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Abstract: This paper reports about a new domain-specific variability modeling language, called
VM, resulting from the close collaboration with industrial partners in the video domain. We expose
the requirements and advanced variability constructs required to characterize and realize variations
of physical properties of a video (such as objects’ speed or scene illumination). The results of our
experiments and industrial experience show that VM is effective to model complex variability
information and can be exploited to synthesize video variants. We concluded that basic variability
mechanisms are useful but not enough, attributes and multi-features are of prior importance,
and meta-information is relevant for efficient variability analysis. In addition, we questioned the
existence of one-size-fits-all variability modeling solution applicable in any industry. Yet, some
common needs for modeling variability are becoming apparent such as support for attributes and
multi-features.

Key-words: VM, variability modeling, product line engineering, highly configurable systems,
textual specification languages



Modélisation de la Variabilité dans le Domaine de la Vidéo:

Langage et Retour d’Expérience

Résumé : Ce document décrit un nouveau langage de modélisation dédiée à la variabilité,
appelé VM, résultant de la collaboration avec des partenaires industriels dans le domaine de
la vidéo. Nous exposons les exigences et les constructions de la variabilité avancées requises
pour caractériser et implémenter les variations des propriétés physiques d’une vidéo (tels que
la vitesse des objets ou l’illumination de la scène). Les résultats de nos expérimentations et de
l’expérience industrielle montrent que VM est efficace pour modéliser l’information de variabilité
complexe et peut être exploitée pour synthétiser des variantes de vidéo. Nous avons conclu que
les mécanismes basiques de la variabilité sont certes utiles, mais insuffisants. Les attributs et
multi-caractéristiques sont nécessaires alors que les méta-informations sont pertinentes pour une
analyse efficace de la variabilité. En s’appuyant sur notre expérience, nous mettons en doute
l’existence d’une solution de modélisation de la variabilité applicable à n’importe quelle industrie
et domaine. Néanmoins, certains besoins communs pour la modélisation de la variabilité à sont
apparents, comme le support pour les attributs et multi-caractéristiques.

Mots-clés : VM, modélisation de la variabilité, ingénierie des lignes de produits, systèmes
hautement configurables, langage textuel de spécification
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4 Alférez, Galindo, Acher & Baudry

1 Introduction

Many organizations have to manage variability, encoded as features or configuration options,
to extend, change, customize or configure multiple kinds of artifacts (e.g., hardware devices,
operating systems or user interfaces) [27].

We faced the challenge of synthesizing video sequence variants in an industrial project involv-
ing providers and consumers of vision algorithms. This challenge is very original given the kind
of artifact that varies (videos) and its domain (video analysis). In this domain, practitioners need
to obtain videos to test their video analyzers. Typically, video analyzers are complex systems as
they assemble different vision algorithms, such as objects tracking and patterns detection, into
a video processing chain. In this setting, the more diverse is the input set of videos, the better
is the chance of characterizing a video analyzer in terms of performance, reliability, robustness
or any other non-functional property.

The current practice to obtain videos is to collect or to film them. Our experience with three
organizations developing or using video analyzers is that the current practice is not economically
viable or sufficient for testing video analyzers. We give more specific details in Section 2, but
essentially, high costs and complex logistics are required to film videos in real locations.

The difficulties of the current practice to obtain an input set of videos brought our attention
to more automation and control. In this paper we address two research questions:

• RQ1: What are the variability requirements in the video domain?

• RQ2: How to capture what can vary within a video and then automate the synthesis of
variants?

This paper introduces a generative approach and reports on our experience for addressing these
research questions in a collaborative project involving three organizations.

This paper provides the following contributions:

• Requirements for modeling variability requirements in the video domain.

• Practical solutions for video variability modeling represented by the VM language and
supporting tool.

• Analytic and empiric results that show that VM fulfills its requirements and how meta-
information in VM models reduces the time required to perform automated analysis.

• Discussion and analysis about our results and how the reader can learn from our experience.

A central finding is that we needed to design a new language, called VM, for modeling vari-
ability of videos and thus allowing the synthesis of video variants. We first learned that Boolean
variability constructs are clearly not sufficient in the video domain as it has to deal with numeric
parameters (also called attributes) and features appearing several times (also called clones [10] or
multi-features [9]). For example, speed is an attribute of a vehicle that can take different values
across videos, and vehicle is a multi-feature as each video can show several vehicles configured
with different speed values. In addition to the support of attributes and multi-features, we added
several language constructs in VM. For example, default values, deltas to discretize continuous
domain values, objective functions to filter relevant configurations, multi-ranges for attributes
domains, meta-information, etc.

Automated analysis tools [4, 14] exploit the information in VM models to generate testing
configurations, i.e., values assigned to features and attributes that define a video. The information
made possible by VM is crucial for two reasons. First, we can better control the way testing

Inria



Modeling Variability in the Video Domain 5

configurations are generated – precluding irrelevant videos while ensuring the covering of relevant
testing scenarios. Second, solvers can better scale thanks to meta-information associated to
features and attributes. We notably show in Section 4 that meta-information reduces the time
to reason and produce configurations.

The design of VM has been influenced by the technical realization (i.e., the solution space)
of variability. We jointly developed an end-to-end solution to generate testing configurations
that are then fed to a video generator. The connection with the realization layer – through
configuration files – validates the adequacy of VM. We are now able to synthesize thousands of
video variants, something clearly impossible at the beginning of the project.

The point of the paper is not to present yet another variability language or to provide details
on video analysis, generation, or automated feature models analysis operations. We rather want
to highlight the specific requirements we faced in the video domain, leading to the design and
reuse of existing (or novel) variability constructs. Our experience, as others [11, 6, 7], question
the existence of a one-size-fits-all variability solution applicable in any industry.

Also, to answer to our industrial problems, we focus on the expressive power of VM and how
its affects scalability of feature analysis operations (e.g., generation of a t-wise covering configu-
rations [14]). Based on our use of VM in one particularly complex video sequences generator, we
conclude that VM was expressive enough to cover complex variability in the video domain. In
the case of having more users we would need to evaluate technical and psychological dimensions
in language construction, for example, usability, learn-ability, tooling support, interchange, etc.

The remainder of this paper is organized as follows: Section 2 describes further the industrial
problem of video generation. Section 3 covers a list of requirements and how they impacted
the design of VM. Section 4 reports on practical considerations, empirical results about the
adequacy and effects of the new constructs of VM, and compares VM to other existing variability
languages. Section 5 discusses threats to validity. Section 6 describes other related work, and
finally, section 7 presents concluding remarks and summarizes the lessons learned.

2 Industrial Motivation

We faced the challenge of synthesizing a high number of diverse video variants in an industrial
project called MOTIV. The project aims to evaluate computer vision algorithms such as those
used for surveillance or rescue operations. A targeted scenario is usually as follows. First, air-
borne or land-based cameras capture on-the-fly videos. Then, a video processing chain analyzes
videos to detect and track objects, for example, survivors in a natural disaster. Based on that
information the operation manager triggers a rescue mission quickly based on the video analysis
information.

