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Simplified Load Distribution Factor for               
Use in LRFD Design 

Introduction  
The “S-over” equation for the load distribution 

factor (LDF) was first introduced in the 1930s in the 
AASHTO Standard specifications. Finite element 
studies, however, have shown it to be unsafe in some 
cases and too conservative in others. AASHTO 
LRFD specifications introduced a new LDF equation 
as a result of the NCHRP 12-26 project. This 
equation is based on elastic finite element analysis 
(FEA). It is considered to be a good representation of 
bridge behavior. However, this equation involves a 
longitudinal stiffness parameter, which is not initially 
known in design. Thus, an iterative procedure is 
required to correctly determine the LDF value. This 
need for an iterative design procedure is perceived by 
practicing engineers as the major impediment to 
widespread acceptance of the AASHTO LRFD 
equation.   

Meanwhile, the FE model used in 
developing the LRFD LDF equation did not include 
some important features of bridges which may affect 
lateral load distribution. First, despite the presence of 

the secondary elements such as cross bracing, 
diaphragms, and parapets in bridges, these elements 
were not considered in the development of the 
AASHTO LRFD LDF equation. Second, previous 
research revealed a widespread presence of pre-
existing cracks in concrete bridge decks.  These 
cracks usually form even before the bridge is open to 
traffic. Even though deck cracking is a well-known 
phenomenon, the effect of deck cracking on the live 
load distribution has not yet been assessed. 

The main objective of this study is to 
propose a new simplified equation that is based on 
the AASHTO LRFD formula and does not require 
an iterative procedure. The new simplified 
equation is intended to be at least as conservative 
as the LRFD equation. Additional objectives of the 
study are (1) to investigate the influence of 
secondary elements on the lateral load distribution 
of typical steel girder bridges; and (2) to examine 
the effects of deck cracking on the load distribution 
mechanism through nonlinear analyses.  

Findings  

A total of 43 steel girder bridges and 17 
prestressed concrete girder bridges in the state of 
Indiana are selected and analyzed using a 
sophisticated finite element model. The LDF 
obtained from the FE analyses are compared with 
those obtained using AASHTO LRFD equation, 
AASHTO Standard equation, and the proposed 
Simplified equation.  It has been found that the 
new simplified equation produces LDF values that 
are always conservative when compared to those 
obtained from the finite element analyses and are 
generally greater than the LDF obtained using 
AASHTO LRFD specification.  Therefore, the 
simplified equation provides a simple yet safe 
specification for LDF calculation. 

 The effects of secondary elements and deck 
cracking on the LDF are investigated through case 
studies of several Indiana bridges. The presence of 
secondary elements can result in a load distribution 
factor up to 40 % lower than the AASHTO LRFD 
value.  Longitudinal cracking has been found to 
increase the load distribution factor; the resulting 
load distribution factor can be up to 17 % higher 
than the LRFD value. Transverse cracking does not 
significantly influence the transverse distribution of 
moment. Finally, for one of the selected bridges, 
both concrete deck cracking and secondary elements 
are considered to investigate their combined effect 
on lateral load distribution. The increased LDF due 
to deck cracking is offset by the contributions from 
the secondary elements.  The result is that the 
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proposed Simplified equation is conservative and is recommended for determination of LDF. 

Implementation  
The proposed, Simplified equation is 

expected to streamline the determination of LDF 
for bridge design without sacrificing safety. The 
simplified LDF equation eliminates the increased 
level of complexity introduced by the AASHTO 
LRFD equation, which has precluded its 
acceptance by the bridge engineering community, 

by removing iterative parameters. Thus, the 
simplified LDF minimizes undue burden on the 
bridge designer as well as reduce the likelihood for 
misinterpretation and error within the framework 
of the LRFD specifications.  Initial, trial 
implementation of the Simplified LDF equation 
will be undertaken by the INDOT Design Division. 
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CHAPTER 1. INTRODUCTION 

 

 

1.1 Background & Motivation 

 

In bridge design, the value of the maximum moment in the girders is necessary in 

the determination of the bridge section.  The problem is three-dimensional and involves 

complex behavior of load transfer from concrete slab to steel girder.  The AASHTO 

bridge specification suggests many methods to analyze bridges, i.e., finite element 

analysis, grillage analysis, and a load distribution factor (LDF) equation. 

The LDF equation is introduced to facilitate in determination of maximum moment 

in the girders.  Finite element analysis (FEA) is considered to be an accurate method, but 

it requires much effort in data preparation, bridge modeling and analysis, and 

interpretation of results.  With the LDF equation, the maximum moment in the girders is 

obtained by multiplying the moment from a one-dimensional bridge analysis by the value 

obtained from the LDF equation. 

The wheel load distribution factor from the “S-over” equation, the AASHTO 

standard equation (AASHTO 1996), for concrete slab on steel girder bridges with two or 

more design lanes loaded is 

                          (US customary unit)
5.5

                       (SI unit)
1676

SLDF

SLDF

=

=
    (1.1) 

where S is girder spacing (ft, mm).  The S-over equation, first introduced in 1930s, 

involves only one parameter.  Although the S-over equation is simple to use, it is 

considered to be unsafe for some bridges and too conservative for others. 
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In 1994, a more accurate LDF equation was introduced in the AASHTO LRFD 

code (AASHTO 1998).  This equation was based on FEA and statistics.  The wheel load 

distribution factor equation from AASHTO LRFD for concrete slab on steel girder 

bridges with two or more design lanes loaded is 
0.10.6 0.2

3

0.10.6 0.2

3

0.15             (US customary unit)
3 12

0.15             (SI unit)
914

g

s

g

s

KS SLDF
L Lt

KS SLDF
L Lt

⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (1.2) 

where  S is girder spacing (ft, mm), L is span length (ft, mm), Kg = n(I+Ae2) is 

longitudinal stiffness (in4, mm4), ts is slab thickness (in, mm), n is modular ratio between 

steel and concrete, I is girder stiffness (in4, mm4), A is girder area (in2, mm2), and e is 

eccentricity between centroids of girder and slab (in, mm). 

The AASHTO LRFD equation is considered to represent well the actual behavior 

of bridges (Zokaie 2000 and Zokaie et al. 1991).  However, since the equation requires 

parameters that are not known until girder selection, an iterative design procedure is 

necessary.  These parameters are longitudinal stiffness, Kg, and slab thickness, ts. 

Compared to the AASHTO LRFD, the AASHTO Standard equation tends to give 

unconservative LDF when bridge span length and girder spacing are relatively small, and 

gives overly conservative LDF when bridge span length and girder spacing are relatively 

large.  Although the AASHTO Standard equation is simple, it yields inaccurate LDF 

values.  Conversely, the AASHTO LRFD equation produces accurate results, but it is 

considered to be cumbersome in practice. 

The FE model used in developing the LRFD LDF equation did not include some 

important features of bridges which may affect lateral load distribution. First, despite the 

presence of the secondary elements such as cross bracing, diaphragms, and parapets in 

bridges, these elements were not considered in the development of the AASHTO LRFD 

LDF equation. Previous parametric studies (Eamon and Nowak 2004; Eamon and Nowak 

2002; Mabsout et al. 1997) showed that consideration of secondary elements has a 

significant effect on lateral load distribution. Consequently, the AASHTO LRFD 

equation often provides overly conservative results. Second, previous research (Frosch et 
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al. 2003; French et al. 1999) revealed a widespread presence of pre-existing cracks in 

concrete bridge decks.  These cracks are usually formed even before the bridge is open to 

traffic. Direction of cracking is typically transverse with respect to traffic direction but 

longitudinal cracking has also been observed. Even though deck cracking is a well-

known phenomenon, the effect of deck cracking on the live load distribution has not yet 

been assessed. 

 

1.2 Objectives & Scope 

 

The main objective of this study is to propose a new simplified LDF equation for 

concrete slab on steel girder bridges that captures the load distribution behavior but does 

not require an iterative design procedure.  In the proposed specification, the parameters in 

the AASHTO LRFD equation that introduce the need for iteration are eliminated. The 

new simplified equation is intended to be at least as conservative as the LRFD equation.  

The scope of the research is initially limited to concrete slab on steel I-girder bridges, and 

later extended to prestressed concrete girder bridges. 

Additional objectives of the study are (1) to investigate the influence of secondary 

elements on the lateral load distribution of typical steel girder bridges; and (2) to examine 

the effects of deck cracking on the load distribution mechanism through nonlinear 

analyses. 

 

 

1.3 Methodology 

 

The approach adopted in this work includes the development of a reliable three-

dimensional finite element model and the postulation and verification of the new 

simplified LDF equation.  First the applicable range for each parameter is selected.  

Bridges that have parameters inside the applicable range are used in the postulation of the 

new simplified equation and in the verification phase.  The new simplified LDF equation 

is formulated based on the AASHTO LRFD equation.  The formulation involves the 
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elimination of the parameters that create the need for an iterative design procedure.  

Various finite element models for slab-on-girder bridges are studied.  An appropriate 

model is selected and employed to verify the new simplified LDF equation, ensuring its 

safety. The finite element model is then extended to prestressed concrete girder bridges 

and is used to further validate the postulated equation for these bridges. To expedite the 

numerous analyses of both slab-on-girder and presteressed concrete bridges, pre- and 

post-processors are developed.  This alleviates a number of repetitive procedures required 

in bridge analysis.   

In order to examine the effects of secondary elements and deck cracking, a reliable 

three-dimensional finite element model including secondary elements and a concrete 

cracking constitutive model was developed. Then, eighteen Indiana bridges were selected 

and analyzed using the model.  The load distribution factors obtained from the FE 

analyses were compared with those obtained using AASHTO LRFD equation, AASHTO 

Standard equation, and Simplified equation. 

 

 

1.4 Organization 

 

Chapter 2 presents the historical background of the AASHTO wheel load 

distribution factor.  The derivation of the new AASHTO-LRFD formulas is then 

explained based on the NCHRP 12-26 project (Zokaie et al. 1991a, 1991b). The 

limitations of the NCHRP 12-26 project are presented. Prior studies related to the live 

load distribution of slab-on-girder bridges are also summarized.  

