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On-line Robot Dynamic Identification Based on Power Model,
Modulating Functions and Causal Jacobi Estimator

Qi GUO1, Wilfrid PERRUQUETTI2 and Maxime GAUTIER3

Abstract— This paper estimates robot dynamic parameters
by means of power model associated with modulating functions,
which avoids measuring or calculating the joint acceleration. At
the same time, an advanced causal Jacobi derivative estimator
is applied in order to get on-line robust derivatives from noisy
measurements. In the end simulation results on two degrees
of freedom planar robot are presented and comparisons with
traditional off-line identification method are drawn.

I. INTRODUCTION

Accurate dynamic models of robots are required in most
advanced control schemes formulated in recent literature [1].
The precision, performance, stability and robustness of these
schemes depend on, to a large extent, the accuracy of the
dynamic parameters. Such parameters include inertia, first
moments, masses, friction parameters. In most cases they are
estimated off-line, but sometimes it is also necessary to carry
out on-line identification, for example when the payload is
changing during operation. Thus it is important to estimate
robot dynamic parameters on line.

In order to tackle such challenge there exists a huge variety
of methods mainly based on least-square techniques which
can be divided into three classes according to the required
order of derivation of the joint positions:

• Models based on joint force/torque, acceleration, veloc-
ity and position [2], [3], [4];

• Models based on joint force/torque, velocity and posi-
tion [5], [6], [7];

• Models requiring only joint force/torque which is based
on a closed loop simulation [8], [9].

The mostly used approaches are the two first methods which
require reconstructing some derivatives of the measured
signals. Unfortunately the obtained measurements are noisy
which makes the derivative estimation problem to be ill-
posed in the sense that a small error in measurement can
induce a large error in the computed derivatives, speciallyfor
high order derivatives. Therefore, various numerical methods
have been developed to obtain stable algorithms robust to
additive noise. They mainly fall into eight categories:

• finite difference methods [10], [11],
• Savitzky Golay methods [12], [13],
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• wavelet differentiation methods [14], [15],
• Fourier transform methods [16], [17],
• mollification methods [18], [19],
• Tikhonov regularization methods [20], [21],
• algebraic methods [22], [23], [24], [25],
• differentiation by integration [26], [27], [28].

This paper makes use of an advanced algebraic derivative
estimator, which can offer robust derivatives estimation from
noisy measurements by tuning its operator parameters. And
its causal property make the on-line identification possible.

For robot on-line dynamic parameter estimation this paper
will consider an energy point of view associated with mod-
ulating functions. As specified in the literature [5], [6], [7],
energy model requires only joint velocity and joint position
measurement and gives a scalar equation which is linear with
respect to dynamic parameters. The drawback of such model
comes from the needs of additional data, which is covered
up by the varying modulating functions.

This paper is organized as follows: section 2 introduces the
problem formulation, which specifies the energy model, then
presents an introducing example of one joint robot and the
general case; section 3 gives the precise description of robust
algebraic derivative estimator; section 4 presents the obtained
results about robot dynamic parameters identification using
an energy model and a group of modulating functions; in
section 5 simulation is carried out with a two degrees of
freedom planar robot model, the simulation result shows
that the on-line dynamic parameters estimation has a good
precision on inertial parameters; and in last section it comes
to a conclusion.

II. PROBLEM FORMULATION

Here robot dynamic parameters identification is based on
the energy model in order to eliminate any derivation of
velocity.

For the rest part consider that joint positionq and joint
torqueΓ are measured via sensors. Suppose a rigid robot
which is composed ofn links, and the power of the system
can be described as:

d

dt
(H(q, q̇)) + q̇TΓf = q̇TΓm, (1)

whereH(q, q̇) is the total energy of the system, which is the
sum of kinetic energyE(q, q̇) and potential energyU(q).
Γm is the motor torque vector, andΓf is the friction torque
which is usually modelized at non zero velocity as follows:

Γfj = Fcjsign(q̇j) + Fvjq̇j + τoff j
, (2)



q̇j stands for velocity of jointj and j ≤ n, sign() denotes
each sign of element of vector,Fcj, Fvj are the Coulomb and
viscous friction coefficients of jointj, τoff j