Two companies are part of the MOTIV project as well as the DGA (the French governmental
organization for defense procurement). The two companies develop and provide algorithms for
video analysis. The diversity of scenarios and signal qualities poses a difficult problem for all
the partners of MOTIV: which algorithms are best suited given a specific application? From
the consumer side (the DGA), how to choose, select and combine the algorithms? From the
provider side (the two companies), how to guarantee that the algorithms meet a large variety of
situations? How to propose innovative solutions able to handle new situations?

Our partners need to collect videos to test their video analysis solutions and detection algo-
rithms. Synthesizing a high diversity of videos is difficult as there are many ways in which a
video can change (e.g., physical properties, types and number of objects, backgrounds). However,
synthesizing videos is still more feasible than filming them in real environments. Our partners
calculate that an initial input data set of 153000 videos (of 3 minutes each), corresponds to 320
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Figure 1: Old process compared to the VM-based process for video generation

days of video footage and requires 64 years of filming outdoors (working 2 hours a day). Note
that these numbers were calculated at the starting point of the project based on the previous
experiences of the partners.

A related problem to randomly synthesizing videos is that practitioners ignore what kinds
of situations are covered or not by the set of videos. Therefore, it is not possible to ensure the
quality of the test-suite for detection algorithms in all situations. Overall, more automation and
control are needed to synthesize video variants and cover a diversity of testing scenarios.

The first step for automation support was taken by our partners. They created a video
generator to produce customized videos based on user preferences that were hard-coded during
the first versions. The left-hand side of Figure 1 shows this old approach where the only actors
are the developers. They had to comment lines or modify variable values directly in the video
generator code to change the physical properties and objects that appear in each video.

When the video generator was more stable, the developers decided to create configuration
files to communicate input values instead of hard-coded them. In particular, they employed
Lua configuration files which have a simple structure based the pattern parameter = value.
Then, developers used Lua code and proprietary C++ libraries, developed by a MOTIV partner,
to process those configuration files and execute algorithms to alter, add, remove or substitute
elements in base videos1.

The Lua configuration files used helped to decouple implementation from input data, however,

1Lua is a widely used programming language (http://www.lua.org/). Details about the computer vision algorithms
that synthesize video variants are out of the scope of the paper.

Inria
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Modeling Variability in the Video Domain 7

their simplistic nature presented at least three drawbacks: i) they lack of relationships and
constraints between configuration options; this information is very important to scope the family
of videos and to exclude invalid configurations; ii) every change in the video generator requires
to change n configuration files, thus, this task becomes error prone and tedious as the n value
is high (about 500 in the first round of experiments according to our partners); and iii) they
require that developers understand very well the implementation details of the video generator.
Therefore, developers had to guarantee that the values defined in configuration files were between
the limits allowed by the video generator and that each configuration is valid (e.g., there are not
conflicts between configuration options and their values).

The right-hand side of Figure 1 shows the VM approach that improves the process to generate
videos. The key idea is that developers and domain experts model variability in the video domain
using a model written in VM. Then, the VM tool generates Lua configuration files and connects
with the video generator to produce videos.

Figure 2 shows an example of a particular scene (part of a video video sequence). This scene
has a countryside background and only one object.

Countryside 
Background 

Vehicle Object 

Scene 

has 

has 

Figure 2: A video with countryside background and only one vehicle object.

3 Variability Modeling Language –VM

VM is a textual, human readable and writable language and tool that supports extra variability
modeling in the video domain and has a special focus on benefiting automated support scalability.
VM was created in three iterations. Each one adds more complexity and functionality to the
language and its tool support.

We employed project meetings to elicit requirements. During a period of about nine months,
we had four large meetings, two individual meetings with the main developer of the video gen-
erator, and regular conversations with participants by email. Currently, the main direct user of
VM in the MOTIV project is a team of three people from Inria, France.

Figure 3 presents an overview of the main characteristics (or solutions) supported by VM

and the elicited requirements that originated them2. They follow a top-down decomposition

2We prefer to use the terms “characteristic" and “solution" instead of “feature" when describing the properties
of the VM itself, to avoid confusions with the features of a video sequence modeled using the VM language
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8 Alférez, Galindo, Acher & Baudry

where the more general characteristics appear on top. We used grey boxes to identify the novel
characteristics offered by VM regarding existing variability languages (see Section 4.3 for more
details). We mapped requirements to characteristics by writing requirement numbers (R#) at
one side of characteristics numbers (C#) or inside a box with a dashed outline to group several
characteristics. Readers can find the complete grammar of VM and the variability model online3.

In the following, we will describe the three iterations based on requirements followed by the
concrete solutions provided by VM. Most of the requirements are for the design of the language
itself, however, there are also requirements for the tool that will process the models written in
the language. For example, requirement R12 is concerned about the effects of the novel VM

constructs regarding the performance of automated analysis operations in large and complex VM

models.
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Figure 3: Main language features supported by VM.

3.1 Iteration 1: Basic variability modeling

R1. Be scalable. One of our main interests was to make a solution with the ability to handle
a growing amount of configuration parameters in future video generator versions.

Two main issues motivated the scalability requirement. First, after adding or changing pa-
rameters in the video generator, the developers had to verify all the Lua configuration files to
guarantee that the parameter values were between their limits and covered the situations that
they wanted to test. This manual process is not scalable, time intensive and error prone.

Second, the MOTIV project participants are interested in automated analysis operations such
as the generation of pair-wise coverage in video configurations. However, the time employed

3https://github.com/ViViD-DiverSE/

Inria

https://github.com/ViViD-DiverSE/


Modeling Variability in the Video Domain 9

to perform complex automated analysis operations over attributed feature models may grow
exponentially with the number of combinations between features and attribute values in not
trivial feature models. Therefore, it is important to guarantee that the difficulty and time for
managing the complexity of a video variability model goes up roughly linearly with increments
in its size. In particular, our goal is that the time to perform automated analysis operations
over a specification (especially, the pair-wise coverage operation) grows linearly or slower with
larger (e.g., with more configuration parameters) or more complex specifications (e.g., with more
cross-tree dependencies between configuration parameters).

→ C1-C3. Modularization by Packages. A way to support scalability in variability
specifications (and in any software design in general) is to achieve a logical partitioning of a
specification to be each part more manageable for the purpose of implementation, understanding
and maintenance. Therefore, one part of the solution for the scalability (R1) was to provide mod-
ularization by packages to group configuration parameters, and import declaration to reference
features and other elements defined in other packages.

Section 3.3 will present more solutions for the scalability requirement that deal with the
challenge of specifying large domains for numeric attributes (introduced in the second iteration).
In addition, the requirement R12 (“Benefit automated support") motivates the use language
constructs that benefit automated analysis of the specifications written in VM.

R2. Organize common and variable configuration options. There are three issues
that motivated this requirement: First, there was not a logical way to organize configuration
options (a.k.a. parameters) apart from using comments to label groups of related options. That
approach makes it impossible to establish relationships between options in different groups,
and hierarchical dependencies between options in a group. For example “object" and “vehicle"
appeared in the group labeled “scene_options", however, the 3-levels logical hierarchy vehicle is
an object and object is a type of scene option was not explicit but necessary to understand the
video domain.

