉 , v

)
= ‖x‖2. (28)Colleting (26), (27) and (28) yields

ϕ(x, r, v)1l{‖x‖<r} ≤ ‖x‖21l{‖x‖<r}. (29)Combining (25) and (29) shows that ϕ(x, r, v) ≤ 2‖x‖2 for every r > 0 and every v ∈ Sd−1 and ompletesthe proof of the result.Proof of Lemma 2. Let v ∈ R
d and Wα(·, v) : Rd → R be the funtion de�ned by

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉
.For n large enough, (3) entails

〈
αu − q(αu)

‖q(αu)‖ , v
〉
+ E (Wα(X, v)) +

1

‖q(αu)‖E〈X, v〉 = 0. (30)It is therefore enough to show that
‖q(αu)‖E (Wα(X, v)) → −〈u, v〉E〈X, u〉 as α ↑ 1. (31)Sine, for every x ∈ R

d,
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
2

= 1− 2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
+

‖x‖2
‖q(αu)‖2 , (32)it follows from a Taylor expansion and Theorem 1 that

‖q(αu)‖Wα(X, v) → −〈u, v〉〈X, u〉 almost surely as α ↑ 1. (33)Besides,
∣∣∣∣∣

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

∣∣∣∣∣

=

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1 ∣∣∣∣

2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
− ‖x‖2

‖q(αu)‖2
∣∣∣∣ ,15



and the Cauhy-Shwarz inequality yields
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1〈

x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

≤ ‖v‖.Thus, using the triangular inequality and the Cauhy-Shwarz inequality, it follows that
|Wα(x, v)| ≤ ‖v‖

[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1 ‖x‖

‖q(αu)‖

[
2 +

‖x‖
‖q(αu)‖

]
.Consequently, one has

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖≤‖q(αu)‖} ≤ 3‖v‖‖x‖1l{‖x‖≤‖q(αu)‖}.Furthermore, the reverse triangle inequality entails, for x ∈ R
d suh that ‖x‖ > ‖q(αu)‖

[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
]−1

≤ ‖q(αu)‖
‖x‖ ,and therefore,

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖>‖q(αu)‖} ≤ 3‖v‖‖x‖1l{‖x‖>‖q(αu)‖}.Finally,
‖q(αu)‖ |Wα(X, v)| ≤ 3‖v‖‖X‖so that the integrand in (31) is bounded from above by an integrable random variable. One an nowreall (33) and apply the dominated onvergene theorem to obtain (31). The proof is omplete.Proof of Lemma 3. Let Zα : Rd → R be the funtion de�ned by

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.For n large enough, (3) yields

〈
αu − q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+ E (Zα(X)) = 0 (34)and it thus remains to prove that

‖q(αu)‖2E (Zα(X)) → 1

2
E‖X − 〈X, u〉u‖2 as α ↑ 1.To this end, rewrite Zα as

Zα(x) = 1−
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1− 1

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉]
. (35)It thus follows from equation (32), Theorem 1 and a Taylor expansion that

Zα(x) =
1

2‖q(αu)‖2
〈
x−

〈
x,

q(αu)

‖q(αu)‖

〉
q(αu)

‖q(αu)‖ , x
〉
(1 + o(1))for all x ∈ R

d. Using Theorem 1 again, we then get
‖q(αu)‖2Zα(X) → ‖X‖2 − 〈X, u〉2 = ‖X − 〈X, u〉u‖2 almost surely as α ↑ 1. (36)16



To onlude the proof, let ϕ : Rd × R+ × Sd−1 → R be the funtion de�ned by
ϕ(x, r, v) = r2

[
1 +

〈x− rv, v〉
‖x− rv‖

]
.Note that ‖q(αu)‖2Zα(x) = ϕ(x, ‖q(αu)‖, q(αu)/‖q(αu)‖). By Lemma 1:

‖q(αu)‖2Zα(X) = ϕ(X, ‖q(αu)‖, q(αu)/‖q(αu)‖) ≤ 2‖X‖2and the right-hand side is an integrable random variable. Use then (36) and the dominated onvergenetheorem to omplete the proof.Proof of Lemma 4. Let v ∈ R
d and reall the notation

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉from the proof of Lemma 2. From (30) there, it is enough to show that