= τoffFcj
+τoffτ j

is an offset parameter which regroups the amplifier offset
τoffτ j

and the asymmetrical Coulomb friction coefficient
τoffFcj

.
Due to linearity with respect to parameters, (1) reads as :

d

dt
(h(q, q̇))Θ+q̇T sign(q̇)Fc+q̇Tq̇Fv+q̇Tτoff = q̇TΓm,

(3)
whereX = [Θ Fc Fv τoff ] ∈ R

p is the vector containing
the dynamic parameters to be identified andh(q, q̇) is a
vector function ofq, andq̇. In order to avoid in the estima-
tion of X, integration by part is combined with modulating
functions.

Let l ∈ N
∗, T ∈ R

∗

+, and g be a function satisfying the
following properties:g ∈ Cl([0, T ]), g(i)(0) = g(i)(T ) =
0, for i = 0, 1, ..., l−1, whereCl([0, T ]) refers to the set of
functions beingl−times continuously differentiable on[0, T ]
with l ∈ N

∗. Theng is calledlth order modulating function
on [0, T ].

Modulating functions transform a differential expression
into a sequence of algebraic equations using noisy data
signals [29]. They have low pass filtering property. These
features make the modulating functions method interesting
in several real processes. In recent years many authors have
focused on the choice of different modulating functions
types such as Hermite functions [30], Fourier modulating
functions [31], Hartley modulating functions [32] and spline-
type functions [33].

In continuous time domain, for a given function of time
f(v), a modulating functiong(v) and a given time interval
K ⊂ R, we will use through out the paper the following
notation

MK
g (f) =

∫

K

g(v)f(v)dv. (4)

The following part gives an introducing example and a
general form method on how to estimate parameters using
modulating functions.

A. An introducing example

Consider a simple one revolute joint described by:

ZZq̈ + Fv q̇ + Fcsign(q̇) = τ, (5)

whereZZ (kg ·m2) is the inertial parameter,Fv (N/(m/s))
andFc (N) are the viscous and Coulomb friction parameters
respectively.

The purpose is to recover in real time the three dynamic
parametersZZ, Fv, Fc described in this model only by
using the measured angular positionq and the known applied
torque. At time instantt, the estimation make use of the
data from time interval[t− T, t], whereT is the time win-
dow length. Consider a combination of modulating function
gℓ(v) =

1
T
e−jℓω0(v−t+T )(e−jω0(v−t+T )−1)2 with resolving

frequencyω0 = 2π
T

, andgℓ(v) = (v−t+T )2(v−T )2e
(t−T )ℓ
0.8T

sincegℓ(t−T ) = gℓ(t) = ġℓ(t−T ) = ġℓ(t) = 0, multiplying
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Fig. 1. Estimation whenq is of SNR=40dB, withℓ = i
50

, i = 1, 2, ...200
andT = 4s

(5) by gℓ(v) and perform an integration by part on interval
[t− T, t], it gives

ZZM
[t−T,t]
g̈ℓ

(q)− FvM
[t−T,t]
ġℓ

(q)

+ FcM
[t−T,t]
gℓ

(sign(q̇)) = M[t−T,t]
gℓ (τ).

(6)

Take Xp = [ZZ,Fv, Fc]
T as unknown and it requires at

least 3 equations to solve them. Notice that this relation isa
scalar equation. Thus it need additional data to form multi-
equations, which can be realized by replacingℓ by a sequence
of N elements ofℓi whereℓi ∈ R. After setting a sequence
of ℓi the list of equations are expressed as:

A(t, q, q̇)[ZZ,Fv, Fc] = B(t, τ), (7)

whereA(t, q, q̇) is a N × 3 observation matrix and thei-
th line of A(t, q, q̇) is given byA(t, q, q̇)= [M

[t−T,t]
g̈ℓ

(q),

−M
[t−T,t]
ġℓ

(q), M [t−T,t]
gℓ (sign(q̇))]; and thei-th element of

vectorB(t, τ) is given byB(t, τ) = M
[t−T,t]
gℓ (τ).