Second, there was not a way to distinguish parameters that are common to all the videos
from the ones that are optional. This issue can give room to unintended configurations. For
example, “background" is a parameter that should have a valid value representing its type,
however, nothing prevents to the developers of treating it as an option and assign it a “disabled"
value by mistake.

Third, it is difficult to know which are the acceptable alternative variations that could be
used as values for optional parameters. This information is important when generating video
configurations automatically.

→ C5. Basic Relationships. Our solution for the issues related in requirement R2 was
to define configuration options as features and relate them in a block called “Relationships"
(Characteristic C4. “Relationships" in Figure 3). That block, exemplified in Listing 1, shows a
features’ hierarchy where the selection of a feature (the child feature) depends on the selection
of a more general feature (the parent feature). On the other side, incompatibilities are expressed
using groups of alternative features where the selection of a grouped feature may be incompatible
with the selection of other grouped features. In this iteration, we only implemented basic features’
relationships (mandatory and optional) and groups (oneOf and someOf).

The different types of relationships available in VM are summarized next:

C6. Root. Following traditional terminology from graph theory, a feature without a parent is
called a root feature. In VM, each relationships block can have a root feature. “scene" (Listing 1,
Line 2) is an example of root feature.

C7. Mandatory. Child feature is required. Corresponds to features that will be included in
all possible video configurations such as “background" (Line 3).

C8. Optional. Child feature is not required. This corresponds to features that may be or

RR n° 8576



10 Alférez, Galindo, Acher & Baudry

1 Relationships:
2 scene { // mandatory root feature
3 background { // mandatory feature
4 oneOf { // XOr feature group
5 urban // grouped feature
6 countryside // grouped feature
7 desert // grouped feature
8 }
9 }

10 ? objects { // optional feature
11 someOf { //Or feature group
12 [1..5] vehicle //short way to express multi -features
13 cloneBetween 1 and 10 man /* readable but verbose way to express multi -features. It

is equivalent to [1..10] man*/
14 }
15 }
16 }

Listing 1: Feature relationships example

may not be selected as part of a video configuration. Optional features use the symbol “?" before
their name, for example “? objects" (Line 10).

C9. Alternative group. One of the sub-features must be selected. A alternative group is
represented using the word “OneOf". For example, we specified in Lines 4-8 that developers can
choose only one “background" between “urban", “countryside" and “desert".

C10. Or group. At least one of the sub-features must be selected. An Or group is represented
using the word “someOf". For example, we specified in Lines 11-14 that “vehicle" and “man" are
two not exclusive alternative kinds of objects that can be placed in a scene.

3.2 Iteration 2. Extended variability modeling

This iteration focuses on extended variability (Characteristic C11 in Figure 3).
R3. Limit the number of configurable copies. We saw that some parameters can have

several configurable copies in the same configuration file. For example, in the Lua configuration
files, the configuration parameter “vehicle" appears several times but with different suffixes (e.g.,
vehicle1, vehicle2, etc.). Currently, there is no way to know the maximum or minimum number
of vehicle copies that can be enabled and configured in each video without studying carefully the
video generator.

R4. Limit the number of selectable configuration options from a group. The video
generator allows changing scenes during the execution of the video. For example, a video may
show a vehicle that travels from a “countryside" to an urban" scene. The feature groups created
in the iteration 1 cannot model this situation; “oneOf" is too restrictive and “someOf" is too loose
and may allow up to three scenes, which is not viable as the videos will take too much time to
generate. Therefore, it is necessary to limit the minimum and maximum numbers of selectable
configuration options from a group.

→ C12. Advanced Relationships. The solution for requirements R3 and R4 are two
advanced relationships (Characteristic C12 in Figure 3) in the relationships block: Muti-features
and Cardinality-Based Groups.

→ C13. Multi-Features. Our solution for requirement R3 was to use cardinalities before
each feature name to specify the minimum and maximum configurable copies it can have. To
create a configuration of a video, a multi-feature and all its children features are cloned into
copies, and each copy can be configured individually.

The specification of a multi-feature follows one of two patterns placed before a feature name:
(1) [minVal..maxVal ] (Listing 1, Line 12), or

Inria



Modeling Variability in the Video Domain 11

1 Attributes:
2 @NT string scene.comment
3 @RT int vehicle.speed [0..130] delta 5 default 40
4 real man.speed [0.0..30.0] delta 0.5 default 3.0
5 enum vehicle.identifier ["HummerH2","AMX30"]
6 real man.appearance_change [0.0 .. 1.0] delta 0.1 default 0.5
7 int *.cost [0 .. 1000] default 150

Listing 2: Feature attributes examples

(2) cloneBetween minVal and maxVal (Line 13).

In both patterns, minVal and maxVal are the minimum and maximum number of allowed
feature copies.

→ C14. Cardinality-Based Groups. Our solution for requirement R4 was to add car-
dinalities to groups to specify the selection of a minimum and maximum numbers of grouped
features. The specification of a cardinality-based group follows one of the two patterns:
(1) [minVal..maxVal ], or
(2) someBetween minVal and maxVal .

R5. Represent Diverse Kinds of configuration options. The VM relationships created
in the Iteration 1 were enough to model the most simple configuration options such as to activate
or deactivate objects in the video. However, those “yes/no" options, represented as Boolean
features, were not enough to describe the domain and range of possible values of other types
configuration parameters, such as numbers or chains of characters.

→ C15. Attributes. Our solution to requirement R5 was the “Attributes" block that
defines properties associated to the features expressed in the Relationships block. VM supports
basic types (boolean and not boolean) and enumeration attributes (Characteristics C16-C23 in
Figure 3). Listing 2 shows 6 examples of attributes of types integer (int), enumeration (enum),
float point (real) and chain of chars (string).

→ C24-C28. Bounded and Unbounded Attributes Domains. There are two kinds of
attributes in terms of their domains: bounded or unbounded. Bounded means that the attribute
has a fixed value or that it may have one value between a range. Unbounded means that an
attribute has not a defined minimum and maximum values.

The most basic bounded attribute is the one that has a fixed value. The value of those
attributes can not be changed in any configuration and are comparable to constant values in
programming languages. For example: "real man.speed = 10.5" means that if a video has one
or more men objects, their speed is always 10.5.

The attributes of our running example are bounded. Line 2 stores a comment for each
scene (@NT, @RT and deltas will be introduced in iteration 3). Line 3 defines vehicle speed as
an integer number that ranges between 0 to 130. Line 4 defines man speed as a real number
that ranges between 0.0 to 30.0. Line 5 means that “vehicle.identifier" receives only one of two
possible values, "Hummer" or “AMX30" (these are just two of the available vehicles models).
Line 6 means that “man.appearance_change" receives a floating point value normalized between
0.0 to 1.0, and finally, Line 7 defines an attribute “cost" that ranges between 0 to 1000 and is
assigned to all the features.

R6. Establish the default values of configuration options. Developers want to create
new video configuration files with the minimum of manual effort. For instance, they want to
create partial configurations and want that the system completes the rest of the options auto-
matically using predefined values assignments. However, developers did not have any explicit
and organized way to establish the default values of configuration parameters.