‖q(αu)‖E (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉) → 1

2
〈u, v〉E‖X − 〈X, u〉u‖2 − 〈u, v〉Var〈X, u〉

+ Cov(〈X, u〉, 〈X, v〉)− 〈u, v〉‖E(X − 〈X, u〉u)‖2 (37)as α ↑ 1. Use now (32) in the proof of Lemma 2, Theorem 2(i) and a Taylor expansion to obtain aftersome umbersome omputations that
‖q(αu)‖ (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉)

=
1

2
〈u, v〉‖X − 〈X, u〉u‖2 − 〈u, v〉〈X, u〉 (〈X, u〉 − E〈X, u〉)

+ 〈X, u〉 (〈X, v〉 − E〈X, v〉)− 〈u, v〉〈X, E(X − 〈X, u〉u)〉+
2∑

j=0

‖X‖jεj(α,X, q(αu))with probability 1, where for all j ∈ {0, 1, 2}, εj(α, y, z) → 0 as max(1− α, ‖y‖/‖z‖) ↓ 0. In partiular
‖q(αu)‖ (‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉)

→ 1

2
〈u, v〉‖X − 〈X, u〉u‖2 − 〈u, v〉〈X, u〉 (〈X, u〉 − E〈X, u〉)− 〈u, v〉〈X, E(X − 〈X, u〉u)〉

+ 〈X, u〉 (〈X, v〉 − E〈X, v〉) almost surely as α ↑ 1. (38)The proof shall be omplete provided we an apply the dominated onvergene theorem to the left-handside of (38). To this end, let δ > 0 be suh that
α ∈ (1 − δ, 1) and ‖X‖

‖q(αu)‖ < δ ⇒ max
0≤j≤2

|εj(α,X, q(αu))| ≤ 1.Equality (38) thus entails for α lose enough to 1:
‖q(αu)‖

∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉
∣∣∣1l{X<δ‖q(αu)‖} ≤ P1(‖X‖)1l{X<δ‖q(αu)‖}where P1 is a real polynomial of degree 2. Besides, it is a onsequene of the de�nition of Wα(X, v) andthe Cauhy-Shwarz inequality that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉

∣∣∣1l{X≥δ‖q(αu)‖} ≤ 2(1 + δ)

δ2
‖X‖21l{X≥δ‖q(αu)‖}.17



One an onlude that there exists a real polynomial P2 of degree 2 suh that
‖q(αu)‖

∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉〈X, u〉
∣∣∣ ≤ P2(‖X‖)so that the integrand in (37) is bounded by an integrable random variable. Reall (38) and apply thedominated onvergene theorem to omplete the proof.Proof of Lemma 5. The proof is similar to that of Lemma 4. Reall from the proof of Lemma 3 thenotation

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.From (34) there, it is enough to show that

‖q(αu)‖E
(
‖q(αu)‖2Zα(X)− 1

2
E‖X − 〈X, u〉u‖2

)
→ E(〈X, u〉‖X−〈X, u〉‖2)−‖E(X−〈X, u〉u)‖2 (39)as α ↑ 1. We �rst use (32) in the proof of Lemma 2, equation (35) in the proof of Lemma 3, Theorem 2(i)and a Taylor expansion to obtain after some burdensome omputations that

‖q(αu)‖
(
‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

)

= 〈X, u〉‖X − 〈X, u〉‖2 − 〈X, E(X − 〈X, u〉u)〉+
3∑

j=0

‖X‖jεj(α,X, q(αu)) (40)with probability 1, where for j ∈ {0, 1, 2, 3}, εj(α, y, z) → 0 as max(1− α, ‖y‖/‖z‖) ↓ 0. Espeially
‖q(αu)‖

(
‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

)
→ 〈X, u〉‖X − 〈X, u〉‖2 − 〈X, E(X − 〈X, u〉u)〉 (41)as α ↑ 1. Our aim is now to apply the dominated onvergene theorem to the left-hand side of (39). Tothis end, pik δ > 0 suh that

α ∈ (1 − δ, 1) and ‖X‖
‖q(αu)‖ < δ ⇒ max

0≤j≤3
|εj(α,X, q(αu))| ≤ 1.Equality (40) thus entails for α lose enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣1l{X<δ‖q(αu)‖} ≤ P1(‖X‖)1l{X<δ‖q(αu)‖}where P1 is a real polynomial of degree 3. Moreover, the Cauhy-Shwarz inequality yields
‖q(αu)‖

∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣1l{X≥δ‖q(αu)‖} ≤ 4 + δ2

2δ3
‖X‖31l{X≥δ‖q(αu)‖}.Consequently, there exists a real polynomial P2 of degree 3 suh that