This forms the general over-determined linear system
AXp = B, which can be resolved by least square ap-
proaches. In the simulation a white Gaussian noise is used
with SNR=40dB. The joint velocity is computed numerically
by an advanced causal Jacobi estimator which is presented
in the next section. Takeℓ = i

50 , i = 1, 2, ...200 and
sliding time window lengthT = 4s, a robust estimation
result is shown in figure 1. In conclusion, for one joint
robot case we utilize the measured joint position from a



certain time window to estimate the dynamic parameters.
The estimation gives good result with a time window of 4
seconds and this makes it possible to do on-line identifi-
cation. With a large sequence ofℓ, the estimator forms an
over-determined observation matrix and can be solved by
least square techniques. The drawback of this method lies
on the fact that the estimation is out of precision before it
acquires enough sampling data, as in figure 1 for the first
4 seconds the estimation is meaningless. After this period,
the inertial parameterZZ is well estimated and is robust
with respect to noise, but the small parametersFv and Fc

are much disturbed by noise although they can be estimated
around the real values.

B. General case

The idea of solving this kind of system is to increase
the order of observed value by partial integration with
modulating functions. For a general system

N
∑

i=0

αifi(θ, θ
(1), ..., θ(n)) = γ, (8)

whereN is the number of terms,n is the largest order of
derivative ofθ, αi are constant parameters,θ(i) is i-th order
of derivative ofθ andfi is a general function. Now suppose
a family of modulating functionsgℓ(v) satisfying

g
(i)
ℓ (0) = g

(i)
ℓ (t) = 0, i ≤ n. (9)

For examplegℓ(v) =
v(n+1)(t−v)(n+1)

ℓ(n+1) . Then multiplygℓ(v)
with the general system formulation and do integration on
the interval [0, t]. When the functionfi(θ, θ(1), ..., θ(n)) is
analytically integrable, one can perform integration by part
according to partial integration theory using (9)

∫ t

0

αigℓfi(θ, θ
(1), ..., θ(n))dv

= −

∫ t

0

αig
(1)
ℓ f

[1]
i (θ, θ(1), ..., θ(n−1))dv,

(10)

wheref [1]
i (θ, θ(1), ..., θ(n−1)) is the analytical form of inte-

gral function offi(θ, θ(1), ..., θ(n)).
In a similar way, if fi(θ, θ(1), ..., θ(n)) is k-th order

integrable, the highest order derivative ofθ can be degraded
to (n − k)-th order, which avoids to use noisy high order
derivatives. With this method, estimation of the observed
part can be numerically more precise and thus gives better
estimation result. Finally in thek-th order integrable case,
(10) can be written as a counterpart of

∫ t

0

αigℓfi(θ, θ
(1), ..., θ(n))dv =

(−1)k
∫ t

0

αig
(k)
ℓ f

[k]
i (θ, θ(1), ..., θ(n−k))dv.

(11)

In the rest of the paper, we will use the following family of
Fourrier modulating functions:gℓ,n(t) = 1

T
e−jℓω0t(e−jω0t−

1)n, where l is the pulse index,ω0 = 2π
T

is the pulse
resolution,n is the order of the system andT is the interval
of time for the observation of system.

III. N UMERICAL DIFFERENTIATION

This paper considers a frame of algebraic methods based
on Jacobi polynomials. This approach extends the numerical
differentiation by integration method proposed by Lanczos
in [26] and it is originally introduced by Mboup, Fliess and
Join in [22]. This method makes advantage of the truncation
of the Taylor expansion and the mismodelling due to the
truncation is compensated allowing a small time-delay in
the derivative estimation. This Jacobi estimator relies on
a group of non negative integer parametersκ, µ and has
three version of forms: causal, anti-causal and central forms.
By tuning these parameters the errors can be reduced to
certain limits. Moreover recently Da-yan Liu, Gibaru and
Perruquetti extend the parametersκ, µ used in the estimation
fromN to ]−1,+∞[, which provides more choices for tuning
parameters, an analysis can be found in [24].