 Chapter 3 describes the different analytical modeling techniques for bridge 

analysis. First, plane grillage analysis, known as AASHTO Level II analysis, is 

introduced, and its limitations are summarized. FE modeling techniques of composite 

steel girder bridges are then discussed with a concentration on overall flexural behavior. 

The selection of the adopted finite elements and the numerical technique for modeling 

composite action is also discussed.  Finally, the chosen FE model is verified by 

comparing the results of linear elastic analysis to experimental test results. 
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In Chapter 4 the applicable range is defined based on the full range of bridge 

structures in Indiana.  The Indiana representative bridges are then selected.  Finally, 

parametric studies of the AASHTO LRFD equation are performed. 

A new Simplified wheel load distribution factor (LDF) equation, based on the 

current AASHTO-LRFD LDF formula, is postulated in Chapter 5.  The accuracy and 

applicability of the Simplified equation are demonstrated through comparisons of LDF 

calculated by AAHSTO-Standard, AASHTO-LRFD, and AASHTO level three analysis, 

namely finite element (FE) analysis.  

 Chapter 6 discusses the finite element modeling techniques for prestressed 

concrete (PC) girder bridges.  An appropriate model is selected. Indiana representative 

PC girder bridges are then analyzed.  The simplified LDF equation is further evaluated 

for PC girder bridges.   

 Chapter 7 examines the effects of secondary elements and bridge deck cracking 

on the lateral load distribution of girder bridges.  The results from case studies involving 

eighteen Indiana bridges are presented.  Finally, a summary and conclusions are provided 

in Chapter 8. 
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CHAPTER 2.  AASHTO GIRDER DISTRIBUTION FACTOR 

 

 

2.1 General 

 

AASHTO codes utilize the LDF to simplify the computation of load distribution. 

The maximum girder design moment can be calculated by the multiplication of the LDF 

with the maximum moment from one beam analysis.  First, the historical background of 

the AASHTO wheel load distribution factor is introduced. The derivation of the new 

AASHTO-LRFD formulas based on the NCHRP (National Cooperative Highway 

Research Program) 12-26 project (Zokaie et al. 1991a, 1991b) is discussed. The 

limitations of the NCHRP 12-26 project are presented. Prior studies related to the live 

load distribution of slab-on-girder bridges are also summarized.  

 

2.2 AASHTO-LRFD LDF Development 

 

Empirical load distribution factors from Newmark’s research (1938) have been 

used in AASHTO-Standard Bridge Specifications (1996) without major modification 

since the 1930’s. However, many piecemeal changes in design codes have led to 

inconsistencies in the procedure. These inconsistencies include changes of design lane 

width and multiple presence factors.  

In the AASHTO-Standard specification, the formulas were developed for the 

interior girders of simply supported bridges. A single parameter, girder spacing (S), was 

used for determining wheel load distribution factors in the form of S/D, where D is a 

constant based on the bridge type. These formulas were developed for straight and right-

angled bridges. It has been reported that these formulas produce valid results for a certain 
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ranges of bridge geometry and lose accuracy rapidly as geometry parameters are varied. 

For this reason, these formulas have been criticized by bridge engineers. They result in 

values that are too conservative for long span bridges. In short span bridges with small 

girder spacing, however, they lead to unconservative results.  

The NCHRP 12-26 project was initiated to address the controversy in the live 

load distribution formulas in the AASHTO-Standard Specification. Many bridge 

engineers claimed that other bridge parameters in addition to girder spacing, such as 

bridge geometric dimensions and material properties, have an effect on the lateral load 

distribution. A large number of modern bridges also require the wheel load distribution 

factor for skewed supports, continuous over interior supports, and exterior girders.  

Three levels of analysis methods were considered in the NCHRP 12-26 project. 

The Level One analysis method used simplified formulas to predict the lateral load 

distribution. Level Two analysis methods involved graphical methods, influence surfaces, 

and plane grillage analyses. Level Three analysis methods are the most accurate and 

involve the detailed finite element modeling of bridge superstructures.  

As part of the NCHRP 12-26 project, a database of nationwide bridges was 

constructed to determine the average bridge. Finite element (Level Three) or grillage 

analysis (Level Two) methods were then used to determine the simplified load 

distribution formulas (Level One) through a parametric study. The parameters sensitive to 

the lateral load distribution under AASHTO HS-20 design truck vehicles were identified 

based on the selected finite element modeling technique. Basic formulas were then 

developed including bridge parameters such as girder spacing, span length, girder inertia, 

and slab thickness. Multiple lane reduction factors were built into the basic equations.  

The more accurate formulas developed in the NCHRP 12-26 project, as described 

earlier, have been adopted since the first edition of AASHTO-LRFD specification (1998). 

The wheel distribution factor (LDF) for a bending moment in steel girder bridges for 

interior beams is given by:  
0.10.6 0.2

interior 30.15
3 12

g

s

KS Sg
L Lt

⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 for two or more design lanes loaded 
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where S is the girder spacing in feet, L is the span length in feet, st  is the concrete slab 

thickness in inches, and gK  is the longitudinal stiffness parameter = )( 2
gAeIn + . In this 

formula, n is the modular ratio between beam and deck, I is the moment of inertia of the 

girder in 4in , A is the area of girder, and ge  is the distance between the neutral axis of 

the girder and the slab in inches. For exterior girders, the LDF is given by: 

 interiorexteriorg e g= ⋅     for two or more design lanes loaded 

where 

 
1.9

77.0 ed
e +=  and ed  is the distance from the exterior beam to the exterior of the 

curb or traffic barrier in feet.  

 AASHTO-LRFD also includes several extensions to the basic LDF such as 

continuity and skew effect. According to the summary of NCHRP research by Zokaie 

(2000), the wheel load distribution factors in continuous bridges are slightly higher than 

simply supported bridges and that the average value of the adjacent spans are appropriate 

to use as a parameter. The skew effect was also studied, and it was found that in skew 

bridges, the moment is smaller and the shear at obtuse corners is larger when compared to 

right-angled bridges. The skew reduction factor of the wheel load distribution factor for 

moment is given by 

   5.1
1 )(tan1 θ−= cf  

 

where 
5.025.0

31 25.0 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

L
S

Lt

K
c

s

g and θ  is the skew angle in degrees. If the skew 

angle is less than 30 degrees, 1c  is taken as 0, and if the skew angle is greater than 60 

degrees, the skew angle is taken as 60 degrees. 

Figure 2.1 shows the comparison between LDFs from the AASHTO Standard and 

AASHTO LRFD equations.  Note that the third term in the AASHTO LRFD equation, 

Kg/12Lts
3 for US customary units and Kg/Lts

3 for SI units, is assumed to be equal to unity 

as recommended for a first trial in design.  For most bridges, this term ranges from 0.85 

to 1.10.  As seen in Figure 2.1, compared to the AASHTO LRFD, the AASHTO Standard 
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equation tends to give unconservative LDF when bridge span length and girder spacing 

are relatively small, and overly conservative LDF when bridge span length and girder 

spacing are relatively large. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Comparison of LDFs from AASHTO Standard and AASHTO LRFD 
Equations. (Unitless Stiffness Term in AASHTO-LRFD Set to Unity) 
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2.3 Literature Review on Load Distribution Factor 

 

The AASHTO-LRFD wheel load distribution factors were developed under 

certain assumptions. It was assumed that the girder spacing was evenly distributed and 

that all girder properties were the same. The design vehicle for developing the formulas 

was assumed to be the HS-20 design truck. It was also presumed that the thickness of 

slab was not varied. Recent research (Mabsout et al. 1997b, 1998; Tabsh and Tabatabai 

2001; Chen 1995a, 1995b) on lateral distribution of live load has focused on the effects of 

parameters that are not considered in the current AASHTO-LRFD formulas. 

Experimental studies (Kennedy and Grace 1983; Kim and Nowak 1997; Eom and Nowak 

2001; Barr et al. 2001) have been performed to validate the accuracy of the AASHTO-

LRFD wheel load distribution formulas. Unless otherwise specified, the FE method was 

adopted to analyze bridge behavior. The literature survey on FE model is described in 

Chapter 3 of this report. 

Tabsh and Tabatabai (2001), Goodrich and Puckett (2000) investigated the effects 

of truck configuration on the wheel load distribution and proposed modification factors 

for AASHTO-LRFD formulas to account for oversized truck loading. Oversized vehicles 

with a gauge larger than standard width were considered since formulas in AASHTO-

LRFD code were developed for a specific truck type. Tabsh and Tabatabai (2001) found 

through a parametric study that the wheel load distribution factors under an oversized 

load were lower than those of AASHTO-LRFD. It was determined that the effect of 

gauge width on shear distribution was larger than on flexural distribution.  

 The wheel load distribution formulas in the current code are developed for 

uniform girder spacing. A series of studies by Chen (1995a, 1995b) proposed a method 

that predicts wheel load distribution factors on unevenly spaced bridge girders. While it is 

not desirable, a large number of bridges have unequally distributed girder spacing for 

various reasons. These are mainly due to modifications of existing bridges and geometric 

restrictions. It was found that the formulas in AASHTO-LRFD were not appropriate in 

these cases and that the distribution factors for these types of bridges were significantly 

affected by the effect of skew angle.  
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 The effect of skewed support on the wheel load distribution factor was studied by 

a number of investigators: (Marx 1985; Bishara et al. 1993; Khaleel and Itani 1990; Barr 

et al. 2001). Khaleel and Itani (1990), and Barr et al. (2001) studied the load distribution 

for continuous prestressed concrete girder bridges, by varying the skew angle. Bishara et 

al. (1993) developed load distribution provisions for simply supported I-girder bridges. 

Verification studies were performed using experimental data. It was generally found that 

the presence of skewed supports decreased the distribution factor for interior girders and 

increased the distribution for exterior girders. At larger skew angles, a sudden decrease in 

the wheel load distribution was reported.  

