
HAL Id: hal-01062528
https://hal.inria.fr/hal-01062528

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MBSPDiscover: An Automatic Benchmark for
MultiBSP Performance Analysis

Marcelo Alaniz, Sergio Nesmachnow, Brice Goglin, Santiago Iturriaga,
Veronica Gil Costa, Marcela Printista

To cite this version:
Marcelo Alaniz, Sergio Nesmachnow, Brice Goglin, Santiago Iturriaga, Veronica Gil Costa, et al..
MBSPDiscover: An Automatic Benchmark for MultiBSP Performance Analysis. First HPCLATAM -
CLCAR Joint Latin American High Performance Computing Conference, Oct 2014, Valparaiso, Chile.
pp.158-172. �hal-01062528�

https://hal.inria.fr/hal-01062528
https://hal.archives-ouvertes.fr

MBSPDiscover: An Automatic Benchmark for

MultiBSP Performance Analysis

Marcelo Alaniz1, Sergio Nesmachnow2, Brice Goglin3, Santiago Iturriaga2,
Veronica Gil Gosta1, and Marcela Printista1

1 Universidad Nacional de San Luis, Argentina
2 Universidad de la República, Uruguay

3 Inria Bordeaux–Sud-Ouest, University of Bordeaux, France

Abstract. Multi-Bulk Synchronous Parallel (MultiBSP) is a recently
proposed parallel programming model for multicore machines that ex-
tends the classic BSP model. MultiBSP is very useful to design algo-
rithms and estimate their running time, which are hard to do in High
Performance Computing applications. For a correct estimation of the
running time, the main parameters of the MultiBSP model for different
multicore architectures need to be determined. This article presents a
benchmark proposal for measuring the parameters that characterize the
communication and synchronization cost for the model. Our approach
discovers automatically the hierarchical structure of the multicore archi-
tecture by using a specific tool (hwloc) that allows obtaining runtime
information about the machine. We describe the design, implementation
and the results of benchmarking two multicore machines. Furthermore,
we report the validation of the proposed method by using a real Multi-
BSP implementation of the vector inner product algorithm and compar-
ing the predicted execution time against the real execution time.

1 Introduction

Performance prediction is an important tool for performance analysis of parallel
applications [5]. This technique involves modeling program performance as a
function of the hardware and software characteristics of a system. By changing
these characteristics in the model, the execution time of standard programs can
be accurately predicted for a variety of platforms and configurations.

The Bulk Synchronous Parallel (BSP) model [7], is one of the most popular
among several analytical models proposed. The model assumes a BSP abstract
machine with identical processors. Each processor has access to its own local
memory and they communicate with each other through a all-to-all network,
providing uniform point-to-point access time and bandwidth capacity.

The BSP model was introduced for distributed computers, but assuming only
one core per computing node. Although the model was very successfully used in
the 1990s, it gradually became less used with the emergence of new multicore
architectures in the last decade. As the evaluation of computers gained renewed
importance, the BSP model was extended to MultiBSP by Valiant [8]. MultiBSP

extends BSP in two ways: i) it is a hierarchical model, with an arbitrary number
of components, taking into account the physical structure of multiple memory
and cache levels within single chips as well as in multi-chip architectures; and ii)
at each level, MultiBSP incorporates memory size as an additional parameter in
the model, which was not included in the original BSP.

In this line of work, the research reported in this paper is focused on solving
the problem of characterizing multicore computing architectures, which are de-
scribed by a series of parameters such as size, latency, and memory levels. When
a parallel algorithm based on the MultiBSP computational model is designed,
the programmer needs to know the value of the parameters that describe the
architecture, since the performance of the resulting algorithm depends on these
parameters. Moreover, the MultiBSP programmer needs to conceive his appli-
cation with multiple levels of abstraction that require the appropriate use of
threads, cache memories and the cores that share these caches.

The proposed benchmark has the following features: a) it computes the Multi-
BSP parameters using a bottom-up technique for discovering the architecture
and building the hierarchy levels using the MultiBSP approach and b) it is im-
plemented using the same library that implements the abstraction levels of the
application, so it measures the critical operations taking into account not only
the theoretical aspects, but also the specific implementation.

