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Abstract—In this paper we present a new static descriptor
for facial image analysis. We combine Gaussian derivatives
with Local Binary Patterns to provide a robust and powerful
descriptor especially suited to extracting texture from facial
images. Gaussian features in the form of image derivatives form
the input to the Linear Binary Pattern(LBP) operator instead of
the original image. The proposed descriptor is tested for face
recognition and smile detection. For face recognition we use
the CMU-PIE and the YaleB+extended YaleB database. Smile
detection is performed on the benchmark GENKI 4k database.
With minimal machine learning our descriptor outperforms the
state of the art at smile detection and compares favourably with
the state of the art at face recognition.

I. INTRODUCTION

The face is one part of the body which is usually visible

without much occlusions. It is the most readily available

feature to distinguish people. Faces are also mirrors to our

emotional state and we tend to express our emotions through

the face both consciously and subconsciously. Imparting

to computers the ability to analyse faces is one of the big

challenges faced by the computer vision community.

Facial Image Processing has traditionally been performed

using Gabor filters and LBP features for static images [1].

In the present work we combine two powerful descriptors:

Gaussian derivatives and LBP to obtain a new descriptor for

facial image analysis. Section 2 gives a brief description of

Gaussian derivatives and a few equations associated with

their calculation. Gaussian derivatives have been used in

a variety of image processing applications such as face

detection [2], age estimation [3], head pose estimation [4] and

facial expression analysis. Although they provide a compact

description of the image texture and are quick to compute

due to the availability of linear time complexity algorithms

they are not invariant to illumination changes. LBP features

discussed in Section 3 on the other hand are quite robust to

illumination changes. LBP and its modifications have been

exploited for all kinds of diverse tasks such as biometrics

including eye localization, iris recognition, fingerprint

recognition, palm-print recognition, gait recognition and

facial age classification [5]. Section 5 describes our approach

where we combine the descriptors described in the last 2

sections. To exhibit the versatility of our descriptor, we test

the technique on two applications: Face recognition which

is discussed in section 5 and smile detection discussed in

section 6.

Experimental results in section 8 show that our descriptor with

the minimal use of machine learning techniques outperforms

the state of the art in smile detection and is at par with other

techniques in face recognition.

II. GAUSSIAN DERIVATIVES

Gaussian derivatives efficiently describe the neighbourhood

appearance of an image [4]. They provide a scale and orien-

tation invariant description which can be used for a variety of

applications such as detection, tracking, indexing and recon-

struction. The Gaussian support function is described by the

equation:

G(x, y;σ) = e−
x2+y2

2σ2 (1)

Here σ is the scale factor or variance and defines the spatial

support. The first order derivatives are of the form:

Gx(x, y;σ) =
∂G(x, y;σ)

∂x
= − x

σ2
G(x, y;σ) (2)

Gy(x, y;σ) =
∂G(x, y;σ)

∂y
= − y

σ2
G(x, y;σ) (3)

First order derivatives give information about the gradient

(intensity and direction). The second order derivatives are

given by:

Gxx(x, y;σ) =
∂2G(x, y;σ)

∂x2
= (

x2

σ4
− 1

σ2
)G(x, y;σ) (4)

Gyy(x, y;σ) =
∂2G(x, y;σ)

∂y2
= (

y2

σ4
− 1

σ2
)G(x, y;σ) (5)

Gxy(x, y;σ) =
∂2G(x, y;σ)

∂x∂y
=

xy

σ4
G(x, y;σ) (6)

First and second order derivatives are excellent descriptors for

features such as bars, blobs and corners in images. Higher

order features can describe more complicated structures but

are difficult to exploit because of their sensitivity to noise.
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III. LOCAL BINARY PATTERNS

Local binary patterns is a simple yet powerful descriptor

for texture analysis [6]. It requires limited computational

power and is ideal for real-time applications. Its robustness to

monotonic gray-scale changes make it suitable for applications

such as facial image analysis where variations in illumination

can have major effects on appearance.

Fig. 1: Computing LBP response from a pixels local neigh-

bourhood.

Many variations over the original LBP operator have been

proposed. One extension allows LBP operator to use neighbor-

hoods of different sizes [7]. Another modification introduced

in [7] is the Uniform LBP which which can be used to reduce

the length of the feature vector by using a smaller number of

bins and is also invariant to rotation.

IV. OUR METHOD

In [8] Zhang proposed the calculation of LBP features over

the results of filtering a facial image with 40 Gabor filters

of different scales and orientations. Gaussian features take

much less time to compute than Gabor features and have been

shown to perform better in a variety of applications. Ruiz-

Hernandez et al. in [9] create 3-d tensors after calculating

censor transforms on Gaussian feature maps which are sub-

sequently reduced in dimensionality using MPCA and then a

kernel technique is used for face recognition. Recently a dual

layered architecture was proposed by Wu et al. [10] which

employed LBP and two layers of gabor features.

We propose to combine Gaussian derivatives with LBP and

test the resulting description technique at Face recognition

and Smile detection. In our method gaussian derivative images

are produced from the normalized input images by using the

Half octave gaussian pyramid [11] which allows for the fast

calculation of gaussian derivatives.