 The influence of edge stiffening on bridge load distribution is investigated by 

Eamon and Nowak (2002) and Mabsout et al. (1997). The presence of parapet, barrier, 

and sidewalk gives the effect of stiffening and carries more load by reducing the load 

effects in the interior girders. Eamon and Nowak (2002) used solid elements to represent 

the parapet and barriers while Mabsout el al. (1997) used shell elements. Both models 

idealized the parapet to behave integrally with the deck slab. They found that the edge 

stiffening effect could reduce wheel load distribution factor and increase the load-

carrying capacity. 

A sensitivity study of continuous bridges on live load distribution was conducted 

in the NCHRP 12-26 project, but the correction for this effect was not included in 

AASHTO-LRFD. Instead of this correction factor, the continuity effect was embedded in 

the definition of span length. In the negative moment zone, the span length was the 

average of the adjacent spans. Mabsout et al. (1998) examined the influence of continuity 

on live load distribution for two span continuous steel I-girder bridges, and Barr et al. 

(2001) investigated three span continuous prestressed concrete girder bridges. Zokaie 

(2000) and Barr et al. (2001) found that the continuity of supports slightly increases 

wheel load distribution.  

Nowak et al. (1999) performed field tests of five simply supported steel I-girder 

bridges. All bridges had short-span and small girder spacing. 11-axle trucks, which were 

twice as heavy as the HS-20 load, were placed to cause the maximum moment. Strain 

data were measured from at the bottom flanges of all girders at mid-span. The filtered 
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static strain data were obtained from crawling speed and regular speed tests at each girder 

at the same section along the length of the bridge. The LDF was calculated from the ratio 

of the static strain at the girder to the sum of static strains of all of the girders. They found 

that the field measurement results were sufficiently lower than those specified by both 

AASHTO specifications.  

Eom and Nowak (2001) tested 17 steel-girder bridges with simply supported 

spans from 10 to 45 m. The methodology of the tests was the same as those used in 

Nowak et al. (1999). The results were compared with the code-specified values and FE 

results. They found that measured values were consistently lower than FE results and 

AASHTO code values. 
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CHAPTER 3. FINITE ELEMENT MODELING OF GIRDER BRIDGES 

 

 

3.1 General 

 

The response of a bridge under live load is important for both design and 

evaluation purposes.  This is because this knowledge enables the engineer to find the 

strength and serviceability of a given superstructure.  However, determining an accurate 

load distribution is difficult because of the complexity of bridge structures. In practice, 

under extensive simplifying assumptions, grillage analysis has primarily been used to 

determine overall bridge behavior. The grillage analysis method is inexpensive and easy 

to implement and comprehend, thus it has been favored over finite element (FE) analysis 

in the field of bridge engineering.  

However, grillage analysis has serious limitations. Using this method, it is 

impossible to model important physical phenomena, such as the interaction between 

girders and deck slab, support location, and shear lag. This limitation comes from the fact 

that in grillage analysis structural members lie in one plane only. With the advances in 

the computer technology and modern finite element (FE) programs with user-friendly 

graphical interfaces, three-dimensional FE analysis method is replacing grillage analysis, 

even for more straightforward bridge analyses.     

The objective of this chapter is to review previously proposed analytical models 

and to present a new three-dimensional FE model. All of these models involve detailed 

modeling of the bridge superstructure. As mentioned earlier, the exact load distribution 

factor often may not be found analytically or experimentally because of the complexity of 

bridge structures. However, since the actual behavior of a bridge structure is three-
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dimensional in nature, a three-dimensional FE discretization scheme is the most 

appropriate analytical model to analyze this behavior.  

It should be noted that some of the FE bridge models available in the literature 

introduce geometric errors and/or compatibility errors.  This can potentially result in 

incorrect representation of flexural behavior. In this study, several FE modeling 

techniques were thoroughly investigated in order to avoid modeling errors by employing 

displacement transformation and a proper selection of finite elements.   

The FE model chosen for this study was developed based on three-dimensional 

discretization. This model is capable of including physical behavior, such as composite 

action and the eccentricity effect between the slab deck and the girder. Using this model, 

it is also possible to capture shear lag, which is important in order to understand bridge 

deck behavior.   

This chapter describes various analytic modeling techniques for bridge analysis. 

First, plane grillage analysis, known as AASHTO Level II analysis, is introduced, and its 

limitations are summarized. FE modeling techniques of composite steel girder bridges are 

then discussed, with particular attention to overall flexural behavior. The selection of the 

adopted finite elements and the numerical technique for modeling composite action are 

also discussed. The FE modeling schemes are verified by comparing the results of linear 

elastic analyses to experimental test results. Finally, the FE model chosen for this study is 

presented.  

 

3.2 Previous Work 

 

Three dimensional finite element (FE) analysis enables bridge engineers to 

determine the distribution of wheel loads more accurately than empirical or restricted 

code formulas. The literature review of finite element modeling for bridge superstructure 

includes a survey of 15 papers on load distribution studies published over the past 15 

years. Table 3.1 is prepared using the results of the survey and is referred to throughout 

this section. The literature survey indicates that more than 85 % of current research 
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utilizes the FE method as an analysis tool over the grillage analysis or other simplified 

methods.  

 The three-dimensional FE modeling of bridges is generally divided into three 

categories: Eccentric beam model, Detailed beam model, and Solid deck model. The 

primary structural members for the distribution of live load are deck slab and girders. The 

modeling techniques of primary members are considered even though a number of 

studies also include secondary member modeling. Similarly to the research by Zokaie et 

al. (1991) current research on load distribution considers all materials as linear elastic. 

A majority of studies (Barr et al. 2001; Chen 1999; Ebeido and Kennedy 1996; 

Shaway and Huang 2001; Zokaie 1991a, 1991b; Marx 1985) utilized the eccentric beam 

model to idealize the bridge superstructures as shown in Figure 3.1. In this paper, the 

concrete slab is modeled as quadrilateral shell elements that incorporate both membrane 

and bending actions. Steel girders are modeled using eccentrically connected two-node 

beam elements. The eccentricity of the girders is taken into account though the use of 

rigid links between the centroid of the concrete slab and the centroid of the steel girders.  

Gupta and Ma (1977) and Balmer (1978) investigated the incompatibility between 

the beam element and the shell element in the eccentric beam model. The commonly used 

four-node thin shell element assumes that the shape functions are such that in axial and 

flexural modes of deformations are uncoupled. The axial mode is interpolated using 

linear shape functions, and the flexural mode is characterized by a Hermitian cubic for 

transverse displacement shape function. These researchers pointed out that the quadratic 

expression of the rotation in the linear constraint equation of axial displacement leads to 

inconsistencies. As a result, large errors in the deflections and stresses of stiffened plates 

occur.  

Miller (1980) eliminated this incompatibility by adding internal degrees of 

freedom at the middle of element edges so that axial displacements were compatible with 

quadratic shapes. Marx (1985) and Sadek and Tawfik (2000) used nine-node Lagrangian 

elements based on Mindlin plate theory in the shell formulation and three-node 

Timoshenko beam elements with shear deformation. Since all shape functions are 

quadratic the compatibility of the axial displacement field between the shell and the beam 
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elements is ensured. Khaleel and Itani (1990), Chan and Chan (1999), and Prusty and 

Satsangi (2001) idealized the deck slab using an eight-node serendipity shell element, but 

the approach was basically similar to the one in Marx’s study. 

Brockenbrough (1986) and Tabsh and Tabataba (2001) modeled deck slab using 

four node shell elements that included membrane and bending effects. Each steel I-girder 

was divided into flange and web parts as shown in Figure 3.2. Each flange of the girder 

was idealized by Euler beam elements, and the web was modeled by the four-node shell 

elements. Bishara et al. (1993) adopted the same modeling technique to represent the 

girder, but they used three-node thin plate triangular elements. Fu and Lu (2003) 

idealized the flange of the steel girder with plate elements and the web by plane stress 

elements. The eccentricity between concrete deck and steel girder flange was modeled by 

a rigid link, but no details were given regarding the effect of the inconsistency in axial 

displacement fields between the beam and shell elements.  

Tarhini and Frederick (1992), Mabsout et al. (1997), and Eom and Nowak (2001) 

used the three-dimensional solid elements with three degrees of freedom at each node, 

which have linear shape functions, to model deck slab as shown in Figure 3.3. The steel 

girder flanges and web were modeled by quadrilateral shell elements. By imposing no 

releases between the shell elements and beam elements, the composite behavior between 

concrete deck and steel girder was simulated. For non-composite action, Tarhini and 

Frederick (1992) placed three linear spring elements at the interface nodes in three 

orthogonal directions.  The spring stiffness was then selected based on the amount of slip 

expected. No details were given about the interface compatibility between slab solid 

element and flange shell element in the full composite action case. The main drawback in 

the model of Tarhini and Frederick was the use of only one linear solid brick element (8 

node) throughout the plate thickness direction. Many solid elements were required 

throughout thickness direction to accurately simulate the flexural behavior, since the solid 

element has a linear strain variation. Cook et al. (1989) also recommended that solid 

elements should not be used to model plates because of the computational cost associated 

with them.   
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Table 3.1  Survey of Bridge Analysis Studies on Live Load Distribution 

Analytical 
method 

Finite element analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15 
Grillage analysis: 10, 14 

Finite Element 
Model 

Category 
Eccentric beam model: 1, 4, 5, 7, 8, 9, 11, 14, 15 
Detailed beam model: 2, 3, 8, 12 
Solid deck model: 6, 8, 13 
 
Deck FE element 
Solid (8 node):  6, 8, 13 
Shell (3 node): 2 
Shell (4 node): 1, 3, 4, 5, 8, 10, 11, 12, 14 
Shell (8 node): 7, 15 
Shell (9 node): 9 
 
Girder FE element 
Beam (2 node): 1, 4, 5, 8, 11, 14 
Beam (3 node): 7, 9 
Flange (2 node beam) + Web (4 node shell): 2, 3, 8, 12 
Flange, Web (4 node shell): 6, 8, 13 
 