In order to develop the proposed benchmark, we address the following topics:
i) based on the detection of the hierarchy of levels in a multicore machine,
we show how to translate the hierarchy into the components of an abstract
MultiBSP machine. ii) we explain formally all parameters, specially focusing on
communication and synchronization costs. iii) we introduce the concept of h-
communication, which is an adaptation of the h-relation of BSP for the specific
case of shared-memory relations within a single node.

Our benchmark is applied to characterize two High Performance Computing
(HPC) multicore machines. We also report the validation of the proposed method
by using a real MultiBSP implementation of the vector inner product algorithm
and comparing the predicted execution time against the real execution time.

The research reported in this article is developed within the project “Schedul-
ing evaluation in heterogeneous computing systems with hwloc” (SEHLOC4).
The main goal consists in the development of runtime systems that allow com-
bining characteristics of the software applications and topological information
of the computational platforms, in order to get scheduling suggestions to profit
from software and hardware affinities and provide a way for efficiently executing
realistic applications.

The paper is organized as follows. Section 2 introduces the BSP and Multi-
BSP models, and relevant related work about BSP benchmarking. Section 3
describes the design and implementation of the MBSPDiscover benchmark. Sec-
tion 4 reports the application of the proposed benchmark for two case studies
and the validation using a real MultiBSP application. Finally, Section 5 presents
the conclusions and formulates the main lines for future work.

4 http://runtime.bordeaux.inria.fr/sehloc/

2 BSP and MultiBSP models

To set the scope of this paper, this section describes the BSP and MultiBSP mod-
els. We start with a brief description of the flat BSP model and how it evolved
into the concept of multicore, which emphasizes hierarchies of components.

2.1 The original BSP model

The BSP model considers an abstract parallel computer, which is fully mod-
eled by a set of parameters: p—number of processors, s—processor speed, g—
communication cost, and l—synchronization cost. Using these parameters, the
execution time of any BSP algorithm can be calculated.

In the BSP model, the computations are organized in a sequence of global
supersteps, which consist of three phases: i) every participating processor per-
forms local computations, i.e., each process can only make use of values stored
in the local memory of the processor; ii) the processes exchange data between
themselves to facilitate remote data storage capabilities and iii) every partic-
ipating process must reach the next synchronization barrier, i.e., each process
waits until all other processes have reached the same barrier. Then, the next
superstep can begin.

The practical model of programming is Single ProgramMultiple Data (SPMD),
implemented as C/C++ program copies running on p processors, wherein com-
munication and synchronization among copies are performed using specific li-
braries such as BSPlib [4] or PUB [2]. In addition to defining an abstract machine
and imposing a structure on parallel programs, the BSP model provides a cost
function modeled by the architecture parameters.

The total running time of a BSP program can be calculated as the accumu-
lative sum of the cost of its supersteps, where the cost of each superstep is the
sum of three quantities: i) w, the maximum number of calculations performed
by each processor; ii) h × g, where h is the maximum of the messages sent/re-
ceived by each processor, with each word costing g units of time; and iii) l, the
time cost of the barrier synchronizing the processors. The effect of the computer
architecture is included by the parameters g and l. These values, along with the
processor speed s, can be empirically determined for each parallel computer by
executing benchmark programs at installation time.

2.2 The new MultiBSP model

Modern supercomputers are made of highly parallel nodes with tens of cores.
The efficiency of these nodes required improvements of the memory subsystem
by adding multiple hierarchical levels of caches as well as a distributed memory
interconnect causing Non-Uniform Memory Access (NUMA). In 2010, Valiant
updated the BSP model to account for this situation, resulting in the MultiBSP
model. It was defined with the same abstractions and bridge architecture as the
original BSP, but adapted to multicore machines.

The MultiBSP Model describes a model instance as a tree structure of nested
components, where the leaves are processors and each internal node is a BSP
computer with local memory or some storage capacity.