Consider a noisy observationxm = x+ωx of real valued
smooth signalx on a finite time open intervalI ⊂ R

+, where
ωx is the noise component. The aim is to estimate thenth

derivative ofxm. Assume thatx ∈ Cn+1(I), for any t0 ∈
I, denote thatDt0 = t ∈ R

+; t0 + βt ∈ I, whereβ = ±1.
If and only if noiseωx is integrable, the Jacobi estimator
can be applied. Forget the noise for a while, introduce the
continuous time version ofnth order derivative Jacobi causal
or anti-causal estimatorsD(n)

κ,µ,βT,qx(βTξ + t0):

D
(n)
κ,µ,βT,q

x(βTξ + t0) =
1

(βT )n

∫ 1

0

Qκ,µ,n,q,ξ(τ)x(βTτ + t0)dτ, (12)

whereT is the length of integration time interval,µ, κ ∈
] − 1,+∞[ and q ∈ N are tuning parameters impacting the
estimation error,ξ is a fixed value on [0,1] which is related
to the delay and can be evaluated here as related to the
estimation errors [34], and ifβ = −1 denotes causal Jacobi
estimator andβ = 1 denotes anti-causal Jacobi estimator.

Qκ,µ,n,q,ξ(τ) = wµ,κ(τ)

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (τ),

where Qκ,µ,n,q,ξ(τ) is described by Jacobi polynomial
P

(µ,κ)
n (τ), weight functionwµ,κ(τ) andCκ,µ,n,i which are

given below:
Cκ,µ,n,i =

(µ+κ+2n+2i+1)Γ(κ+µ+2n+i+1)Γ(n+i+1)
Γ(κ+n+i+1)Γ(µ+n+i+1) ,

P
(µ,κ)
n (τ) =

n
∑

j=0

(

n+ µ

j

)(

n+ κ

n− j

)

(τ − 1)
n−j

τ j ,

wµ,κ(τ) = (1− τ)µτκ, andΓ is the gamma function.
The causalnth Jacobi estimator has a time delay of

τ = Tξ which indicatesD(n)
κ,µ,T,qx(Tξ + t0) ≈ x(n)(t0 −

τ). Similarly it has for anti-cause Jacobi estimator variant,
D

(n)
κ,µ,−T,qx(−Tξ + t0) ≈ x(n)(t0 + τ).
When taking noise into consideration, the Jacobi estima-

tors D
(n)
κ,µ,βT,qx(βTξ + t0) can deal with a large class of

noises for which the mean and covariance are polynomial in
time, with degree smaller than the order of derivative to be
estimated. The noise contribution is investigated in [34] and
they can be bounded according to the type of noise.

In summary the Jacobi estimators are corrupted by three
sources of errors [24]:

• the noise error contributioneβω(t0;n, κ, µ, T, ξ, q),



• the bias term erroreβa due to the truncation, which
produces an amplitude error in estimation,

• the drift erroreβd .
Table I shows the influence of causal Jacobi estimator
parameters for each error contribution. By well tuning these
parameters the estimation results can be optimised. The
notationsa ↑, b ր and c ց mean that if increase the value
for parametera then the errorb increases and the errorc
decreases. To verify the precision of causal Jacobi estimators,

Parameters e
β
a e

β
d

e
β
ω

κ ↑ ր ր ր
µ ↑ ց ց ր
q ↑ ց ց ր
T ↑ ր ր ց

TABLE I

INFLUENCE ON ERRORS OF CAUSALJACOBI ESTIMATORS PARAMETERS

add perturbation of SNR=30 white Gaussian noise to a joint
position trajectory then apply the causal Jacobi estimators.
By well tuning the parameters a good estimation of first order
derivative is obtained with a delay of0.1 second and the
error bound is less than0.05. The following figure 2 shows
the trajectories of reference joint velocity and estimatedjoint
velocity.
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Fig. 2. Reference joint velocity and shifted estimated jointvelocity by
causal Jacobi estimators