Apart from supporting partial configurations, default values for attributes are key in auto-
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1 @name "scene variability"
2 @version 1.0
3 @description "Part of the variability model related to the scene"
4 @author "DiverSE Team"
5 @email benoit.baudry@inria.fr
6 @organization "INRIA , Rennes , France"
7 @date "March , 2014"

Listing 3: Model information block example

mated analysis to define variables in automated problem solvers (e.g., CSPs).
→ C29. Default Values. Our solution for requirement R6 was to allow developers to

establish a “default" value among a range of values and associate it to an attribute. For example,
Line 3 defines that the vehicles’ speed is 40, unless developers set other value in a configuration.
In the MOTIV project, generation of video configurations is fully automated from the VM model.
Therefore, default values are used during variables initialization using a CSP instance.

3.3 Iteration 3. Extra variability modeling

During this iteration we include most of the novel characteristics of VM that we call as “Extra
variability" modeling (Characteristic C30 in Figure 3).

R7. Reduce domain values. Bounded attributes, reduce the number of possible values
of an attribute, and therefore, the number of combinations of attributes values and features.
However, even bounded attributes may have a value among an almost infinite range and it is
necessary to specify which values are the most important. For example, the bounded attribute
“real man.appearance_change [0.0..1.0]" includes many and too close values (e.g., 0.00011 and
0.00012) that are not differentiated by the human eye and it makes no sense to produce two
different videos that vary only on those values. This requirement is related to the more general
requirement R1 which addresses scalability and may be taken as a sub-requirement.

→ C31. Delta values. A solution for requirements R1 and R7 is a new construct
called “delta". Each delta reduces the number of acceptable numeric values, therefore, “real
man.appearance_change [0.0..1.0] delta 0.1" in the Listing 2, Line 6 will be interpreted as “enum
man.appearance_change [0.0, 0.1, ... 0.9, 1.0]".

R8. Provide information about the specification and its elements. Developers
wanted a more structured and standardized way to organize model information, such as ver-
sion and name. Also, we saw necessary to provide information about the parameters. The
goal of defining parameters is to agree on the meaning of each term. For example, the mean-
ing of “signal_quality.chrominance_U_mean" was unknown for most of us while the attribute
“man.appearance_change" could be interpreted in different ways, for example, the ability to
change color, type, speed, trajectory, or the frequency in which he moves its legs or hands.

→ C33-C34. Model information and descriptions. Our solution to requirement R8 is
the “Model information" and “Descriptions" blocks that add meaning to VM models.

Listing 3 shows an example of model information. Tags such as “@version", “@author" and
“@date" are used to ease the classification of variability models in a repository or to implement
simple but practical mechanisms of versioning control for VM models.

The Descriptions block contains a list of definitions of features, attributes or constraints
expressed in natural language. Listing 4 show two examples, the first describes the feature
“object" and the second describes the attribute “man.appearance_change".

VM helps to improve reference integrity using two rules: i) Only elements previously written
in other blocks can be defined, ii) attributes must indicate the feature where they are contained
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1 Descriptions:
2 feat objects i s "..."
3 att objects.appearance_change i s "..."
4 att *.cost i s "the cost in miliseconds of adding a feature in a video sequence"

Listing 4: Descriptions block example

1 urban requires vehicle
2 countryside requires clonesOf man < 10
3 countryside -> vehicle.dust == vehicle.size

Listing 5: Constraint block example

using the containment designator “.", and iii) attributes that apply to more than one feature
could use the wild-card “*" instead of the name of the feature (e.g., cost in Line 4).

R9. Deal with constraints. There is information about dependencies or incompatibilities
between features that is difficult or impossible to express in the hierarchical decomposition of fea-
tures captured in the Relationships block. Probably, the best-known examples of such constraints
are “requires" and “excludes" constraints between features. Also, the addition of attributes and
multi-features prompts the need to define more complex constraints.

→ C50-C53. Constraints. Our solution to the requirement R9 is the “Constraints" block
that allows to write a wide spectrum of constraints between features and attributes. Listing 5
shows three examples of constraints, the first means that the selection of an urban background
requires the selection of the feature vehicle. The second constraint means that the selection of
a countryside background implies to include less than 10 different men along the video, and the
last constraint specifies that the size of the dust cloud behind a vehicle in the countryside is
equal the size of the vehicle.

Each constraint must be a valid expression that combines variables referencing features and
attributes names, functions and operators. VM provides a list of operators whose syntax, se-
mantics, and precedence are very similar to the Java language. For example, VM supports
arithmetic (e.g., ∗,+), relational comparative (e.g., >=, <), equality (==, ! =), logical operators
(e.g., requires, &&, ||) and conditional (? :) operators.

VM also allows to use functions as parts of the constraints. As an example, lets imagine
that we want to restrict the time taken to generate a video to be less than 2 hours measured in
milliseconds. That constraint is written as “sum (*.cost) < 2*3600000". Functions can accept
several parameters or may have equivalent operators (e.g., sum and +). VM supports logical
(e.g., xor, or, and), arithmetic (e.g., sum, avg, max, min) and sets (e.g., clonesOf) functions.

R10. Deal with multiple ranges and priorities of values. Along the range of values
of a particular physical measure there are too many possible values, but not all of them have
the same importance to generate configurations. Therefore, values with less importance should
not be considered in as many video configurations as in others. For example, domain experts
advised that “luminance_mean" values above some levels will definitely make a video impossible
to analyze, therefore, those values should not be included or included in less videos than other
values. Therefore, it is necessary to make explicit the different allowed ranges of values as well
as their importance in terms of its appearance frequency in video configurations.

→ C35-C36. Multi-range and multi-delta values. Our solution to requirement R10
and R1 is to extend the definition of attributes with information about the several allowed ranges
of values. Each range can have a different delta that reduces the number of values considered in
each range (a.k.a. multi-delta). Multi-deltas are necessary when not all values of an attribute are
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equally important for creating configurations. The rational is that in the delta should be small
in ranges that are not too important, to consider just a few values in that range. For example,
the attribute “luminance_deviation" has three ranges:
“real signal_quality.luminance_dev [0.0 .. 8.0] delta 1.0
[8.0 .. 32.0] delta 2.0 [32.0 .. 64.0] delta 4.0".
The first and last ranges are equally important for the domain experts and therefore, each one
of them considers 8 values. The second range is a little bit more important than the others,
therefore, it considers 12 values.

R11. Differentiate static and run-time variabilities. Some configuration options re-
fer to changes in a video that will remain “as is" until the end of the video (static variability).
However, there are other changes that are applied all along a video (run-time variability). The
explicit distinction between these two kinds of variability is important to determine the bind-
ing time of each configuration option. This information is exploited to scope the spectrum of
configurations, i.e., to only those that have static variability.

→ C37. Run Time Annotation. The solution for requirement R11 is to apply an anno-
tation to indicate the binding time of each element. For the video domain we only consider run
time but there are other binding times in other domains, e.g., load time, and link time. Runtime
features and attributes will be those whose values can change during the execution time of the
video. To decide if an element varies at runtime or not depends only on the domain experts.