Secondary member considered (diaphragms, cross bracings, stiffeners, curb, parapets) 
Yes: 1, 2, 5, 6, 11, 12 
No: 3, 4, 7, 8, 9, 13, 14 
 
Rigid link 
   Yes: 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14, 15 
   No: 6, 8, 10 
 
Composite action 
Full: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15 
None: 8 
 
Proof of FE model 
Experiment: 1, 2, 5, 6, 14 
N/A: 3, 4, 7, 8, 9, 12, 13 
 
Program used 
Commercial: 1, 8 (SAP), 2, 4 (ADINA), 3 (NASTRAN), 5, 6 (ABAQUS), 12 (ALGOR),  
                      13 (ICES STRUDL II), 14 (GENDEK5A) 
N/A: 7, 9, 10, 11 

Material 

Girder material 
Steel: 2, 3, 4, 5, 6, 8, 9, 12, 13, 14 
Concrete: 1, 4, 7, 9, 11, 14 
 
Constitutive model 
Linear elastic  

 
 
 
 
 
 

 

 

1.     Barr et al. (2001)     9.      Marx (1985)      
2.     Bishara et al. (1993)     10.    Schwarz and Laman (2001) 
3.     Brockenbrough (1986)                           11.    Shahawy and Huang (2001) 
4.     Chen (1999)         12.    Tabsh and Tabataba (2001) 
5.     Ebeido and Kennedy (1996)   13.    Tarhini and Frederick (1992) 
6.     Eom and Nowak (2001)   14.    Zokaie et al. (1991) 
7.     Khaleel and Itani (1990)   15.    Chan and Chan (1999) 
8.     Mabsout et al. (1997) 
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Figure 3.1 Eccentric Beam Model. 

 

 

 

Figure 3.2 Detailed Beam Model (Brockenbrough 1986). 
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Figure 3.3 Solid Deck Model (Tarhini and Frederick 1992). 
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3.3 Grillage Analysis 

 

The grillage analysis method involves the modeling of a bridge as a skeletal 

structure made up of a mesh of beams lying in one plane, as shown in Figure 3.4. Beam 

elements are used to model the behavior of the girders and the deck in the longitudinal 

direction, and other beam elements are used to simulate the behavior of the deck in the 

transverse direction. The properties of the longitudinal grillage members are determined 

from the properties of the girders and the portion of slab above them, about the neutral 

axis of the section. Similarly, the properties of the transverse grillage members are 

necessary to represent the transverse stiffness of the slab. In this way, grillage members 

represent the total stiffness of any portion of slab and girder. This plane grillage 

technique has been widely used and has been found to be robust for many structural 

shapes, loading conditions, and support arrangements (Keogh and O’Brien 1996). The 

major advantage of plane grillage analysis is that shear and moment values for girders are 

directly obtained. Thus, the integration of stresses is not needed.  

However, there are significant disadvantages of using the two-dimensional 

grillage analysis model. For example, the grillage analysis method cannot account for 

shear lag. Thin slabs on a girder can be considered as wide flange beams. When this 

structure is subjected to flexural loading, normal stresses are generated in the section. The 

compressive stresses in the girder flange and the slab are not uniform in the transverse 

direction. As a result, longitudinal shear is generated. In other words, some portions of 

the slab between girders do not receive the same amount of axial stress as those near the 

center of the bridge. This phenomenon, known as shear lag, is dependent both on the 

geometric shape of the bridge deck and on the nature of the applied loading. Because of 

this, the neutral axis location in the bridge deck varies and moves towards the centroid of 

the wide flange section.  

Another drawback of grillage analysis is that the moments in two longitudinal and 

two transverse grillage members meeting end-to-end are not necessarily the same. The 

discontinuity between moments is balanced as a discontinuity of torques in the beams in 

the opposite direction to keep the moment in equilibrium at the node. The moment 
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discontinuity may be exaggerated in the case of the edge of the grillage. The torque in the 

transverse beam, which has no other transverse beam to balance it, introduces 

discontinuity in the longitudinal beams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Grillage Analysis (Hambly 1991) 
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3.4 Selected Three-Dimensional FE Model 

 

Finite element (FE) analysis enables bridge engineers to determine the 

distribution of wheel loads more accurately than using empirical or restricted code 

formulas.  After reviewing several FE models, it has been concluded that the eccentric 

beam model provides a realistic idealization of bridge behavior while retaining 

simplicity, which is essential for the detailed analyses of these system (Chan and Chan 

1999).  The verification of the selected eccentric beam model is presented in Section 3.7. 

In particular, the results from the finite element analysis are compared to the results from 

the bridge field tests. 

 

Compatibility Between Shell and Beam elements 

 

The eccentric beam model ensures full composite action between the deck slab 

and the girders. This model utilizes the non-composite section properties of two elements 

to model composite action by applying the rigid links between the centroid of the girder 

and the midsurface of the slab. The concrete slab deck is usually modeled as shell 

elements, which combine plate bending and membrane elements. The effects of shear lag 

are automatically included since the elements used to model the slab consider membrane 

behavior as well as flexural behavior. Longitudinal girders are modeled using 

eccentrically connected beam elements.  

Consider the eccentric beam model as shown in Figure 3.1 and Figure 3.5. As can 

be seen, the nodes of the beam do not coincide with the nodes of the plate. The beam and 

the plate should be connected in such a way that only plate degrees-of-freedom (DOFs) 

appear in the global structure. Imaginary weightless rigid links are added between the two 

pairs of nodes. Transformations are required to make beam DOFs ‘slave’ and plate DOFs 

‘master’. The transformation equation between a plate node and its corresponding beam 

node is given by  
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, (3.1) 

where the superscript b and p represent beam and plate, respectively. The e is the 

eccentricity between the plate element and the beam element. It should be noted that  

beam axial deformations are activated by the plate rotations. 

Typical bending elements make use of a linear shape for the axial displacement 

and a cubic shape for the transverse displacement. It has been reported that displacement 

incompatibility occurs at the interface of two typical bending elements (Gupta and Ma, 

1977). The axial displacement in the beam of eq. (3.1) is given as 

 b p p
yu u e θ= − ⋅ . (3.2) 

This causes a quadratic expression of rotation in the plate ( p
yθ ). The incompatibility is 

noticeable since the axial displacements ( bu  and pu ) are linear but the rotation ( p
yθ ) is 

quadratic in the axial (x) direction.  

Even though this incompatibility error completely disappears as the mesh is 

refined, many studies have been proposed to eliminate this nonconforming error in the 

modeling of the eccentric beam model, which allow for the use of less refined meshes. 

Miller (1980) solved this problem by using the same elements, but including an extra 

axial DOF at the middle of each element so that the axial displacements becomes 

quadratic. Each term of the transformation equation given in eq. (3.2) is quadratic in the 

axial direction.  

Various researchers (Marx, 1985) (Khaleel and Itani, 1990) (Chan and Chan, 

1999) have proposed higher order elements based on the Mindlin theory. This theory 

automatically includes transverse shear deformation in element formulation and assumes 

that the normal to the midsurface remains straight after deformation, but not necessarily 

normal to the deformed midsurface. The slab is modeled as eight-noded serendipity 

elements or nine-noded Lagrangian elements, as shown in Figure 3.5. Three-noded 

Timoshenko beam elements are used to model girders. The shape of the element is 

quadratic for rotations and displacements separately. The elements used in modeling slab-
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on-girder bridge are completely compatible with the quadratic expression at the interface 

of the slab and beam elements.  

 

 

Selected ABAQUS Elements 

 

The slected eccentric beam model utilizes the non-composite section properties of 

two elements to model composite action by applying rigid links (ABAQUS MPC) 

between the centroid of the girder and the mid-surface of the slab. The bridge deck slab is 

modeled by shear flexible eight-node shell elements (ABAQUS S8R elements), and the 

steel girder is idealized by three-node Timoshenko beam elements (ABAQUS B33 

elements). This element selection has been made in order to eliminate a potential 

incompatibility along the element boundaries as discussed earlier.  

Bearings are mechanical systems that transfer the reaction of superstructure 

components to the substructure. Since the main purpose of this study is to analyze the 

bridge superstructure, it is assumed that substructures, such as piers and abutments, do 

not influence the behavior of the superstructure. Although bearings are typically located 

below the beam element, many previous models neglected this fact and assumed bearings 

to be located at the centroid of the beam element or at the bottom flange of the beam.  In 

this study, bearings are modeled by assigning boundary conditions to the zero-

dimensional elements at their real location. For the simply supported beam, rotations in 

all directions are allowed in order to simulate the simply supported structure. Minimum 

restraints are assigned for longitudinal and transverse movement while vertical restraint is 

placed at the supports. Kinematic constraints are also supplied to nodes between the 

girders and the deck. 
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Figure 3.5 Improved Eccentric Beam Model 
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3.5 Pre-Processing 

 

In this work, two pre-processors are developed for the finite element (FE) analysis 

of slab-on-girder bridges in order to expedite the analyses. They are the maximum 

longitudinal position generator (Loadposition.m) and the ABAQUS input file 

generator (PrePro.for). First, the truck position that produces the maximum moment 

or shear should be determined in the longitudinal direction. The transverse truck position 

is then positioned manually. In this procedure, it is required that a number of load cases 

be tested to determine the maximum effect to the specific girder. Whenever new load 

cases need to be placed, a new FE mesh must be created accordingly. The ABAQUS 

input file generator has been developed to minimize the preparation of the tedious FE 

data required by the program. The generator also uncouples the FE mesh generation from 

the load position by introducing the work equivalent nodal force algorithm.  The 

flowchart of the procedure for determining the load distribution factor is shown in Figure 

3.6. 

 

ABAQUS Input Generator 

 

 An input generator was developed using the FORTRAN programming to 

automatically prepare the lengthy data required by the ABAQUS program. The key 

function of the input generator is to calculate the work equivalent nodal forces (ENF) and 

to place these loads at the proper nodal points.  A complete list of the ABAQUS input file 

generator (prePro.for) is given in Appendix A.    