IV. DYNAMIC PARAMETERS ESTIMATION

Consider a family of modulating functionsgℓ(v) such that

gℓ(v − t+ T ) = gℓ(v − t) = 0, (13)

wheret is the instant time, andT is the sliding time window.
Applying the following operator

∫

gℓ(τ) to robot energy
model equation (3) and doing integration in time interval
[t− T, t] leads to the following equation:
∫ t

t−T

gℓ(τ)
d

dt
hT (q, q̇)dτΘ+

∫ t

t−T

gℓ(τ)q̇
T sign(q̇)dτFc+

∫ t

t−T

gℓ(τ)q̇
T q̇dτFv +

∫ t

t−T

gℓ(τ)q̇
T dττoff =

∫ t

t−T

gℓ(τ)q̇
TΓmdτ.

(14)

Use the following notations:

M [t−T,t]
gℓ−1

(h(q, q̇)) =

∫ t

t−T

gℓ−1(τ)h
T (q, q̇)dτ (15)

M [t−T,t]
gℓ

(x,y) =

∫ t

t−T

gℓ(τ)x
Tydτ, (16)

which transfer (14) into the following equation:

M [t−T,t]
gℓ

(q̇,Γm) = M [t−T,t]
gℓ−1

(h(q, q̇))Θ+M [t−T,t]
gℓ−1

(q̇)τoff

+M [t−T,t]
gℓ

(q̇, sign(q̇))Fc +M[t−T,t]
gℓ

(q̇, q̇))Fv.

(17)

This gives one scalar equation which varies with respect
to ℓ and depends onq, q̇. In order to identify the
dynamic parametersX = [Θ Fc Fv τoff ], joint velocity
q̇ must be estimated from measured joint position dataq,
which can be realized by using the derivatives estimators
presented in section 3; meanwhile select a sequence of
ℓ ∈ R and these scalar equations can give an over-
determined system which is linear with respect to unknown
parameters, in the form ofAX = B, where Ai =

[M
[t−T,t]
gℓi−1 (h(q, q̇)),M

[t−T,t]
gℓi

(q̇, sign(q̇)),M
[t−T,t]
gℓi

(q̇, q̇)),

M
[t−T,t]
gℓi−1 (q̇)], Bi = [M

[t−T,t]
gℓi

(q̇,Γm)] are known matrix.
This kind of problem can be solved by minimizing the

Euclidian length of the residual vectormin
X

||AX−B||, which

gives a unique optimal̂X as solution. In order to decrease
the sensitivity of the least square solution to errors inA

andB, the condition number of the observation matrixA,
Cond(A), must be close to one before computingX̂. This
can be done by running exciting trajectories which offer a
good select of noisy samplesq, q̇. Exciting trajectories can
be obtained by non linear optimization of a criterion function
of the condition number of observation matrix [35].

V. SIMULATION RESULTS

The simulation part utilizes a two revolute joints planar
robot model which moves in a horizontal plane and has
no gravity effect. According to [3], [36], the energy model
depends on eight minimal dynamic parameters, considering
four friction parameters, whereτoff is not considered:X =
[ZZ1R ZZ2 MX2 MY2 FV 1 FC1 FV 2 FC2], with the
regrouped parameterZZ1R = ZZ1 +M2L

2, whereL is the
length of first link, ZZ1 and ZZ2 are drive side moment
of inertial of link 1 and 2 respectively,MX2, MY2 are
first moment of link 2,FV j , FCj , are the viscous and
Coulomb friction coefficients of jointj. The simulation
tests are running with valueX which is all in SI Units:
X = [3.9 0.25 0.45 0.1 0.3 0.4 0.15 0.25].