Formally, a MultiBSP machine is specified by a list of tuples (levels) where
each tuple has four parameters (mi, pi, gi, Li) where:

– pi is the number of i-1th level components inside an ith component. For
i = 1, these 1st level components consist of p1 raw processors, which can be
regarded as 0th level components. One computation step of such a processor
on a word in level 1 memory is taken as one basic unit of time.

– gi is the communication cost parameter, it is defined as the ratio of the
number of operations that a processor can perform in a second and the
number of words that can be transmitted in a second between the memories
of a component at level i and its parent component at level i + 1. A word

here is the amount of data on which a processor operation is performed. We
assume that the level1 memories can keep up with the processors, and hence
that the data rate (corresponding to the notation g0) has the value one.

– Li is the cost for the barrier synchronization for a level i superstep. The
definition requires barrier synchronization of the subcomponents of a com-
ponent, but no synchronization across above branches in the component
hierarchy.

– mi is the number of words of memory inside an ith level component that is
not inside any i− 1th level component.

Fig. 1: Schematic view of the ith component level of MultiBSP model.

Fig. 1 shows a component of level i. A level i superstep is a construct running
at a level i component that allows each of its pi level i − 1 components to
execute independently (including supersteps of level i − 1). Once all pi finish
their computation, they can all exchange information with the mi memory of
the level i component with a communication cost determined by gi−1. The cost
charged will bemgi−1, wherem is the maximum number of words communicated
between the memory of the ith level component and any one of its level i − 1
subcomponents. After a barrier between the pi components, the next superstep
may begin.

Fig. 2: MultiBSP model: (5118KB, 4, g1, L1),(64GB, 8, g2, L2).

For instance, Fig. 2 shows a machine, whose architecture can be specified by
three MultiBSP components (level0, level1 and level2): (0, 1, 0, 0), (5118KB, 4,
g1, L1) and (64GB, 8, g2, L2). We can ignore the level0 because it represents
only one processing unit and thus does not involve internal synchronization or
communication. Therefore we only have two components, which corresponds to
the two level of hierarchy in the architecture.

A benchmarking algorithm for the MultiBSP model will need an automatic
process for discovering the specific hardware architectures. Accordingly, in our
work we use the portable HardWare LOCality (hwloc) tool [3]5 that allows ob-
taining runtime information about the architecture of the machine, such as pro-
cessors, caches, memory nodes, etc. in an abstract way.

The use of the hwloc software package has been proposed in the SEHLOC
project in order to have a tool for automatically detecting the architecture fea-
tures of multicore systems, defining the interconnection topologies and the hier-
archies for neighboring cores. We use the version 1.7.2 of hwloc, which provides
a portable abstraction (across OS, versions, architectures, etc.) of the hierarchi-
cal topology of modern architectures, including NUMA memory nodes, sockets,
shared caches, cores and simultaneous multithreading. It also gathers various
system attributes such as cache and memory information as well as the locality
of I/O devices such as network interfaces, InfiniBand HCAs or GPUs. It pri-
marily aims at helping applications with gathering information about modern
computing hardware so as to exploit it accordingly and efficiently.

2.3 Related work

The program bspbench from BSPEdupack[4] has been the main benchmarking
program on BSP model. The proposed benchmark measures a full h-relation,
where every processor sends and receives exactly h data words. The method-
ology tries to measure the slowest possible communication, putting single data
words into other processors in a cyclic fashion. This reveals whether the system
software indeed combines data for the same destination and whether it can han-
dle all-to-all communication efficiently. In this cases the resulting g obtained by
benchmarking program bspbench is called pessimistic. The Oxford BSP toolset

5 Available under the BSD license at http://www.open-mpi.org/projects/hwloc.

[4] has another benchmarking program, bspprobe, which measures optimistic g

values using larger packets insted of single words. BSP benchmarking also can
be done by using mpibench from MPIedupack[4].