 The live load for bridge design is the AASHTO HS20 standard truck loading 

according to article 3.7.4 in AASHTO 1996 bridge specification and shown in Figure 3.7. 

The applied loading on a bridge deck consists of pressure loads applied through a tire 

patch. The AASHTO bridge code specifies a “tire contact area” in order to ensure a more 

exact analysis. The contact area is based on the wheel of a standard HS design vehicle. 

The ratio of the length in the direction of traffic to the tire width is given as 1:2.5, and the 

wheel load is assumed to be a uniform pressure, as shown in Figure 3.8.  
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 In finite element modeling, this requirement imposes the need for a fine mesh in the 

deck so that the element is fitted to the patch size. In order to uncouple the patch load 

from the mesh size, equivalent nodal loads are employed. Both the Chen (1999) and Eom 

and Nowak (2001) studies utilized the Mindlin shape functions for four-node shell 

elements in their equivalent nodal force calculation. Each wheel load is considered as a 

single concentrated load on the shell elements instead of the patch load. Kim (2000) 

developed an algorithm that identifies the tire patch position and calculates equivalent 

nodal forces for the three-dimensional solid element in the application of FE analyses of 

pavement. The current FE model developed for this study requires an eight-node shell 

element for modeling of the bridge deck. The typical plate DOF of an eight-node shell 

element and the nodal numbering scheme are shown in the natural coordinate system, as 

shown in Figure 3.9.  

The equivalent nodal load of the patch load can be calculated by the surface 

integral as follow: 

 T

S

dS= ∫eR N t  (3.3) 

where t is the surface traction vector and N is the shape function matrix. Using this 

method, one must identify the nodes and elements that lie on the patch load. This 

approach is further complicated if the bridge deck is skewed. In this study, to expedite 

this computation, the patch load is discretized as a number of uniformly distributed sub-

point loads, as shown in Figure 3.10. This method considers each sub-point load as a 

single concentrated load. If there are K sub-point loads applied to the tire patch on an 

element of an amount p, then the equivalent nodal forces are computed as: 

 
1

p
K

T
i i

i=
=∑eR N . (3.4) 

The Mindlin plate shape functions are used for the calculation of the equivalent nodal 

forces, which are given by: 
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N
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ηη ξ

ξξ η

= + + + −

= + −

= + −

 (3.5) 

where subscript i represents the node number. The definition of the natural coordinate 

system is shown in Figure 3.9. 

The element number and the corresponding node number that are subject to each 

sub-point load are identified. The saved equivalent nodal forces are assembled at the 

appropriate entry of the load vector. The detailed algorithm is shown in Figure 3.11. A 

major advantage of the discretized patch load algorithm is that it eliminates the 

cumbersome load boundary search problems and numerical integration, while retaining 

the accuracy of the FE solution when a sufficiently refined tire patch is used. The 

discretization error of the patch load is estimated using a square plate loaded under a 

distributed load represented by sub-point loads. Different levels of discretization are 

considered by increasing the number of sub-point loads. The exact equivalent nodal 

forces are calculated by Eq. (3.3). It is clear from Figure 3.12 that the equivalent nodal 

forces for both corner nodes and interior nodes using the proposed discretized algorithm 

converge to the exact value of equivalent nodal forces as the discretization level 

increases. It is observed that the use of approximately 100 sub-point loads results in less 

than 1% error for both corner and interior nodes. 
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Figure 3.6 Flowchart of the Procedure Used for the Determination of the LDF. 
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Figure 3.7 AASHTO HS-20 Design Truck (AASHTO 2002) 
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Figure 3.8 View of Tire Contact Area of AASHTO HS20 truck (Dimensions are 4 by 10 
in. and 8 by 20 in. for the Front and Rear Tires, Respectively). 
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Figure 3.9 Typical Bending DOFs and Node Numbering of Shell Elements. 

 

 

 

 

 

 

 

 

Figure 3.10 Discretization of Patch Load. 
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Figure 3.11 Equivalent Nodal Force Computation Algorithm. 
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Figure 3.12 Discretization Error of Patch Load. 

Do over the number of trucks 

Do over the number of wheels 

    Do over the number of sub-point loads 

     Identify loaded elements and nodes   

Calculate the position of sub-point load in the natural coordinate system 

Calculate the equivalent nodal loads 

            End Do 

End Do 

End Do 

Assemble the equivalent nodal forces to appropriate entries in the load vector 

Print the results to the ABAQUS loading block (*CLOAD) 
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3.6 Post-Processing 

 

 In order to obtain the load distribution factor, the post-processing of the finite 

element results is required.  The bridge finite element analysis yields the results only at 

the nodes and the element integration points.  These locations depend on the meshing of 

the bridge.  In order to obtain the results at other locations, the interpolation of the finite 

element results is necessary.  Furthermore, the finite element analysis yields only forces 

and moments in the elements.  In order to obtain meaningful results for bridge analysis, 

i.e. the load distribution factor, an appropriate interpretation of the finite element results 

is essential. 

In the parametric study of the load distribution factor, several bridges are 

analyzed.  Since the post-processing is performed repeatedly for each bridge analysis, a 

tool to alleviate a number of repetitive post-processing procedures is developed.  The tool 

should be generalized and automated enough to perform the post-processing of several 

bridges with different bridge configurations.  The MATLAB Software is used as the tool 

in this post-processing procedure since it provides rich graphical capability.   

 In this section the determination of the load distribution factor is demonstrated.  

Other issues related to the calculation of the load distribution factor, such as the 

ABAQUS result format, the effective width determination, the interpolation of results, 

the moment in the girder section, and the moment from beam analysis are presented.  

Finally, the program description, which includes the utilized algorithm, its limitation, and 

its manual, are discussed. 

 

3.6.1 ABAQUS Result Format 

 

The beam results from ABAQUS are illustrate in Figure 3.13, where the local n1 

direction is specified as <0,1,0>.  In this figure, SF1 is the axial force, SM1 and SM2 are 

the bending moments about the local n1-axis and local n2-axis, respectively, and SM3 is 

the twisting moment about the beam axis.  The local tangent along the beam element, t-

axis, is defined as a vector from node i to node j.  The local n1-axis has to be specified in 
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the modeling procedure.  The local n2-direction is perpendicular to the local tangent t-axis 

and the local n1-axis.  These three axes follow the right-hand-rule.  The results from the 

beam element are formatted by element number, point number, as SF1, SM1, SM2, and 

SM3, respectively.  There are two integration points in the selected beam element.  The 

required results for the post-processing are SF1 and SM1. 

 The ABAQUS shell results are shown in Figure 3.14, where SF1, SF2, and SF3 

are the forces per unit width in the local 1-axis, local 2-axis, and local 1-2 plane, 

respectively, and SM1, SM2, and SM3 are the bending moments per unit width about 

local 2-axis, local 1-axis, and local 1-2 plane, respectively.  The local-1 axis and local-2 

axis lie on the plane of the shell element. The default direction of the local 1-axis is the 

projection of the global 1-axis onto the shell surface.  If the global 1-axis is normal to the 

shell surface, the local 1-direction is defined as the projection of the global 3-axis onto 

the shell surface. The local 2-direction is perpendicular to the local 1-diretion on the 

plane of the shell element.  The local 1-axis, the local 2-axis, and the local n-axis follow 

the right-hand-rule. 

The results of the shell element are formatted by element number, Gauss point, 

SF1, SF2, SF3, SM1, SM2, and SM3, respectively.  There are four Gauss points for the 

selected shell element.  The required results for post-processing are SF1 and SM1. 

 

3.6.2 Effective Width 

 

The effective width of the deck can be determined using the AASHTO 

specification. For the interior girders as the smallest value of the following: 

• One-fourth the span length 

• Center-to-center distance between stringers  

• Twelve times the average thickness of the slab, plus the greater of the 

girder web thickness or one-half the top flange width of the girder. 

For the exterior girders, the effective width is specified as one-half the effective 

width of the adjacent interior girder, plus the smallest value of the following: 

• One-eighth the span length 
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• Overhang width  

• Six times the average thickness of the slab, plus the greater of half the 

girder web thickness or one-quarter of the top flange width of the girder. 

 

 

3.6.3 Interpolation of Results 

 

Finite element programs generally provide the results at the element nodes.  

However, the most accurate results from the finite element analysis are at the integration 

points.  Since the eight-node thick shell elements with reduced integration are used to 

model the bridge deck, four integration points at Gauss Quadrature points of each shell 

element are available. 

 ABAQUS provides the shell element resultants, i.e., resulting force and moment, 

as the value per unit width.  The total resultants along a section of shell element are 

achieved by multiplying the ABAQUS resultants to the section width.  Since the location 

of the required resultants may not coincide with the integration points, the interpolation 

of the resultants at the integration points to the resultants at the specific location is 

necessary. 

 The method to interpolate the finite element resultants for shell elements is 

illustrated in Figure 3.15.  In this figure, only the 2 by 3 mesh of the shell elements for 

the concrete deck is used as an example.  The interpolated resultant at points 1, 2, 3, and 

4 is required to establish the resultants along section B-B.  The resultant at point 1 can be 

determined by interpolating the resultants at all integration points along line A-A.  In the 

developed post-processor, spline interpolation is adopted.  The advantage of this 

interpolation over the polynomial interpolation is that the interpolated value is not as 

sensitive to the remote values as it is in polynomial interpolation.  The resultant at points 

2, 3, and 4 can also be determined in the same manner.  The resultant in section B-B is 

calculated by the summation of all products of each element resultant and half of its 

element width along the section B-B.  It should be noted that the interpolation of the 
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resultant in the beam element is achieved in the same manner as the determination of the 

interpolated resultant at point 1. 