A runtime feature or attribute is represented using the tag “@RT" or “@RunTime" before
its name. For example, the “background" feature would be considered as runtime if it can be
changed during the execution of a video: “@RunTime background". Listing 2, Line 3 shows that
the speed of vehicles varies during the video between 0 and 130 km/h.

These annotations also support scalability (R1) as they can reduce the amount of variables in
a constraint satisfaction problem (CSP) for generating a pair-wise, so we do not introduce such
variables in the CSP but consider them into the final configurations.

R12. Benefit automated support. VM models should be read by a processing tool to
provide automated analysis operations (e.g., to check that the model is valid or return pair-wise
covering), to generate Lua configurations files, and to control the generation of the videos related
to those configurations. It is important to note that there are too many possible combinations of
features and attribute values. Therefore, part of the challenge is to determine the criteria to define
which are the most important combinations to generate. The objective is to find constructs in
the language that have a positive effect in the performance of the automated analysis operations
(e.g., to retrieve significant pair-wise coverage configurations, or prune not valid but too similar
configurations).

→ C38-C39. Not translatable and not decision annotations. A solution for require-
ments R12 and R1 is the use of annotations that can be attached to features or attributes to
add information about how to deal with them when interpreting a VM model.

The not translatable annotation means that a feature or attribute contains information that
should not be considered when creating a CSP based on the VM model. A not translatable feature
or attribute is represented by “@NT" or “@NotTranslatable" before its name. For example, in
Line 2 of Listing 2 we considered the attribute “comment" of a scene as not translatable. This
is also useful for pair-wise calculations using CSP because it reduces the numbers of variables.

The decision variables in a CSP solver are the ones that need to be determined to solve the
problem. Typically, decision variables represent concrete features or attributes that are visible
in a system. However, when using feature models and depending on the domain, there are some
variables that do not really form part of the problem solution (e.g., abstract features or concepts).
For example, in the MOTIV project, only the variables representing video attributes are part
of the solution, therefore, features were taken as not decision variables. This is, a solution is
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1 objective generate_low_cost_configurations {
2 min (sum (*. cost))
3 }

Listing 6: Objective function example

distinguished from another depending on the value of the attributes. The not decision annotation
means that a feature or attribute can have any value when translated to a CSP. A not decision
feature or attribute is represented using the tag “@ND" or “@NotDecision" before its name. This
reduces the complexity of the CSP calculation because ND tagged elements will exist in the
problem but the solver does not traverse all possible domain values.

→ C40. Objective functions. It is necessary a translation between VM models and
CSP solvers [4] to address requirement R12. With this translation, we can execute automated
analysis operations such as NumberOfProducts, ValidConfiguration, or meeting different user
criteria (a.k.a. objectives). Moreover, we can perform some testing operations, for example,
the pair-wise operation considering attributes’ values [14]. Listing 6 shows one objective called
“generate_low_cost_configurations" in the “Objectives" block. This objective is defined as the
minimization of the total “cost" of the features, which is calculated by the sum of the values of
the attributes “cost".

R13. Support to define configurations. The VM tool should allow to read and to write
combinations of features and attributes’ values that characterize specific video configurations.

→ C41-C49. Configurations. Our solution for requirement R13 is the “Configurations"
block. Configurations are used to characterize specific systems in terms of a combination of
features and attributes’ values.

In our project, the VM tool generates Lua configuration files directly from a VM model (e.g.,
the pair-wise covering configurations), thus, it is not necessary to manually write configurations
in VM. However, developers use VM to write extra video configurations. These configurations
can be next converted to Lua configuration files and read by the video generator using the VM

tool.
VM provides two different ways to configure: i) boolean valuation, and ii) extended valuation.
→ C43. Boolean Valuation. This is the simplest type of valuation used to classify features

as either selected (activated) or unselected (not activated). In VM, developers write the feature
name inside a configuration to indicate that the feature is selected; otherwise, that feature will
be considered not selected. Also, it is possible to use the operator “!" before a feature name to
express not selection.

The configurations in Listing 7 are two simple, equivalent and valid configurations. They
configure a video with a countryside background and without any objects appearing in the scene.
There are several Boolean valuations in that configuration. For example, in Line 6 “countryside"
is activated, while in Line 7, “objects" is deactivated. Mandatory features such as “scene" and
“background" can be omitted (Lines 9 to 12) to make configurations less verbose.

→ C44. Extended Valuation. This type of valuation is used with attributes, muti-features
and cardinality-based groups.

- C45. Basic. For feature’ attributes there is a very intuitive basic extended valuation based
on the same patterns used to give values to attributes (Section 3.2). For example, Line 3 employs
this basic extended valuation to assign a comment to the scene.

- C46-49. Advanced. This type of valuation is used to summarize and modularize otherwise
repetitive and possibly, long and scattered valuations along each configuration. Listing 8 illus-
trates two different ways to write configurations using advanced valuation. Lines 1-19 show a
more readable and suitable syntax to new users and Lines 20-24 show a shorter syntax suitable
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1 configuration simple {
2 scene
3 scene.comment = "an empty countryside scene"
4 background
5 ! urban
6 countryside
7 ! objects
8 }
9 configuration simpleNotVerbose{

10 scene.comment = "an empty countryside scene"
11 countryside
12 }

Listing 7: Two simple and equivalent configurations of an scene

1 configuration advancedExtenedVal {
2 feature -value pairs for attribute: cost {
3 urban - 400,
4 countryside - 250,
5 objects - 1000
6 //more pairs feature - value
7 }
8 attribute -value pairs for feature: signal_quality {
9 luminance_mean = 72.55,

10 luminance_dev = 48,
11 chrominance_U_mean = 128
12 //more rows signal_quality.attribute = value
13 }
14 attribute -value pairs for clone feature: vehicle clone: FirstAuto {
15 identifier = "Hummer",
16 speed = 50
17 //more rows for FirstAuto.attribute = value
18 }
19 }
20 configuration advancedExtendedValNotVerbose {
21 cost {/*...*/}
22 signal_quality {/*...*/}
23 vehicle [FirstAuto] {/*...*/}
24 //more rows for FirstAuto.attribute = value
25 }

Listing 8: Partial configurations illustrating extended valuation

to experienced users.

Lines 2-7 address valuation grouped by an attribute to modularize in a block all the assign-
ments feature-value. This way contrasts with the basic valuation that requires to follow the
pattern “feature.cost = value" in many different places of the configuration.

Lines 8-13 address valuation grouped by feature and follows the same concept than valuation
grouped by attribute. There is a difference between the previous two valuations in terms of
the operators “-" and . Valuation by feature employs the “=" operator because it directly
assigns a value to each attribute. In contrast, valuation by attribute has an indirect valuation
to its attributes and therefore, it should use a different operator “-’. Finally, Lines 14-18 address
valuation grouped by copy of a multi-feature and follow the same pattern than valuation grouped
by feature.
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4 Discussion and Evaluation

4.1 Practical considerations

We discuss some practical considerations of applying VM. The goal is to help external readers or
practitioners to evaluate if our particular experience and language are good for their purposes.
Most of these considerations were proposed by Savolainen et al. [24] which are based on practical
experiences and research carried out in cooperation with several companies – as also happened
in our case.