To carry out the estimation, suppose a modulating function
gℓ(v) =

1
T
e−jℓω0(v−t+T )(e−jω0(v−t+T ) − 1) with resolving

frequencyω0 = 2π
T

, which is null at both ends of sliding
time interval [t − T, t]. Choose a sequence ofℓ = i

50 , i =
0, 1, ..., 250. Here we use QR factorization method to solve
the least square problem. In the following part simulation
runs a random trajectory in order to test the generality of
this method.
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Fig. 3. Estimation withℓ = 0 : 0.05 : 10 and time window 12s

A. On-line estimation using modulating functions

In noise free case the estimated values are identical
with reference inertial parameters values when sliding time
window length reaches 2 second. When considering noise
component identification becomes difficult as the dynamic
parameters are sensitive to noise. Add white Gaussian noise
of SNR=30 to the joint position and torques trajectories. The
joint velocities are computed numerically using the causal
Jacobi estimator. From experiments it can be found that
sliding time window should be much larger in order to
decrease the influence of derivative error in joint velocity.

An estimation result is given in figure 3 with sampling
time window lengthT = 12s. As time moves on, the inertial
parameters update according to the sampling data from the
previous 12 seconds. In the beginning the estimation is
pointless because the observation matrix is rank deficient and
ill-conditioned. When sampling data are enough the inertial
parameter estimation result is robust. But the estimated
friction parameters are disturbed and can only be estimated
approximately. This is because the friction parameters arenot
dominant parameters and make relatively weak contribution
in the model, the noise component will have great influence
on these weak parameters.

B. Non stationary inertial parameter

This part simulates the abrupt change of inertial parameter.
The initial dynamic parameters are set the same as those in
previous section. At instantt = 9.4s, ZZ1R changes from
3.9 to 4.5. Apply the on-line identification using modulating
functions. The results are shown in figure 4. Notice that
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Fig. 4. Estimation with time window7s andZZ1R changes from3.9 to
4.5 at instantt = 9.4s

from t = 9.4s to t = 15s there exists a delay about 5
seconds before getting the correction estimation. This delay
is necessary because it needs enough data to re-estimate the
changed parameters. During this transition period all the
estimated inertial parameters are varying smoothly to the
correct value. But the delay is too big for control and more
study should be done to reduce the delay.

C. Comparison with off-line identification using explicit dy-
namic model

The traditional off-line approach uses robot explicit dy-
namic model and requires extra joint acceleration data which
are difficult to measure and are usually obtained by numerical
differentiation. Each sampling point can give an equation.
After collecting all sampling points of the trajectory, an
optimal solution is given by least square method. This
method also need the observation matrix has rank efficiency
and small condition number.

To compare, both identification methods run the same
trajectory with noise component of SNR=30 white Gaussian
noise and use causal Jacobi estimator to get derivatives.
The inertial parameters to be estimated areZZ1R = 3.9,
ZZ2 = 0.25, MX2 = 0.45, andMY 2 = 0.1. Simulation
results are given in table II with sliding time window length
T = 20s. Results show that under the same noise level, on-
line identification method is competitive with off-line method
and the estimation results have the same precision.



Parameters Real Value off-line on-line
ZZ1R 3.9 3.8959 3.8855
ZZ2 0.25 0.2528 0.2499
MX2 0.45 0.4441 0.4524
MY 2 0.1 0.0967 0.0961
Fv1 0.3 0.2840 0.2917
Fc1 0.4 0.4436 0.4382
Fv2 0.15 0.1484 0.1472
Fc2 0.25 0.2645 0.2623

TABLE II

COMPARISON BETWEEN OFF-LINE AND ON-LINE IDENTIFICATION

METHOD WHEN TIME WINDOW LENGTHT = 20s

VI. CONCLUSION

This paper discusses within an energy point of view, the
possibility that robot dynamic parameters can be estimated
on-line associated with modulating functions. Joint accelera-
tion is useless in this approach so that it can avoid the second
order derivative computation of the joint position. Meanwhile
the algebraic way of causal Jacobi estimator offers an on-
line and robust estimation of the derivatives of joint position.
Once the joint velocities are well estimated using a causality
based way, this energy-based method can give a good esti-
mation, in large sense, of the inertial parameters, while the
friction parameters are difficult to estimate because they are
sensitive to noise. This can be applied in real application to
update on-line the inertial parameters during robot motion. In
the end on-line identification method is compared to off-line
one and simulation results show that both methods provide
a good estimation of dynamic parameters.
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