 

 

3.6.4 Moment in the Girder Section 

  

In order to calculate the LDF from the finite element analysis, the moment in the 

girder section has to be established.  The moment in the girder section is the resultant of 

three components from the finite element results. These three components are girder 

moment in the beam elements, deck moment in the shell elements, and moment from the 

axial forces as shown in Figure 3.16. 

 

a) Girder Moment 

The girder moment is the moment in the beam element.  The girder 

moment at a specific location is obtained by the interpolation of the girder 

moments at the integration points along that girder. 

  bg SMM 1−=  

 where  Mg is the girder moment and SM1b is the interpolated resulting moment in 

the beam element at the required location.  It should be noted that the minus sign 

is due to the sign convention used in ABAQUS result format. 

 

b) Deck Moment 

The deck moment is the moment in shell elements.  The effective width 

described in the previous section is used to determine the boundary of the girder 

section.  The deck moment is determined by the summation of all products of 

each shell moment and half of its element width within the girder section, i.e., 

   ∑ ⎟
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⎜
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where Ms is the deck moment, SM1s,i is the interpolated moment in the shell 

element i at the required location, and bi is the width of shell element i within the 

girder section 

 

c) Moment Produced by Axial Forces 

In the determination of the moment produced by the axial force, the 

neutral axis of the composite section needs to be determined.  There are several 

methods to determine the moment from axial forces, as there are 

 

  i. Neutral Axis of the Girder 

 Since the force and moment in the girder are known, the neutral axis of the 

girder can be established.  The idea of this method is that the neutral axis is where 

the strain and the corresponding stress in the beam element are zero.  The 

eccentricity from the neutral axis to the centroid of the girder is calculated as 

follows: 
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 Then the moment due to the axial force can be calculated as follows: 

     s
i

i
isgbaxial e

b
SFeSFM ⋅⎟

⎠

⎞
⎜
⎝

⎛ ⋅−+⋅= ∑ 2,11  

Where, Ag and Ig are the girder area and moment of inertia, respectively, SF1b is 

the girder axial force, SF1s,i is the axial force in the shell element i; e is the 

distance between the centroids of the girder and the deck; eg and es are the 

eccentricity from the section’s neutral axis to the centroids of the girder and the 

deck, respectively; and Maxial is the moment from the axial force. 
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ii. Transformed Section 

In this method, the section’s neutral axis is determined by transforming the 

area of concrete deck into an equivalent steel area using the modular ratio 

(n=Es/Ec).  The transformed section is used to determine the location of the 

neutral axis.  Then the moment from the axial force can, thus, be obtained as: - 

  ( ) s
i

iisgbaxial ebSFeSFM ⋅⋅−+⋅= ∑ ,11  

 

  iii. Average Force of Girder and Slab 

The idea of this method is that, in the girder section, the values of the 

girder force and the deck force are close to each other.  The moment from the 

axial forces is determined by multiplication of the average of forces between the 

girder and the deck to the distance between the two forces as follows: 
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 The advantage of this method is that the neutral axis is not necessary to be 

determined. 

  iv. Girder Force 

In this method, only the girder force is used in the determination of section 

moment.  The idea is that the girder force is usually slightly greater than the deck 

force in the section.  The moment from the axial force is: 

   eSFM baxial ⋅= 1  

The advantage of this method is that the neutral axis needs not to be determined 

and the moment from the axial force is slightly greater than other method and 

considered in the conservative side. 

 

  Since the force in the girder and the force in deck are typically close to each other, 

the moments from axial force from different methods are not significantly different.  The 

transformed section method will be used herein. 
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3.6.5 Moment from Beam Analysis 

 

 In the determination of the load distribution factor, the maximum moment from 

the beam analysis is required.  The one-dimensional beam analysis is analogous to the 

bridge configuration as illustrated in Figure 3.17.  The length of beam is the same as the 

bridge span length.  However, the loading on the beam analysis is one line of wheel loads 

placed at the position that produces the maximum moment.    The maximum moment 

from the beam analysis will be used in the determination of the load distribution factor in 

the following section. 

 

3.6.6 LDF Calculation 

 

In the calculation of the load distribution factor, the moment in the girder section 

from the finite element results and the maximum moment from the beam analysis have to 

be known.  The moment in the girder section from the finite element analysis composes 

of three parts that are the girder moment, the deck moment, and the moment from the 

axial force.  The maximum moment from the beam analysis is the maximum moment due 

to a single line of wheel load at the position to produce the maximum effect in the beam 

analysis.  These moments are described in detail in the previous section.   

Consistent with the AASHTO specification, the LDF is determined by back-

calculation from the maximum moment and the moment from one-dimensional beam 

analysis.  The LDF can be calculated using the moment in the girder section divided by 

the maximum moment from the one-dimensional beam analysis. 

 The post-processing is used to obtain the section moment and the moment 

envelop for a specific load configuration.  The MATLAB M-files for the post-processing 

are generalized enough to include the effect of skew angle and can also be easily 

modified to the need in the future research since each file is the stand-alone file.  This 

post-processing eases tremendously the work in analyzing a number of bridges to obtain 

the load distribution factor. 
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Figure 3.13 ABAQUS Notation of Beam Element. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.14 ABAQUS Notation of Shell Element. 
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Figure 3.15 Interpolation of Finite Element Results for Shell Elements. 
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Figure 3.16 Moments in the Girder Section for the Determination of the LDF. 
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Figure 3.17 The Beam Analysis Analogous to the Bridge Geometry. 
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3.7 Comparison with Experimental Results 

 

To verify that the selected finite element software, ABAQUS, is able to simulate 

the real behavior of the bridge, the results from the finite element analysis are compared 

to the results from the bridge field test. 

The data used to compare the finite element model and the field test is the 

distribution of moment to each girder in the section of maximum moment.  The selected 

finite element program is validated if it can simulate the bridge behavior, or in other 

words, if it can produce the distribution of moment to each girder close to the field-test 

results.  When the finite element program is validated, the finite element model and finite 

element program will be confidently used as the level 3 analysis.  Then, the finite element 

program will be confidently used to analyze Indiana bridges to obtain the girder 

distribution factors. 

The results from two field tests are compared to the finite element results to verify 

the current finite element model.  First bridge is tested by University of Tennessee in 

1972.  The other bridge is tested by University of Michigan.  

 

3.7.1 Elk River Bridge 

 

The Elk River Bridge in Tennessee is selected to verify the developed finite 

element model.  This bridge is one of the bridge field tests used by Project 12-26 to verify 

their selected finite element programs.  A full-scale bridge testing was reported by 

Burdette and Goodpasture (1971) from University of Tennessee.  Figure 3.18 shows the 

Elk River Bridge before testing and the bridge failure after testing, respectively. 

The bridge is on route 130 over Elk River in Tennessee.  The bridge is s 

continuous with four-spans of 70, 90, 90 and 70 feet span length.  Four longitudinal steel 

girders and seven inch deep reinforced concrete deck are used.  This bridge was designed 

to carry two traffic lanes with 34.5 feet total width.  The bridge has no-skew, horizontal 

tangent, and the field tests were carried out soon after the bridge construction. The girder 

spacing is 8.33 feet.  The bridge cross section and the bridge longitudinal view are shown 
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in Figure 3.19 and Figure 3.20, respectively.  The concrete modulus for bridge deck is 

4415 ksi with Poisson’s ratio of 0.2.  The steel girder is W36x170 with modulus of 30000 

ksi and Poisson ratio of 0.3.  

The simulation of the truck wheel loads was accomplished by using a rock anchor 

system.  The loads were applied at each of the eight rear wheel locations to simulate two 

trucks.  The bending moments used in determining the lateral load distribution factor in 

each girder were determined by strain measurement.  The strains were measured at the 

top and bottom of the flanges of the steel girder at the location of critical section, the 

maximum moment section.  By knowing these strains, the neutral axis location could be 

established.  As a result, the centroid of compression force in concrete slab could be 

located.  The tensile force in steel could be obtained on the basis of the known steel 

stress-strain relation.  Then, the moment was calculated as the product of the tensile force 

and the internal moment arm.   

The bridge is modeled in the finite element software by using the technique 

described in the previous chapter.  The concrete slab is idealized as quadrilateral shell 

elements and eccentrically connected by rigid links to the beam elements representing 

steel girders.  The bearing or the support is modeled by grounded spring.  The bearing is 

assumed to be 2 inch thick.  The bridge deck is meshed into 256 longitudinal meshes by 

32 transversal meshes.  The shell element within the overhanging width has the 

dimension of 15 by 14.25 inches.  The shell element between the girders has the 

dimension of 15 by 12.5 inches.  The total number of nodes is 37,487 and the total 

number of elements is 9236.  The truck loading is 16k positioned at 8 locations to 

represent two trucks.  Figure 3.21 shows the moment envelope produced by the post-

processing. 

The data used to compare the finite element model and the field test is the 

distribution of moment to each girder in the section of maximum moment.  The results of 

the distribution of moments to the middle girder from the field test, the finite element 

model, the AASHTO LRFD 1998 LDF equation, and the AASHTO Standard 1996 LDF 

equation are shown in Table 3.2.  Compared to the field test result, the finite element 

software, ANSYS, is able to predict satisfactorily the load distribution.  As predicted for 
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the moderately large girder spacing, the AASHTO standard 1996 formula overestimates 

the load distribution by 31 percent.  AASHTO LRFD 1998 was able to predict the load 

distribution with good agreement and conservatively with respect to the experimental 

results. 

As a conclusion, the selected finite element model using ABAQUS program is 

able to predict well the distribution of moment.  It should be noted that the application of 

the pre- and post-processing help dramatically reduce the time to perform level 3 

analysis.  The typical time to perform level 3 analysis for this bridge without pre- and 

post-processor is more than 100 hours.  By using the customized pre- and post-processing 

software, the time used to model, analyze, and obtain the LDF is less than one hour once 

the required bridge information is obtained. 