First and second order derivative images of the following

order are used: Ix, Iy, Ixx, Iyy, Ixy from the base of the

pyramid(σ = 1). Next these derivative images are divided into

grids of 4 X 4 local regions with 43.75% overlapping areas

from which uniform LBP features were calculated. The local

histograms are concatenated to obtain the final feature vector.

Since we had 5 derivative images and 16 grids with each grid

producing a uniform LBP histogram, we have a feature vector

of : 5*16*59=4720 dimensions. Unlike the method introduced

by the authors of [9], we do not use tensor mathematics and the

number of gaussian features used by us is much lower than the

number used in [9]. We followed the hill-climbing algorithm

and started adding gaussian derivatives starting from the base

of the pyramid and stopped there because adding derivatives

from the level above did not lead to an improvement in

accuracy. On the other hand in [9] the authors use 6 levels

of the pyramid.

The grid size of 4X4 and 43.75% of overlap area is chosen

by means of cross-validation. Images are normalized to 66 X

66 pixels, this size is also chosen through cross-validation.

Fig. 2: Creating the features: a) original image, b) Gaussian

derivative images, and c) concatenation of resulting histograms

after applying LBP.

V. FACE RECOGNITION

A. Related Work

Face recognition involves the identification of individuals

from an image or video frame. A major challenge in face

recognition is to make the system invariant to illumination

since the appearance of the face can change dramatically with

changes in lighting conditions. Other problems include aging,

occlusions, pose and facial expressions.

People have experimented with feature based techniques for

face recognition using methods such as elastic graphs in

[12] where the authors generate a graph using fiducial points

labeled with Gabor filter responses and in [13] where Gabor

filters are replaced by HOG features. Holistic approaches are

more popular involving descriptor calculation over the entire

image rather than on local features of the face.

Li and Yin use the wavelet transform in conjunction with

neural networks for face recognition[14]. In [15] the authors

use the versatile descriptor LBP for face recognition over the

FERET dataset. Ruiz-Hernandez et al. [9] combine LBP with

Gaussian features maps and then generate a tensor which

is then reduced in dimensions using Multilinear Principal

Component Analysis and finally recognition is done with

Kernel Discriminative Common Vector.

In [16] the authors deal with the problem of illumination by

dealing with the effects of illumination on large scale and

small scale features explicitly, they achieve the best results

by combining their illumination normalization technique

with quotient images[17]. Meanwhile in [18] an illumination

invariant descriptor is presented for face recognition
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which also claims to solve the bottleneck associated with

heterogeneous lighting.

B. Experiments with Face Recognition

Our method is tested on the CMU-PIE and the extended

YaleB databases. The performance our method is compared

with the state of the art methods such as SQI [19], LTV

[20], WF[21], Gradient Face [22], LGH [18] for both the

databases and with the method used by Ruiz-Hernandez et
al. in [9] on the YaleB database. Additionally we compare our

performance with Gabor filters, LBP, Gaussian derivatives and

LBP calculated over Gabor images for the CMU-PIE dataset.

We use a subset of the original CMU-PIE database, 1428

frontal images from 68 people under 21 variations of illumi-

nation conditions are selected. No feature alignment method

was used.

The results are presented in figure 3. Only one image per

individual is used as the reference image. All the 21 images

taken under different lighting conditions are chosen as the

reference images one at a time. We use the L1 distance as

the similarity measure. The reference image closest to the test

image decides the identity of the person in the test image.

Fig. 3: Recognition rate with different reference images

Our approach achieves the highest accuracy of 100% with

the image with frontal lighting. Only the performance of LBP

calculated over Gabor images comes close to our method.

Gaussian derivatives and LBP alone do not achieve very

high recognition rates making the case for our method which

combines the two.

The maximum and average recognition rates for the different

descriptors are given in table 1.

SQI LTV WF GF LGH Ours
Max. Acc% 98.82 95.81 99.71 99.93 100 100
Avg. Acc% 89.77 80.78 89.52 96.93.93 98.19 99.26

TABLE I: Maximum and average accuracy attained by differ-

ent methods

The extended YaleB dataset contains images from 28 indi-

viduals captured under 64 different lighting conditions with

9 pose views. We only use the images with frontal views

in our experiments. Researchers have divided the database

into 5 subsets in increasing order of complexity of lighting

conditions. We use the image number A+000E+00 with the

simplest lighting scenario as the reference image. We use

the Minkowski distance metric as the similarity measure.

The p-Minkowski metric between two points a=(x1,y1) and

b=(x2,y2) can be given as:

dp(a, b) = [|x1− x2|p + |y1− y2|p] 1p (7)

The optimum value of p varies from 0.75 to 1.25 on the YaleB

database. The reference image closest to the test image decides

the identity of the person in the test image. We compare

the results of our technique with the state of the art in the

following table.