Cost-Benefit. “What is the optimal model in terms of cost-benefit when taking into account
construction, usage, and maintenance?" [24].

Construction can be divided in the creation of the language and the creation of the model of
video variability: Language infrastructure construction. Creating a language, editor and inter-
preter is not for free since there are many tasks to support, such as parsing, auto-completion,
syntax highlighting, etc. However, we discovered that new frameworks for language development
make these tasks less complex and or even fully automated. For instance, we used Xtex 4 to
generate the VM editor and parser, based only on the VM grammar definition. Using Xtext,
we expended about one hour to create a working VM editor for the first iteration of VM, three
days for the second iteration, and about four days for the third iteration. Admittedly, the most
difficult part was to understand how to model and interpret nested expressions and operators
precedence in the constraints block.

An extra effort for us was the connection with the Lua code and the configuration files for the
VM model to be aligned with the schema of the configuration file exploited by the video generator.
We needed technical exchanges (by emails), beyond meetings with video. This part took about
one week, as it was a common effort between the creators of the language infrastructure and the
creators of the video generator.

Model creation. This task was the one that took more time; it required to understand the
domain, the requirements, and to discuss with video experts. We produced six different versions
of the video variability model during a period of about nine months. These versions were made
after four large meetings with all the project partners (these meetings focused on different topics
apart from variability modeling, including administrative issues and technical issues in the video
analysis domain), and two individual meetings with the main developer of the video generator.

Usage. Just a sketch of a feature model would be enough for communication; however, our
project justified the construction of a language and tool to support not only communication but
also enable video generation through scalable automated analysis.

Writing a valid configuration file of a video manually take around three minutes for the
video generator expert. Therefore, to create an initial set of only 500 videos would take 25
hours ((500 ∗ 3)/60), which does not consider the time to correct mistakes of creating invalid
configurations. VM supports the process to generate not only 500 but also thousands of valid and
diverse video configurations that guarantee some objectives (e.g., pair-wise coverage) in seconds.
Section 4.2 complements the cost-benefit point with an evaluation of the benefits in terms of
performance scalability of the new constructs proposed by VM.

Maintenance. In our particular experience, we did not experience significant maintenance
costs associated to changes to the language grammar or the video variability model written in
VM. On one side, Xtext helped to us maintain the language infrastructure code (e.g., parser,
editor, etc.) by separating generated code from manual code. On the other side, we did not
experienced major problems to update our video variability model since the video domain is
stable and the only changes that we applied were increments in the specification.

4http://www.eclipse.org/Xtext/

RR n° 8576



18 Alférez, Galindo, Acher & Baudry

As a conclusion for the cost-benefit practical consideration, we say that the costs of con-
structing, using and maintaining VM models are low compared with the benefits of producing
automatically suitable videos to test complex video analyzers. Similar achievements were impos-
sible before the introduction of variability techniques.

Stakeholders. “Who puts effort into and who gains the benefits of the model? What knowl-
edge about feature modeling methods in general and the product line in question do the stakehold-
ers have?" [24].

VM was developed mainly by a team composed of two people (a doctoral and postdoctoral
researcher) and one lecturer at Inria, which knew about product lines, and some feature modeling
methods. This team created the language infrastructure, implemented a translation from VM

to a CSP (presented on a previous work [14]), and work to connect the VM tool with the video
generator.

The main video generator developer is also a video expert that provided feedback for im-
proving the VM design. In addition, he wrote an initial and not exhaustive description of the
important aspects that may be varied in a video that were important to test a predefined set of
video algorithms. Based on the description, the development team wrote the first version of the
VM model and used that version to communicate with the rest of the partners in the following
meetings. Stakeholders from the DGA provided comments that were addressed in the following
iterations and model versions. However, the role of the members of the DGA was mainly to
review that the video sequences synthesized were realistic.

Taking into account the variety of stakeholders, we took the decision of dividing the VM

language by blocks, each one addressing a different concern. Video experts without too much
technical expertise can focus on concerns described in the relationships, model information, defi-
nitions, and objectives blocks. Developers and video experts with a programming background can
focus on adding annotations, constraints, deltas, or further defining the objectives and attributes
blocks.

Correspondance. “What elements of the product line does the feature model correspond
to?" [24].

1-to-1 mappings between features in the problem space and their realizations in the solution
space ease their co-evolution. For example, many features in the video domain VM model have
a 1-to-1 relationship with code modules that implemented the video generator. In a similar way,
feature attributes tend to match input parameters of Lua functions.

Using 1-to-1 mappings is not a strict rule. In fact, we also modeled features that are not
mapped to any specific module to group other features or attributes. For example, the feature
“objects" does not map directly to any module, but helped to group conceptually the “vehicles"
and “man" features that have concrete mappings to the code.

One important highlight regarding correspondence was that we decided not to use VM to
model all possible variability in a video sequence. In particular, we decided not to model or
provide constructs to determine the time and order in which events happen in a video sequence
or the path of moving vehicles and people in an scene. Our partners already had a way to
orchestrate events and to create and manage paths in predefined backgrounds. However, we are
considering the integration of those aspects in future versions of VM.

Constraints. “What do the constraints represent?" [24]

VM addresses the challenge of managing and representing constraints through a set of func-
tions and operations over features, attributes and sets of features (e.g., “ClonesOf"). Constraints
are also important for specializing the VM model to specific testing scenarios. For instance,
experts want to synthesize only videos with a specific background (such as desert or urban) or
luminance; some values are thus fixed, but the other features or attributes are still subject to
variations.
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Notation. “What constructs and representation should different stakeholders use?" [24]

The VM language provides a textual notation for expressing variability. There are two major
reasons. First, some of the partners are developers of video algorithms and are already familiar
with textual content. In contrast to diagrammatic languages, participants continue to use well-
established efficient tools in the industry such as code editors. Second, numerous attributes,
meta-information, and cross-tree constraints have been specified; by construction they are textual
information.

4.2 Reasoning scalability

To validate some of the benefits introduced by VM, we now evaluate the automated analysis
operation that retrieves a pair-wise coverage [22, 14]. The operation takes as input a VM model
and generates some configurations (i.e., values for features and attributes) conforming to the
constraints. Our goal is to study the effect of (1) @ND (for “not decidable") and (2) deltas (for
varying the increment of a domain) on the performance of the operation. We expect to decrease
the amount of time using meta-information (@ND and deltas).

Data. For the two experiments, we took the complete VM model of the MOTIV project
as input. This model contains: i) 18 features containing different amount of attributes; and ii)
a total of 84 attributes with ranges going from 0 to 120000. The size of the sum of all ranges
represents 2161711 integer values. This model represents up to 2, 0484 · 1018 configurations. A
key characteristic of this model is that most of the variability it represented as numeric attributes
related to physical properties.

Experimental settings. The two experiments were executed in a Dell computer running
an Intel i7 M 620 at 2.67GHz and 4 GBs of RAM. The operating system was Ubuntu 12.04, with
a 1.7 open-JDK virtual machine. The implementation of the pair-wise operation internally relies
on the Choco 2 solver.