 

 

Table 3.2 Comparison of Distribution of Moments 

 

 Field Test Finite element 
model (ABAQUS) 

AASHTO LRFD 
1998 

AASHTO Standard 
1996 

Distribution of 
moments to the 
middle girder 

1.16-1.20 1.16 1.24 1.52 
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(a) Before Testing 

(b) Bridge Failure after Testing 

Figure 3.18 Elk River Bridge 
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Figure 3.19 Cross Section of Elk River Bridge. 

 

 

 

 

Figure 3.20 Longitudinal Dimensions and Loading Locations for Elk River Bridge. 
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Figure 3.21 Moment Envelope of Girder Section no. 2. 
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3.7.2 Michigan Bridge  

 

The finite element model developed for this study is further verified with the 

results of the field test conducted at the University of Michigan (Eom and Nowak 2001). 

The tested simple span bridge is located on Stanley Road over I-75 in Flint, Michigan. 

The span length is 126 ft (38.4 meters). There are 7 girders with girder spacing of 7.25 ft 

(2.21 meter) and an overhanging width of 2.45 ft (0.747 meter).  The slab thickness is 8 

in (203 mm).  The cross section of the tested bridge is shown in Figure 3.22.  General 

bridge information is given in Table 3.3 and girder section dimensions are given in Table 

3.4. 

Strain gauges were installed at the bottom flanges of the girders as shown in 

Figure 3.23. All strains were measured at mid-span. The load distribution factors were 

then calculated from the strains at the specific girders. The test load for field-testing is the 

Michigan three-unit, 11-axle truck. The weight and the axle configuration are given in 

Figure 3.24. The load test was performed with the truck at crawl speed to produce the 

maximum static strain at the steel girders. 

For a simply supported bridge, the finite element model proposed for this study 

allows rotations along all directions and assigns minimum restraints for longitudinal and 

transverse movement while vertical restraints are placed at the supports. Since the details 

of reinforcement system is not available, the minimum amount of reinforcement is 

assumed according to the AASHTO specification. 

The calculated load distribution factors for the selected FE model are compared to 

those obtained from the test results. As can be seen in Figure 3.25, good agreement 

between measured and calculated values is observed in all girders. The calculated values 

are conservative up to 8 %. This discrepancy may be due to the absence of the cross 

bracing in the FE model of the tested bridge. The results are consistent with the findings 

of previous studies (Eamon and Nowak 2002) (Mabsout et al. 1997) since the presence of 

secondary elements such as cross bracing and parapet carry more load by reducing the 

load effects in the interior girders. Therefore, the finite element model used for this study 
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is capable of accurately predicting the actual load distribution behavior of steel girder 

bridges. 

 

 

Table 3.3 Michigan Test Bridge Information 

Span length 126 feet 

Number of girders 7 

Girder Spacing 7.25 feet 

Slab thickness 8 inch 

Skew angle 0 degree 

Total transverse width 48.4 feet 

Overhang width 2.45 feet 

Average daily traffic (ADT) 2000 

 

 

Table 3.4 Girder Cross Section Dimensions for Michigan Test Bridge 

Top flange 
18” ×  1 8

7 ” (for 70’6” in the center) 

18” ×  8
7 ” (for 27’9” on each side) 

Bottom flange 
18” ×  2 4

3 ” (for 84’ in the center) 

18” ×  1 8
3 ” (for 24’ on each side) 

Web 48” ×  2
1 ” 
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Figure 3.22 Cross Sectional View of Michigan Test Bridge (Eom and Nowak 2001). 

 

 

 

 
Figure 3.23 Layout of Strain Gauges of Michigan Test Bridge (Eom and Nowak 2001). 
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Figure 3.24 Test Truck Configurations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Bottom Flange Strains at Mid-span (Michigan Test). 
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3.8 Summary 

 

The eccentric beam model has been selected for this study. This model utilizes the 

non-composite section properties of two elements to model composite action by applying 

rigid links between the centroid of the girder and the mid-surface of the slab. The bridge 

deck slab is modeled by shear flexible eight-node shell elements, and the steel girder is 

idealized by three-node Timoshenko beam elements. This element selection has been 

made in order to eliminate a potential incompatibility along the element boundaries. The 

bearings are modeled by assigning boundary conditions to the zero-dimensional elements 

at their actual location. To simulate the simply supported condition, rotations along all 

directions are allowed and minimum restraints are assigned for longitudinal and 

transverse movement while vertical restraints are placed at the supports. Kinematic 

constraints are also applied to nodal degree of freedom between the girders and the deck.  

In this chapter, the developed equivalent nodal load algorithm with application to the 

finite element modeling of bridge deck is presented.  In this method, the patch load is 

discretized into a number of uniformly distributed sub-point loads. This method 

uncouples the pressure load from the mesh size and provides an accurate representation 

of pressure load on the bridge deck. 

It has been found that the developed finite element model is capable of predicting the 

behavior of steel girder bridges, including deflections, strains, and load distributions. 

Furthermore, the finite element model for slab on girder bridges provides a rational tool 

for the understanding of the behavior of bridge superstructures.  
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CHAPTER 4. MULTI-PARAMETER COMPARISON 

 

4.1 General 

 

The new equation for the wheel load distribution factor in the AASHTO-LRFD 

code involves many more parameters than the AASHTO-Standard code equation.  This 

complicates the direct comparison of the two code equations. In order to facilitate the 

comparison, an applicable range for each parameter is defined based on the full range of 

bridge structures in Indiana. A database of existing Indiana bridges is constructed for this 

purpose. A number of bridge parameters are used and classified as follows: 

1. NBI parameters  

Parameters available in NBI database. These include span length, transverse 

width, number of spans, total span length, skew angle, number of lanes, and 

construction year. 

2. Girder parameters 

Parameters of girder information. These include girder spacing, number of 

girders, slab thickness, girder geometry, and material properties.    

 

4.2 Indiana Bridge Database 

 

In order to determine the effective range of parameters, the Indiana part of the 

National Bridge Inventory (NBI) database is extracted. This database has been prepared 

for use by state, federal, and other agencies in recording all details of bridge structures in 

the nation. The manual for inputting data into the database has been documented in a 

report, ‘Recording and Coding Guide for the Structure Inventory and Appraisal of the 

Nation’s Bridges’ (FHWA 1995). The NBI database provides structural information as 
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well as management information for each specific bridge. Structural information includes 

data that is used in the code equation for wheel load distribution factor, such as bridge 

type, material, total span length, maximum span length, number of spans, transverse 

width, skew angle, number of traffic lanes, skew angle, and design load. Management 

information contains data on the identification of structures, owner, cost, year of 

construction, and inspection information. The NBI database, however, has no information 

regarding girder geometry and material properties. 

The NBI database provides data for Indiana bridges currently in service. The total 

number of Indiana bridges available in the NBI is 19,321. Figure 4.1 through Figure 4.4 

show the part of NBI data based on the following criteria: owner, type of service, 

material, and type of design. Figure 4.1 shows that 30% of the bridges in Indiana are 

managed by state agencies.  Figure 4.2 shows that about 90% of the state owned bridges 

are serviced for highway bridges.  Figure 4.3 shows the material used in state-owned 

highway bridges. Figure 4.4 shows that the majority of bridges present in Indiana are of 

the slab-on-girder configuration. 

The database for this study includes steel I-girder bridges designed using the 

AASHTO HS-20 design truck. Only state-owned highway bridges are included. With this 

scope, the total number of steel girder bridges is reduced to 1,255. 

 

4.3 Applicable Range 

 

An applicable range for each NBI parameter is determined from the statistical 

analysis of the new database. The bridges that deviate from typical parameters are 

eliminated from the database and not considered further.  

Figure 4.5 through Figure 4.10 show the results of the statistical study in the form 

of histograms. Figure 4.5 shows that two-span bridges are the most popular span in 

Indiana steel bridges, followed by three-span continuous bridges. The common ranges of 

span length and transverse deck width are 60 ft – 85 ft and 30 ft - 50 ft, respectively, as 

shown in Figure 4.6 and Figure 4.8. The histograms of the maximum span length in 

simple, two span, and three span bridges are given in Figure 4.7.  
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Figure 4.9 shows that a majority of bridges are constructed with right-angled 

support, and Figure 4.10 shows that most bridges are two-lane bridges.   

The distribution of span length and transverse width as shown in Figure 4.6 and 

Figure 4.8 is assumed to be normal distribution. Those parameters are then considered 

“applicable” only if data is within 80 % (± 1.5×standard deviation) of the average value. 

The range of span lengths is from 44 ft to 122 ft, and the range of transverse widths is 

from 28 ft to 55 ft. The number of spans is selected from simple span to three spans. Only 

two and three lane bridges are chosen. The skew angle along the supports is selected from 

0 degrees to 45 degrees. Statistical analysis is not required for other considered NBI 

parameters (number of spans, number of lanes, and skew angle) due to obvious trends in 

the data.  

 

 

4.4 Representative Bridges 

 

Because of the lack of girder parameters in the database, a total of 43 of the actual 

representative bridges in the applicable range are selected so that the girder parameters 

could be obtained from the actual plans. The NBI parameters of selected representative 

bridges are required to be distributed over all bridges in the applicable range. The list of 

43 Indiana Representative Bridges are shown in  

Table 4.1. 

To check the validity of the representative bridges, the selected data points for 

several NBI parameters are plotted in the scattergrams shown in Figure 4.12 through 

Figure 4.15. If points in the scattergrams are well distributed, it means all representative 

bridges in the applicable range are covered. For example, Figure 4.12 shows the 

relationship between span length and transverse width. It is observed that the scattered 

points are equally distributed within the applicable range. The other scattergrams also 

show that the selected bridges are rationally distributed and that the representative 

bridges are valid.  
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The girder parameters of the selected 43 bridges are gathered with the cooperation 

of the Indiana Department of Transportation (INDOT). The information includes girder 

spacing, number of girders, slab thickness, and geometric dimension of girders. Figure 

4.16 and Figure 4.17 show the variation of the girder spacing and the number of girders 

in the representative bridges. It is observed that the girder spacing ranges between 4.3 ft 

and 10.0 ft and that the number of girders varies from 5 to 11. Furthermore, several NBI 

parameters and girder parameters are plotted against each other in Figure 4.18 through 

Figure 4.21. It is observed that there is no significant relationship between the girder 

spacing and the span length or between the longitudinal stiffness and the girder spacing. 