The benchmarking of the MultiBSP computational model has been recently
addressed in the article by Savadi and Hossein [6], using a similar approach as
the one we apply here. The classic BSP benchmarking is used as a baseline,
but the specification of a model instance is different. Unlike the benchmarking
methodology followed in our work, the authors consider deep architecture details
such as cache coherency, for instance for propagation of values in the memory
hierarchy. In their approach, the analysis of results is made by comparing the
real values obtained by the process of benchmarking against theoretical values of
the g and L parameters, which are computed as optimistic lower bounds (i.e. the
authors suppose that the memory utilization is always lower than the cache size,
and that all cores work at maximum speed). Our approach differs since we do
not make any assumption about the underlying hardware platform but rather
hide its characterics inside the output of will chosen benchmarks. We believe this
strategy is well suited to modern architectures that are too complex for precise
models depending on their advanced, hidden and/or rarely well documented
features.

From a practical point of view, the main advantage of our proposal is to
evaluate real MultiBSP operations implemented for the library MulticoreBSP

for C [9]. In addition, our results are validated using a real MultiBSP program,
comparing the real execution time of the inner product algorithm against the
predicted running time using the theoretical MultiBSP cost function.

3 The MBSPDiscover Benchmark for MultiBSP

This section presents the design and implementation of the MBSPDiscover bench-
mark to estimate the g and L parameters that characterize a MultiBSP machine.

3.1 Motivation

Multicore architectures are widely used for HPC applications, and both the num-
ber of cores and the cache levels have been steadily increasing in the last years.
Therefore, there is a real need to identify and evaluate the different parameters
that characterize the structure of cores and memories, not only to understand
and compare different architectures, but also for using them wisely for a bet-
ter design of HPC applications. This characterization is motivated by the fact
that the performance improvements when using a multi-core processor strongly
depend on software algorithms, their implementation, and the utilization of the
hardware capabilities.

As mentioned previously, this work follows the MultiBSP model which spec-
ifies the parameters needed to characterize a multicore machine. In this model,
the performance of a parallel algorithm depends on parameters such as commu-
nication and synchronization costs, number of cores, and the size of caches.

Because it is hard to build analytical equations involving those variables,
performing computer benchmarking via a computational model is therefore a
reasonable method to evaluate performance and characterize the architecture.

It is important to emphasize that the quality of a benchmarking tool should
not depend on particular architecture. This extra requirement is solved by dis-
covering the relations of the different cores within each level of cache.

3.2 MBSPDiscover Design

The existing benchmark BSPbench for the standard BSP model [1] was used as
a reference baseline to design the MBSPDiscover tool. The obvious difference
between the existing benchmark and the new one is the need of obtaining pairs
of values for the g and L parameters for each level of components in the Multi-
BSP model. In addition, in the MultiBSP case, the processing is made inside of
multicore nodes instead of outside nodes through the network.

Software architecture and modules. Fig. 3 shows the software architecture
for the kernel of the MBSPDiscover proposal. The functionality for each of the
processes displayed in the figure is explained below:

– Discovering module: the hardware architecture is collected by using hwloc

and it is loaded in a tree of resources. This structure is inside the hwloc API
box.

– Interface: Once the tree structure is generated, a set of functions walk across
the tree using a bottom-up process for building a new tree named MBSPTree

that contains all the information needed to support the MultiBSP model.
– Benchmarking module: It retrieves core indexes and memory size from the

MBSPTree for each level. Then it measures communication and synchroniza-
tion cost through a MultiBSP submodule, as well as an affinity submodule
for pinning levels on the right cores. Finally it computes the resulting g and
L parameters.

1 MBSPTree = multibsp_discover ()
2

3 foreach (level in MBSPTree) {
4 g,L = coreBenchmark (level)
5 }

Algorithm 1.1: MBSPDiscover pseudocode.

Fig. 3: Schematic view (left) and pseudocode (right) of the MBSPDiscover process.

MBSPTree acts as the interface between both modules. Fig. 4 shows the struc-
ture corresponding to the hardware architecture presented in Fig. 5.

Fig. 4: MBSPTree structure generated by MBSPDiscover.