Evaluating the effects of @ND. In the first experiment, we created ten groups, each one
containing ten copies of the original model. Each group has a percentage of @ND tags, which
went from 0 to 100 percent. The tags in each group were assigned to the attributes randomly.
We report on the average time required by each group. The experiment hypothesis is that the use
of @ND tags improves the performance of the pair-wise operation in the context of the MOTIV
project.

Figure 4 shows the results. The time varies around 10 seconds between the models containing
100% of @ND tags and the models with no tags. It represents an improvement of around 30%
in the execution time. The improvement is significant. But the testing operation can still scale
in a reasonable amount of time without @ND tags. At this step of the research, we thus cannot
state that @ND tags are mandatory constructs in MOTIV for scaling but it matters and helps
improve the time needed. This is, we suspect that it would be more useful for larger models,
however, this experimentation is keep as future work.

Yet, we conjuncture that the VM model of the MOTIV project will grow in complexity and
handle more attributes and features in the future. We expect to gain even more time reduction
in future releases based on the Figure 4 tendency. Another argument for @ND tags is that
we generate only relevant configurations. Note that ND tags helps the solver to focus only in
decision variables but this does not reduce the complexity of the problem in terms of variable
domains.

Evaluating the effect of deltas. In the second experiment, we measured the impact of
deltas usage in the pair-wise operation. Specifically, we compared the time required to execute
the operation with and without deltas. When no deltas are specified, we consider an increment
of “1" for integer ranges. We executed the testing operation with the deltas provided by our
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Figure 4: Time for obtaining a pair-wise coverage depending on the percentage of ND for the
MOTIV feature model.

industrial partners. In this experiment no tags were used so the improvement of each language
construct can be evaluated independently.

We first observed that the variable domains were reduced in 3400 integer units in the CSP
when using the deltas optimization. The pair-wise operation without deltas took 38020 millisec-
onds. When enabling the deltas usage, the solver took 34772 milliseconds. This represent an
improvement of 4 seconds. This experiment shows that the constructs of the language improves
the scalability.

The improvement is noticeable but does not impose the presence of deltas at this step of the
research. As for @ND tags, the potential of deltas may be more apparent with the growing com-
plexity of the VM model. It also lies in the control of the configuration generation: practitioners
can fine-tune the way values of attributes vary. We can also envision the combined use of deltas
and @ND to reduce the amount of time and generation of relevant testable configurations.

Scalability improvements in random models. The major bias of our two first experi-
ments is the population validity. Therefore, to extend our conclusions to models having different
topologies and attributes nature, we performed the same operation over a set of models generated
by Betty[26].

Figure 5 shows the time required by the operation depending in the amount of cross-tree
constraints and the percentage of non decision tagged attributes. It is remarkable that the time
required by the operation is reduced almost in the same percentage as the annotations introduced.
Moreover, when models are big enough (e.g. 100 features) the time reduction is more than 30
minutes. This points out that the introduction of extra information is handy for providing better
results when implementing automated analysis tools.

Threats to Validity. The main threats to validity to this experiment is related to the
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Figure 5: Time for obtaining a pair-wise coverage depending on the percentage of constraints
and extra-information.

nature of the models randomly generated. While we used the Thum approach that tries to
mimic real feature models. It is possible that they do not cover all the properties of real models.
Also, we only measured this improvement using one operation. A more extensive analysis will
be done in future work, trying to compare the VM benefits within the set of 30 existing analysis
operations [4]

4.3 Comparison with existing solutions

Numerous languages, being textual or graphical, have been designed to model variability. For
instance, feature models have become more and more sophisticated since 1990 and their dialects
have been detailed in comprehensive surveys, for example, by Schobbens et al. [25], Benavides
et al. [4] and Eichelberger and Schmid [13]. Boolean constructs of feature models (as supported
by FODA [17], FDL [28], XSFM [19], or Velvet [23]) are useful in the video domain, but not
sufficient. New dialects (e.g., FAMA [5], TVL [8] and Clafer [3]) have emerged to overcome the
expressiveness limitations of feature models, for instance, to deal with attributes or multi-features
(R3 and R5).

Table 1 summarizes the comparison of VM with some representative languages in terms of
the requirements that they address as a goal. The key difference between VM and the other
approaches is the use of meta-information associated to features or attributes. For example,
VM users can include: i) default values (R6), ii) deltas (R7), iii) elements definitions (R8), iv)
multi-ranges and priorities –multi-deltas (R10), v) meta-information annotations such as “not
translatable", “not decidable" (R12), and “runtime" (R11), and vi) objective functions (R12).
As reported in Section 3, our industrial experience strongly motivates the introduction of these
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R1. Be scalable # #   H#   

R2. Organize conf. options H#       

R3. Limit n. of configurable copies # # #   #  

R4. Limit n. of options from a group # #      

R5. Represent diverse conf. options # # #     

R6. Establish default values # # # # #   

R7. Reduce domain values. # # # # # #  

R8. Provide info. of spec. and elem. # #  # # #  

R9. Deal with constraints H# H# H#   H#  

R10. Deal with multi-ranges and pr. # # # # # H#  

R11. Diff. static and run-time # # # # # #  

R12. Benefit automated support # # H# H# H# H#  

R13. Support to define configs. # # # H# # #  

 addressed as goal, H#addressed but with restrictions, #not regarded as goal

Table 1: Summary of comparison between languages

new constructs. We also show the importance of the constructs in terms of reasoning scalability
(see Section 4).

Currently, we are evaluating the applicability of VM as a generic attributed feature mod-
eling language such as SXFM, TVL or FAMA. In the VM repository https://github.com/

ViViD-DiverSE/VM-Source we have VM models that support the point that VM is expressive
enough to encode existing boolean and attributed feature models found in the literature and pub-
lic repositories (e.g., mobile media [18] and the SPLOT repository www.splot-research.org).

Berger et al. [6] studied the modeling of variability in the operating system domain (Linux,
eCos, and FreeBSD are the subjects of the study). They showed that well-researched concepts
of FODA feature models, comprising Boolean (optional) features, a hierarchy, group and cross-
tree constraints, are used. They also identified domain-specific concepts beyond FODA feature
models, such as: visibility conditions, derived features, derived defaults, and binding modes.

Dumitrescu et al. [11, 12] reported on their experience in an automotive model based systems
engineering. Mussbacher et al. [21] propose an extension of the Aspect-oriented User Require-
ments Notation (AoURN) to support variability modeling. The outcome is a holistic reasoning
framework based on goal modeling, feature modeling, and specification of scenarios. The frame-
work has been applied on Via Verde, a real-world product family that aims to simplify the
payment processes.

Variability in industry. A recent survey reported that feature modeling is by far the
most popular notation used in industry [7]. However no details are given on the specific lan-
guage constructs used for modeling variability requirements. The industrial survey shows that
pure::variants and GEARS are the most industrial tools used to model variability. They provide
support for feature models but some adaptations are needed to cover all the requirements we
faced in our industrial project. The most important is to provide reasoning support for extra
variability and a mechanism to discretize multiple ranges of values defined in continuous domains.