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X)− 1

2
‖X − 〈X, u〉u‖2

∣∣∣ ≤ P2(‖X‖).We onlude that the integrand in (39) is bounded by an integrable random variable. Reall (41) andapply the dominated onvergene theorem to omplete the proof.18
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Distribution Value of α Error e(α) Error En(α)

n = 100 n = 200 n = 500Centred Gaussian N (0, 1/2, 1/2, 0)

0.990 2.55 · 10−5 1.29 · 10−3 6.50 · 10−4 2.93 · 10−4

0.995 2.43 · 10−5 1.28 · 10−3 6.44 · 10−4 2.88 · 10−4

0.999 5.75 · 10−5 1.30 · 10−3 6.70 · 10−4 3.16 · 10−4Centred Gaussian N (0, 1/2, 1/2, 1/6)

0.990 1.05 · 10−4 1.45 · 10−3 7.32 · 10−4 3.57 · 10−4

0.995 4.34 · 10−5 1.37 · 10−3 6.65 · 10−4 2.89 · 10−4

0.999 6.34 · 10−5 1.38 · 10−3 6.83 · 10−4 3.05 · 10−4Centred Gaussian N (0, 1/8, 3/4, 0)

0.990 6.05 · 10−4 1.79 · 10−3 1.17 · 10−3 8.23 · 10−4

0.995 1.77 · 10−4 1.34 · 10−3 7.31 · 10−4 3.91 · 10−4

0.999 5.96 · 10−5 1.20 · 10−3 6.02 · 10−4 2.70 · 10−4Double exponential E(2, 2, 2, 2) 0.990 9.30 · 10−5 2.69 · 10−3 1.47 · 10−3 6.37 · 10−4

0.995 5.46 · 10−5 2.63 · 10−3 1.41 · 10−3 5.93 · 10−4

0.999 6.32 · 10−5 2.63 · 10−3 1.39 · 10−3 5.97 · 10−4Double exponential E(2√3, 2
√
3, 2
√
3/5, 2

√
3/5)

0.990 6.17 · 10−4 4.37 · 10−3 2.71 · 10−3 1.42 · 10−3

0.995 2.24 · 10−4 3.89 · 10−3 2.26 · 10−3 9.96 · 10−4

0.999 2.27 · 10−4 3.77 · 10−3 2.16 · 10−3 9.62 · 10−4Double exponential E(4, 2√2/3, 4, 2
√
2/3)

0.990 1.64 · 10−3 4.13 · 10−3 2.81 · 10−3 2.16 · 10−3

0.995 8.13 · 10−4 3.27 · 10−3 1.98 · 10−3 1.33 · 10−3

0.999 6.62 · 10−5 2.40 · 10−3 1.23 · 10−3 5.62 · 10−4Table 1: Errors e(α) and En(α) in all ases.
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Figure 1: Case of the Gaussian distribution N (0, 1/2, 1/2, 0) for α = 0.995. Top left: omparison between a numerial method and the use of theequivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right, bottom left andbottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line: estimator q̂n.
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Figure 2: Case of the Gaussian distribution N (0, 1/2, 1/2, 1/6) for α = 0.995. Top left: omparison between a numerial method and the use of theequivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right, bottom left andbottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line: estimator q̂n.
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Figure 3: Case of the Gaussian distribution N (0, 1/8, 3/4, 0) for α = 0.995. Top left: omparison between a numerial method and the use of theequivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right, bottom left andbottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line: estimator q̂n.

24



−10 −5 0 5 10

−6

−4

−2

0

2

4

6

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

Figure 4: Case of the double exponential distribution E(2, 2, 2, 2) for α = 0.995. Top left: omparison between a numerial method and the use of theequivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right, bottom left andbottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line: estimator q̂n.
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Figure 5: Case of the double exponential distribution E(2
√
3, 2

√
3, 2
√
3/5, 2

√
3/5) for α = 0.995. Top left: omparison between a numerial method andthe use of the equivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right,bottom left and bottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line:estimator q̂n.
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Figure 6: Case of the double exponential distribution E(4, 2
√
2/3, 4, 2

√
2/3) for α = 0.995. Top left: omparison between a numerial method andthe use of the equivalent (4) for the omputation of the iso-quantile urve, full line: numerial method, dashed line: asymptoti equivalent. Top right,bottom left and bottom right: best, median and worst estimates of the iso-quantile urve for n = 200, full line: numerial method, dashed-dotted line:estimator q̂n.
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