The coreBenchmark module. We explain in detail the implementation of
the coreBenchmark module for computing the parameters gi and Li.

The coreBenchmark function is shown in Algorithm 1.2. It receives as param-
eters the information of the corresponding level based in the MultiBSP Model,
and data for affinity like the core indexes and the size of cache memory, which
are stored in the MBSPTree structure. At the beginning (line 2), coreBenchmark
uses the setPinning function from the affinity module. setPinning binds the
threads spawned by the begin function (line 3) to the cores corresponding to
the current level. The function spawns one thread per core in that level and cal-
culates the computing rate of the MultiBSP component using computingRate

function (line 4). Each level has a set of cores sharing one memory, then for
benchmarking a level, only those cores are considered.

The computingRate function measures the time required to perform 2×n×DAXPY
operations. The DAXPY routine performs the vector operation y = α∗x+y, adding
a multiple of a double precision vector to another double precision vector. DAXPY
is a standard BLAS1 operation 6 for estimating the platform efficiency when
performing memory-intensive floating point operations.

1 function coreBenchmark(level) {
2 setPinning(level.cores_indexes)
3 begin(level.cores)
4 rate = computingRate(level)
5 sync()
6 for (h=0; h<HMAX; h++) {
7 initCommunicationPattern(h)
8 sync()
9 t0 = time()

10 for (i=0; i<NITERS; i++) {
11 communication ()
12 sync()
13 }
14 t = time() - t0
15 if (master) {
16 times.append(t*rate/NITERS);
17 }
18 }
19 level.g, level.L = leastSquares(times)
20 return (level.g, level.L)
21 }

6 BLAS operations are described at http://www.netlib.org/blas/.

Algorithm 1.2: coreBenchmark function.

Then a synchronization for the current level is performed (line 5) in order to
assure that all threads have the computing rate value.

The coreBenchmark function measures a full h-communication, which we
define as the extension of a h-relation for the shared-memory case within a sin-
gle node. It is implemented as a communication where every core writes/reads
exactly h data words. We consider the worst case, measuring the slowest commu-
nication possible by cyclically reading single data words into other processors. In
that way, the values of gi and Li computed using the benchmark are pessimistic
values, and the real values will be always better. The variable h represents the
largest number of words read or written in the shared memory of the level. HMAX
is the maximum value for all h parameters used in the communications patterns
for each level. It may need to be different for different levels of the hierarchy, we
plan to find suitable values by trial and error.

The communication times using the h-communication pattern are initialized
by the initCommunicationPattern routine (line 7). This process is repeated
NITERS times (lines 10–13), because each operation is too fast to be measured
with proper precision. After that, the master thread in each level saves the flops
used for each h-communication (line 16).

Finally, the parameters g and L are computed using a traditional least squares
approximation method (line 19), to fit the data to a linear model, according to
the related works [1, 6], providing an accurate approximation for gi and Li.

3.3 Methodology for the empirical evaluation of h-communications

The methodology applied to measure the h-communications and then estimate
the parameters g and L is based on measuring the implementation of MultiBSP

operations. We refer to MultiBSP operations as the functions/procedures need to
implement an algorithm designed with the MultiBSP computational model. In
our software design, the MBSP operations module contains the implementation
of these functions, including operations provided by the MulticoreBSP for C

library [9]. This library establishes a methodology for programming according
to the MultiBSP computational model.

The software design shown in Fig. 3 is important here because when Multi-
BSP algorithms are programmed using other libraries, it is possible to recon-
figure the tool, changing the MBSP operation module and re-characterizing the
architecture by running the benchmark with this new configuration.

4 Experimental analysis

This section reports the experimental analysis of the proposed MultiBSP bench-
mark. First, we introduce the problem instances by describing the main features
of the architectures used to test the benchmark. After that, the numerical results

and the values for the g and L parameters are reported. Finally, the validation
of our results using a real MultiBSP program is presented.