Interestingly, a variety of notations is used in industry – most of industrial practitioners
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rely on several notations [7]. Studies of variability also show that modeling languages in open
source systems all contained domain-specific, or even project-specific language constructs [6]. Our
experience-report also highlights specific needs when modeling variability in the video domain.
It questions the existence of a one-size-fits-all solution applicable in any industry without specific
adaptations.

The Common Variability Language (CVL) (http://www.omgwiki.org/variability/doku.
php), a recent proposal for OMG’s standard, describes a comprehensive process for modeling
software product lines. CVL includes the description of a variability abstraction model (VAM)
that conceptually corresponds to a feature model with attributes and multi-features. The lan-
guage VM is compatible with the VAM of CVL, but also comes with specific constructs (e.g.,
meta-information) and an associated reasoning support.

Domain-specific profiles and languages. One solution to address specific needs when
modeling variability is the use of modeling profiles. These are particular ways to give a host
language the feel of a domain-specific language. For example, Hofman et al. [16] extended UML
Activities to represent and relate different kinds of “Features". We avoided to follow this approach
as VM is intended to change independently of any particular host language.

Another alternative is the development of domain-specific languages (DSLs) [15, 29]. We
want to highlight the fact that VM provides no specific construct to the domain of video (e.g.,
the language construct “scene" or the keyword “illumination"). Therefore, we can consider VM

as a domain-specific language for variability modeling in general that offers adequate variability
constructs for the video domain.

5 Threats to Validity

Two major external threats to the evaluation of scalability performance (see Section 4.2) are: (1)
population validity, i.e., the model used in the experiments represents only one concrete instance
of the problem. We consider that the feature model is realistic since several experts were involved
in its design. Moreover, the result is not a contemplative model and has proved to be effective
to synthesize videos variants. However, it is possible that the feature model does not reflect
properly the same structure as other realistic models. It is also possible that the future evolution
of the model changes its inherent complexity and influences the results. We plan to repeat the
experiments with random models to claim that our techniques are applicable to other models.
(2) ecological validity : analyses were executed 10-times and we report on averages to minimize
the impact of third-party threads in the time being measured.

Another threat is that we evaluate the practical considerations (see Section 4.1) while being
active participants of the project. To mitigate this threat, we structure the criteria according to
an external evaluation framework [24]. Generalization of the observations of Section 4.1 (e.g., for
the VM language or for the variability methodology) would require additional case studies and
is premature at this stage of the research. The goal of Section 4.1 is thus more modest; we want
to report on our specific industrial experience in a structured and disciplined way.

There may be variability languages we do not consider when comparing VM to existing
solutions (see Section 4.3). To mitigate this threat, we consider recent comprehensive surveys [7,
13].

6 Related Works

Section 4 discusses state-of-the-art variability languages w.r.t. specific requirements we identified
in an industrial project. In this section, we review other related works.
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Variability and video domain. There is a plethora of work related to the domain of
computer vision (and by extension to video analysis). Many video algorithms have been designed
and benchmarked, and form the basis of many crucial applications of modern society. An original
goal of the industrial project is to synthesize variants of videos with the intention of testing
video algorithms. To the best of our knowledge, no generative approach, guided by a high-level
variability specification and supported by automated techniques, has been proposed or developed
in this domain.

Moisan et al. [20] and Acher et al. [2] proposed support to model the technical variability
of video algorithms. The objective was to systematize the deployment of a customized video
surveillance processing chain, suited to specific tasks (e.g., tracking of persons in an airport)
and reconfigurable at runtime [20, 2]. In our industrial project, the goal and requirements are
radically different: the challenge is to model the variability of videos – not of the algorithms.
This key difference leaded us to design and use advanced variability language constructs. Acher
et al. used only Boolean constructs for modeling variability [2].

Variability and reasoning support. Benavides et al. [4] made a survey of more than
20 years of automated analysis of feature models. Most of the reasoning operations apply on
FODA feature models, i.e., with Boolean constructs. It called for more research devoted to
the formalization, performance comparison and support of so-called extended feature models.
Since then, advances have been made to support attributes and multi-features (also called clone
enabled features), relying on either CSP solvers, BDD, SAT, or SMT solvers (e.g., see [30, 9]).
An original and crucial aspect of our work is that we exploit meta-information over features
and attributes when encoding VM models and generating test configurations. It has two merits:
i) reducing the complexity of the constraint problem fed to the CSP solver, and ii) generating
test configurations that contain only features and attributes relevant for specific video analysis
scenarios.

In [14], we developed testing analysis operations operating over VM models (i.e., attributed
feature models). Our previous work [14] focused on the testing operation. In this paper we
comprehensively (1) describe the variability language and (2) report on our industrial experience.
The effect of deltas and @ND ("not decision", see Section 4.2) on scalability performance had
not been evaluated either.

7 Conclusions & Lessons Learned

In an industrial project, we faced the original challenge of synthesizing video variants. The goal is
to test competing vision algorithms and thus determine what solutions are likely to fail or excel in
specific settings. It is crucial for the partners of the project – being providers or consumers of the
algorithms – to collect a comprehensive and suitable input of videos. The current practice, based
on the manual elaboration of videos, is very costly in resources and cannot cover the diversity
of targeted video analysis scenarios. We introduce a generative approach and we address the
following problem: What are the variability requirements in the video domain? How to capture
what can vary within a video and then automate the synthesis of variants? This paper reported
how specific requirements, encountered in the project and in the video domain, have shaped the
design of a textual variability language (VM) with advanced constructs and reasoning support.
We learned the following important lessons from our industrial experience:

1. Basic variability mechanisms à la FODA – Boolean (optional) features, hierarchy, group
and cross-tree constraints – are useful but not enough;

2. Attributes and multi-features are of prior importance;
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3. Meta-information is relevant for (1) performing efficient computer-aided analysis of VM

models; (2) customizing the generation of testable configurations (e.g., to focus on specific
attributes of features);

4. We detail the additional specific constructs (e.g. deltas, binding mode) we have added.
Different iterations were needed for connecting VM to the video generator developed by
the industrial partners and thus realizing a comprehensive solution [1];

5. Experts have reviewed 20+ variants we synthesized and judged that the video sequences are
realistic. We are at the step of launching a very large-scale testing campaign over thousands
of realistic variants – something clearly impossible at the beginning of the project (i.e.,
without variability support).

The point of the paper is not to present yet another variability language. We rather want
to highlight the specific requirements we faced throughout the project, in the video domain,
leading to the design and use of existing (or novel) variability constructs. Our experience, as
others [11, 6, 7], question the existence of a one-size-fits-all variability solution applicable in any
industry. Yet some common needs for modelling variability are becoming apparent (e.g., support
for attributes and multi-features [9, 3, 30]).

Variability is gaining momentum in an increasing amount of domains and applications. The
synthesis of video variants is an additional illustration. It perhaps explains the diversity of
existing techniques, practices, tools, and languages for capturing variability requirements. We
hope our experience report can further the understanding of variability and motivate innovative
research for supporting variability practitioners.
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