Set 1 Set 2 Set 3 Set 4
SQI 88.60 100 85.75 87.97
LTV 87.28 99.78 66.67 45.49
WF 79.39 99.78 75.88 77.07
GF 94.74 100 83.33 75.94
LGH 94.74 100 92.54 96.43
Ruiz-Hernandez[9] 100 100 94.7 60.1
Ours 100 100 97.22 79.10

TABLE II: Accuracy(%) over the 4 subsets using different

methods

Our technique achieves the highest accuracy for the first 3

subsets, on the 4th subset it is beaten by SQI and LGH, which

are both techniques that handle the problem of illumination

explicitly. It is interesting to see how the two components

of our approach namely Gaussian derivatives and LBP alone

match up against their proposed combination.

Set 1 Set 2 Set 3 Set 4
Gaussian Derivatives 97.53 93.52 62.65 25.13
LBP 99.38 99.38 55.86 33.07
Ours 100 100 97.22 79.10

TABLE III: Accuracy(%) over the 4 subsets using Gaussian

derivatives, LBP and their proposed combination

VI. SMILE DETECTION

A. Related Work

A lot of people are working on facial expression analysis

but very few focus on specifically on smile detection. In [23]

McDuff et al. use smile intensity to predict how much a viewer

likes a particular video. Smile detection is an integral part of

emotional state estimation in humans. It also has a variety of

applications in consumer surveys, gaming and user interfaces.

A major issue in facial expression analysis is that most of the

research is validated on posed databases. In [24] authors have

argued that spontaneous expressions are different from posed

expressions in both appearance and timing therefore systems

developed for recognizing posed expressions might not work

well on real world expressions. Spontaneous expressions are

much more subtle and complex than posed expressions.

Most smile detection systems in the past have been trained

on these posed databases. Deniz et al. in [25] present a smile

detection system based on finding keypoints on the face and

test their method on the DaFex and JAFFE datasets which
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both contain posed smiles. Others in [26], [27], [28] have all

experimented on posed databases.

The GENKI-4K database presented by Whitehill and others in

[29] contains 4000 images with a wide range of subjects, fa-

cial appearance, illumination, geographical locations, imaging

conditions and camera models. The images are annotated for

smile content(1=smile, 0=non-smile). The difference between

this dataset and other facial expression datasets is that this

dataset was compiled from images on the internet rather than

being captured in a controlled environment.

Fig. 4: Examples of (top two rows) real-life smile faces

and (bottom two rows) nonsmile faces, from the GENKI4K

database.

Shan in [30] presents a comprehensive study on smile

detection and proposes his own method which is faster than

the state of the art but not more accurate than Gabor filters

combined with SVM’s.

B. Experiments with Smile Detection

We perform our experiments on the GENKI-4K dataset. We

use Support Vector Machines with a Radial Basis Kernel to

compare the accuracies obtained by different descriptors. The

images were not aligned using facial features such as eyes and

the location of the nose. A ten fold cross validation procedure

was adopted to obtain the final results. Apart from measuring

the accuracy we also measured the Balanced Error Rate(BER).

Prediction
Class-1 Class+1

Truth
Class-1 a b
Class+1 c d

TABLE IV: Confusion matrix for 2 class classification

The balanced error rate is the average of the errors on each

class: BER = 0.5 ∗ (b/(a + b) + c/(c + d)). Where a, b, c,

d stand for: true negatives, false positives, false negatives and

true positives respectively.

Fig. 5: Accuracy(%) of different descriptors over the GENKI-

4K database

The proposed technique achieves the highest accuracy of

92.3602% with the lowest BER of 0.0702.

Fig. 6: BER of different descriptors over the GENKI-4K

database

It is surprising to see that LBP calculated over Gabor

features actually perform worse than both Gabor features and

LBP alone. This could be because of the curse of dimensional-

ity since we are using Support Vector Machines with a radial

basis kernel and the feature vector of LBP calculated over
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Gabor features has a dimensionality of nearly 17000 whereas

the number of training instances is less than 3600.

Fig. 7: Proportion of images with different pose

We divide the GENKI-4K database into 3 subsets according

to the head pose(only yaw). The proportion of images that fall

into the three sets is shown in figure 7.

Fig. 8: Accuracy with different poses

As expected all the three techniques produce the best results

for head pose close to frontal i.e. < 15 degrees, slightly lower

for 15 to 30 degrees and lowest for yaw above 30 degrees

except for Gaussian derivatives which perform slightly better

at yaw above 30 degrees than they perform at yaw between

15 and 30 degrees. The most interesting aspect of the results

is that Gaussian derivatives and LBP features calculated over

Gaussian features are less susceptible to pose variation than

LBP alone explaining why our method performs better than

traditional LBP.

VII. CONCLUSION

This paper presents a versatile descriptor which performs

well on two facial image processing tasks. It is simple to

compute, robust to illumination changes and performs better

than more computationally expensive methods. It is interesting

to see that a general purpose descriptor like ours works better

in most cases than the specialized descriptors such as LGH[18]

and SQI[19] for face recognition.

Its robustness to head pose variations helps to avoid expensive

image alignment calculations. The success of the technique at

smile detection suggests that it could be utilized for other facial

expression problems.
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