4.1 MultiBSP architectures used in the experimental analysis

For our experiments, the hierarchical levels of the considered architectures are
specially relevant. The main goals of the experimental analysis are to verify
the proper functionality of the proposed benchmark and also to compute the
corresponding values for the parameters of the MultiBSP model.

We selected two real infrastructures for the experimental analysis, which
feature a reasonably large number of cores and interesting cache levels:

– Instance #1 is dell32, whose architecture is shown in Fig. 5. dell32 has four
AMD Opteron 6128 Magny-Cours processors with a total of 32 cores, 64GB
RAM, and two hierarchy levels.

– Instance #2 is jolly, whose architecture is shown in Fig. 6. jolly has four
AMD Opteron 6272 Interlagos processors with a total of 64 cores, 128GB
RAM, and three hierarchy levels.

Machine (64GB)

Socket P#0 (16GB)

NUMANode P#0 (8182MB)

L3 (5118KB)

Core P#0

PU P#0

Core P#1

PU P#4

Core P#2

PU P#8

Core P#3

PU P#12

NUMANode P#1 (8192MB)

L3 (5118KB)

Core P#0

PU P#16

Core P#1

PU P#20

Core P#2

PU P#24

Core P#3

PU P#28

Socket P#3 (16GB)

NUMANode P#6 (8192MB)

L3 (5118KB)

Core P#0

PU P#1

Core P#1

PU P#5

Core P#2

PU P#9

Core P#3

PU P#13

NUMANode P#7 (8192MB)

L3 (5118KB)

Core P#0

PU P#17

Core P#1

PU P#21

Core P#2

PU P#25

Core P#3

PU P#29

Socket P#2 (16GB)

NUMANode P#4 (8192MB)

L3 (5118KB)

Core P#0

PU P#2

Core P#1

PU P#6

Core P#2

PU P#10

Core P#3

PU P#14

NUMANode P#5 (8192MB)

L3 (5118KB)

Core P#0

PU P#18

Core P#1

PU P#22

Core P#2

PU P#26

Core P#3

PU P#30

Socket P#1 (16GB)

NUMANode P#2 (8192MB)

L3 (5118KB)

Core P#0

PU P#3

Core P#1

PU P#7

Core P#2

PU P#11

Core P#3

PU P#15

NUMANode P#3 (8192MB)

L3 (5118KB)

Core P#0

PU P#19

Core P#1

PU P#23

Core P#2

PU P#27

Core P#3

PU P#31

Fig. 5: hwloc output describing the topology of the dell32 multicore machine.

For each of those architectures, we need to specify the instances in MultiBSP.
We proceed step by step for a better understanding of the MultiBSP formulation.

For dell32 we start from bottom (cores) to upper levels and build the com-
ponents in tuples that share a memory space. The first tuple is made of a single

Fig. 6: hwloc output describing the topology of the jolly multicore machine.

core at level0. It does not shared any memory with any other component, so
its shared memory is 0 and both parameters g and L are zero by definition:
tuple0 = 〈p0 = 1,m0 = 0, g0 = 0, L0 = 0〉. Then, the basic 4 components in
level0 share the L3 cache memory with a size of 5MB, building a new Multi-
BSP component level1. This new component is formally described by the tuple:
tuple1 = 〈p1 = 4,m1 = 5MB, g1, L1〉. Finally, all eight components in level1
share the RAM memory, with size of 64GB, building the next and last level,
level2, in a MultiBSP specification. This one is formally described by the tuple:
tuple2 = 〈p2 = 8,m2 = 64GB, g2, L2〉.

We join all tuples using a sequence for a complete MultiBSP machine spec-
ification and discard the level0 for our benchmark proposal, because the values
of g0 and L0 are known by definition. The architecture of instance #1 is then
described by Eq. 1.

M1 = [〈p1 = 4,m1 = 5MB, g1, L1〉, 〈p2 = 8,m2 = 64GB, g2, L2〉] (1)

Using the same procedure, we build the MultiBSP specification for instance
#2, jolly. Again, level0 is described by tuple0 = 〈p0 = 1,m0 = 0, g0 = 0, L0 = 0〉.
It is the same in all machines, except for cores that use the hyperthreading
technology (in that case, an extra level is need to specify physical threads). Then,
there are two components sharing the L2 cache, with a size of 2MB. The level1
is described by tuple1 = 〈p1 = 2,m1 = 2MB, g1, L1〉 The components at level1
are grouped by sharing four L3 cache memories, with a size of 6MB, building
the level2, as defined by tuple2 = 〈p2 = 4,m2 = 6MB, g2, L2〉. In the last level
(#3), eight components from level2 are grouped. They share the RAM memory,
with a size of 128GB, as specified by tuple3 = 〈p3 = 8,m3 = 128GB, g3, L3〉.

Finally, using the same procedure we previously applied to the dell32 ar-
chitecture (i.e. joining all tuples and discarding level0), we get the MultiBSP

specification in Eq. 2.

M2 = [〈p1 = 2,m1 = 2MB, g1, L1〉, 〈p2 = 4,m2 = 6MB, g2, L2〉,

〈p3 = 8,m3 = 128GB, g3, L3〉] (2)

Using these instances of the MultiBSP model, we can predict the running
time of a MultiBSP algorithm executed in each machine. The gi and Li pa-
rameters in each tuple must be previously calculated using the benchmarking
procedure explained in the previous section. Next section reports the values of
g and L obtained for both architectures at each level.

4.2 Results

We report the time to perform h-communications in each level, increasing the
number h as in the coreBenchmark function. Reporting the flops for each h-
communications is important because we compute the gi and Li using least
squares to estimate the parameters at each level.

(a) Instance #1: dell32 (b) Instance #2: jolly

Fig. 7: Time to perform from h-communications per level in a MultiBSP tree, with h

between 0 and 256.

Figure 7 show the hi communications in each level for dell32 (level1 and
level2) and jolly (levels 1, 2, and 3). In level1 of dell32, the communications are
within the shared memory (L3 cache), so they are twice faster than in level2,
which use the RAM memory. For jolly, the communications in level1 are within
the L2 cache, thus they are three times faster than in level2, where communi-
cations are performed through the L3 cache. In turn, they are 1.5× faster than
those in level3 of the hierarchy, which are performed by accessing the RAM
memory.

Finally, using the least squares method we estimate the values of gi and Li

over the h-communications for each level. The final values for dell32 and jolly

are reported in Table 1.

Table 1: Computed values for g and L parameters for the studied architectures.

dell 32 jolly

level g (flops/word) L (flops) level g (flops/word) L (flops)
2 977.5 15550.2 3 1315.9 16184.4
1 334.9 7792.9 2 549.9 7157.9

1 105.3 498.2

4.3 Validation of results

For validating the results computed in the previous subsection, we conducted an
experiment using a real application, the vector inner product from BSPedupack
(actually the computation of the norm of a vector), described in Algorithm 1.3
in the MultiBSP programming model. We plan to extend the validation by con-
sidering a set of benchmark applications as future work.

1 innerProduct(level , vector) {
2 if (level.next == NULL) {
3 return sequentialInnerProduct(vector);
4 } else {
5 begin_parallel_multibsp (level.sons.length)
6 ownslice = split_vector(vector , multibsp_pid);
7 level = level.sons[multibsp_pid];
8 sync()
9 results = innerProduct(level , ownslice)

10 sync()
11 if (multbsp_id == master) {
12 return sequentialInnerProduct(results);
13 }
14 end_parallel_multibsp
15 }
16 }
17 MBSPTree = MBSPDiscover ()
18 innerProduct(MBSPTree , data_vector)

Algorithm 1.3: Vector Inner Product.

Algorithm 1.3 applies the MultiBSP programming model recursively, crossing the
MCBSPTree obtained with MBSPDiscover in the proposed benchmark. Using
the tree structure, the data vector is split in slices for each thread at level i.
For i > 0, the data splitting is applied recursively. In level 0, a sequential inner
product algorithm is used to compute a partial result. Then, after synchronizing
all threads in each level, the result is the inner product for the whole data
vector. The master thread applies a reduction phase, combining all results using
the sequential inner product and then returns the result to the upper level.

The validation involves the following steps (applied for different vector sizes):

1. Estimate the amount of communications and synchronizations at each level,
by using hardware counters.

2. Compute the values of gi and Li parameters using the proposed benchmark.
3. Compute the runtime of the algorithm using the theoretical cost model of

tje MultiBSP [8].
4. Run the vector inner product algorithm.

5. Compare the results with the theoretical prediction.

(a) Instance #1: dell32 (b) Instance #2: jolly

Fig. 8: Comparison between the real execution time against the theoretical execution
time.

Fig. 8 graphically presents the comparison between the real execution time
against the theoretical execution time for both studied architectures.

The results show that when using a vector with less than 28 elements, the
real execution time is larger than the theoretical time. This happens mainly
because with few data, the time for spawning threads adds a significant overhead
compared with the time to calculate a vector slice at leveli. For dell32, when
computing vectors with more than 28 elements, both curves have the same slope,
then we can say that both times are relative and the measure is stabilized. For
jolly, the predicted and execution times have a different behavior. There is an
ideal point where both measures are the same, but when the vector is larger
than 28 elements, the execution time increases slower than the predicted time.
The good results in Fig. 8(a) validates the proposed approach, as the values gi
and Li used in the predicted time are very close to the real time. On other hand,
in Fig. 8(b) the predicted time is not as close to the real time as we expect.
However, the theoretical time is always greater than the real time, so it is useful
as an accurate lower bound for predictions.

5 Conclusions and Future Work

This work presented MBSPDiscover7, an automatic tool for characterizing mul-
ticore architectures based in the MultiBSP computational model. The proposed
benchmark computes the parameters g and L (communication and synchroniza-
tion cost) for the MultiBSP model. It is adaptable to any hierarchical architec-
ture and its output is a structure with the information of each level, useful for
programming applications following the MultiBSP model.

7 Available from http://runtime.bordeaux.inria.fr/sehloc/

We applied the benchmark to characterize and evaluate two actual HPC mul-
ticore systems. In order to validate the results, we designed and implemented a
particular problem in the MultiBSP model, and predicted its execution costs.
The results demonstrated that the execution time can be satisfyingly predicted
when using the information from the benchmark, especially for the dell32 ma-
chine.

The main lines for future work are related to verify the results of the MB-
SPDiscover benchmark using a suite of algorithms, and extend the library for
heterogeneous multicore clusters by including a network level.

6 Acknowledgements

This research is partly funded by the STIC-AmSud program partners MINCyT
(Argentina), Inria (France), and ANII (Uruguay), through the SEHLOC project.

References

1. Bisseling, R.: Parallel scientific computation: a structured approach using BSP and
MPI. Oxford University Press, Oxford, UK (2004)

2. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University
BSP (PUB) Library. Parallel Comput. 29(2), 187–207 (2003)

3. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: Hwloc: A generic framework for managing hard-
ware affinities in HPC applications. In: 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing. pp. 180–186 (2010)

4. Hill, J., McColl, B., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T.,
Tsantilas, T., Bisseling, R.: BSPlib: The BSP programming library. Parallel Com-
puting 24(14), 1947–1980 (1998)

5. Lobachev, O., Guthe, M., Loogen, R.: Estimating parallel performance. J. Parallel
Distrib. Comput. 73(6), 876–887 (Jun 2013)

6. Savadi, A., Deldari, H.: Measurement latency parameters of the MultiBSP model:
A multicore benchmarking approach. J. Supercomput. 67(2), 565–584 (2014)

7. Valiant, L.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (Aug 1990)

8. Valiant, L.: A bridging model for multi-core computing. J. Comput. Syst. Sci.
77(1), 154–166 (Jan 2011)

9. Yzelman, A.N.: Fast sparse matrix-vector multiplication by partitioning and re-
ordering. Ph.D. thesis, Utrecht University, Utrecht, the Netherlands (October 2011)