However, as the span length increases, the longitudinal stiffness and the girder height 

also increase, as shown in Figure 4.20 and Figure 4.21. A summary of the statistical study 

is given in Table 4.2. 

 

 

4.5 Sensitivity of Bridge Parameters 

 

 The AASHTO-LRFD wheel load distribution equations are compared with the 

AASHTO-Standard formulas. In order to investigate the sensitivity of each parameter 

used in the formulas, a “mean” bridge is selected for each span. The “mean” bridge is 

determined in such a way that all parameters of the bridge are close to the average value 

of each parameter. The specific procedure for selecting Indiana “mean” bridges is 

summarized as follows: 

1. An applicable range of each NBI parameter is determined based on the statistical 

analysis using total Indiana steel girder bridges. 

2. Representative bridges are selected within the applicable range.  

3. Girder information of representative bridges is collected from actual plans.  

4. The Indiana “mean” bridge is determined among the representative bridges.  

 

The summary of “mean” bridges is given in Table 4.3. The mean three-span bridge, 

for example, is a 42-56-42 ft continuous bridge. All of the parameters provided in Table 
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4.3 are close to the mean value. The maximum span length is 56 ft, which is close to the 

common value of 60 ft as shown in Figure 4.7 (c). The transverse width of the mean 

bridge is 36 ft, which is the common value in Figure 4.8. The “mean” bridge is the real 

existing bridge whose parameters are closest to the mean values among representative 

bridges.   

Wheel load distribution factors calculated from AASHTO specifications are 

compared within the applicable range of various bridge parameters from Figure 4.22 to 

Figure 4.27. Variations from the mean bridge of each span type are considered by 

changing values of bridge parameters one at a time. Parameter variations for which 

parameter sensitivity studies are performed are same as applicable ranges. 

 Figure 4.22 shows the wheel load distribution factors with varying girder spacing 

for simple span, two span, and three-span. AASHTO-Standard formula is close to 

AAHSTO-LRFD when girder spacing is short but becomes conservative as girder 

spacing increases. Figure 4.23 illustrates the sensitivity of span length to code equations. 

Wheel load distribution in the AASHTO-standard code is constant since the span length 

parameter is not included in the formula. It is observed that AASHTO-LRFD predicts 

lower distribution factor in any case of continuity when span length is larger than 60 ft. 

Other parameters compared are slab thickness, longitudinal stiffness, unitless inertia and 

skew angle and are included in AASHTO-LRFD.  Figure 4.24 through Figure 4.27 show 

that these parameters are less sensitive in determining wheel load distribution factor.  

It can be concluded from the multi-parameter comparisons that the girder spacing 

parameter in both AASHTO codes has the greatest influence on wheel load distribution 

in Indiana bridges. Next sensitive parameter is span length. Other parameters do not 

significantly influence the load distribution.  

Finally, the wheel load distribution factors of Indiana representative bridges are 

plotted against girder spacing in Figure 4.28. AASHTO-Standard formula is more 

conservative for large spacing and less conservative for short spacing than AASHTO-

LRFD specification. 
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Table 4.1 Representative Indiana Steel Girder Bridges 

No. 
NBI 

Structure 
Number 

County Location Year built 
(rebuild) 

Skew 
Angle 

Number 
of Spans 

Max. 
Length 

[ft] 

Girder 
Spacing 

[ft] 
Girder Type 

1 5870 Newton US 41 1953 (1999) 0 1 48 5.42 W24x162 

2 6330 Tippecanoe SR 28 1995 0 1 110 9.00 Plate girder 

3 13330 Clinton SR 38 1953 (1983) 45 1 60 5.83 W36x182 

4 17030 Clay SR 59 1933 (1984) 30 1 46 4.30 W27x114 

5 18370 Martin SR 550 1965 (1992) 36 1 10.00 Plate girder 

6 23408 Vanderburgh I-164 1988 0 1 122 6.58 Plate girder 

7 27340 Porter US 6 1955 (1999) 0 1 59 5.50 W30x132 

8 27350 Porter US 6 1955 (1986) 30 1 72 6.06 W36x170 

9 29660 Montgomery US 231 1936 (1983) 15 1 60 4.33 W33x201 

10 960 Delaware SR 67 1973 (1986) 0 2 67 5.75 W36x150 

11 11658 Hendricks SR 267 1986 15 2 120 7.66 Plate girder 

12 32836 Allen SR 1 1990 22 2 102 8.50 Plate girder 

13 34960 Scott SR 56 1985 0 2 112 5.67 Plate girder 

14 35090 Jackson US 31 1959 (1985) 0 2 65 5.25 W36x150 

15 35760 Johnson SR 44 1970 31 2 98 6.33 W36x230 

16 35890 Johnson SR 44 1971 14 2 88 8.00 W36x230 

17 37270 Boone US 52 1970 17 2 110 6.33 Plate girder 

18 38160 Jasper SR 14 1966 (1992) 0 2 98 5.25 W36x135 

19 40120 Allen US 24 1989 20 2 121 7.33 Plate girder 

20 43860 Fountain US 136 1959 (1986) 45 2 85 6.50 W36x182 

21 75030 St Joseph SR 331 1991 0 2 94 7.25 Plate girder 

22 1620 Porter SR 149 1985 45 3 78 7.00 W33x152 

23 12350 Morgan SR 44 1955 (1989) 0 3 75 5.42 W33x130 

24 13057 Washington SR 256 1992 0 3 103 8.50 Plate girder 

25 14320 Vanderburgh SR 66 1986 0 3 104 6.00 Plate girder 

26 16080 Putnam SR 236 1981 30 3 65 7.42 W36x150 
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Table 4.1 Representative Indiana Steel Girder Bridges (continued) 

 

No. 
NBI 

Structure 
Number 

County Location Year built 
(rebuild) 

Skew 
Angle 

Number 
of Spans 

Max. 
Length 

[ft] 

Girder 
Spacing 

[ft] 
Girder Type 

27 17860 Ripley SR 129 1985 0 3 56 6.50 W24x94 

28 18314 Daviess SR 57 1990 18 3 65 7.75 W33x118 

29 23490 Spencer US 231 1932 (1982) 0 3 85 6.17 W33x141 

30 25000 Carroll SR 218 1965 (1982) 0 3 78 5.33 W33x130 

31 33162 Lake I-80 1997 4 3 55 9.17 W36x150 

32 34330 Floyd SR 64 1972 27 3 97 6.67 W33x130 

33 70430 Vanderburgh I-64 1989 45 3 97 8.00 Plate girder 

34 75310 Elkhart US 33 1991 16 3 61 6.83 W30x116 

35 76160 Allen US 24 1992 2 3 122 7.50 Plate girder 

36 210 Wayne US 40 1962 (1987) 0 4 65 5.33 W30*124 

37 11275 Cass SR 25 1962 (1990) 17 4 57 5.83 W33x130 

38 14620 Knox US 50 1967 (1996) 42 4 56 4.17 W21x166 

39 17980 Porter SR 2 1987 44 4 106 8.00 W36x150 

40 21260 Clay SR 46 1955 (1984) 0 4 93 5.17 W36x232 

41 33010 Martin US 50 1956 (1984) 0 4 60 5.25 W30x108 

42 33043 Lake SR 912 1977 18 4 93 6.10 W36x194 

43 31980 Knox SR 67 1985 0 5 108 7.75 Plate girder 
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Table 4.2  Summary of Statistical Study 

Item Number of 
data Min Max Mean Standard 

deviation (σ) 
Selected Range 

(± 1.5σ) 

Number of spans 1255 1 17 2 - 1-3 

Span length 1255 25 ft 217 ft 83 ft 26 ft 44 ft – 122 ft 

Transverse 
width 1255 24 ft 124 ft 40 ft 15.8 ft 28 ft – 55 ft 

Skew angle 1255 0 ° 64 ° 18 ° - 0-45 

Number of lanes 1255 1 6 2 - 2-3 

 

 

Table 4.3 Selected Mean Bridges 

Span No. L (ft) W (ft) S (ft) Number 
of girders gK ( 4in ) Year 

1 27340 60 46.6 5.5 8 182600 1955(1993) 

2 38160 98-98 30 5.25 6 242644 1966(1992) 

3 17860 42-56-42 36 6.5 6 90453 1991 

 



 

 64

 

 

 

 

 

 

 

 

 

Figure 4.1 Indiana Bridge Database (Owner). 

 

 

 

 

 

 

 

 

 

Figure 4.2 Indiana Bridge Database (Type of Service). 
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Figure 4.3 Indiana Bridge Database (Material). 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Indiana Bridge Database (Type of Design). 
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Figure 4.5 Indiana Bridge Histogram (Number of Spans). 

 

 

 

 

 

 

 

 

 

Figure 4.6 Indiana Bridge Histogram (Span Length). 
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(a)  Simple Span Bridges 

 

 

 

 

 

 

(b) Two Span Bridges 

 

 

 

 

 

 

(c)  Three Span Bridges 

Figure 4.7 Maximum Span Length. 
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Figure 4.8 Indiana Bridge Histogram (Transverse Width), 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Indiana Bridge Histogram (Skew Angle). 
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Figure 4.10 Indiana Bridge Histogram (Traffic Lane). 

 

 

 

 

 

 

 

 

 

Figure 4.11 Indiana Bridge Histogram (Year Built or Reconstructed). 
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Figure 4.12 Representative Bridge Scattergram (NBI Parameters, Width vs. Span) 
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Figure 4.13 Representative Bridge Scattergram (NBI Parameters, Number of Spans vs. 
Width) 
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Figure 4.14 Representative Bridge Scattergram (NBI Parameters, Skew vs. Number of 
Spans). 
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Figure 4.15 Representative Bridge Scattergram (NBI Parameters, Skew vs. Width). 
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Figure 4.16 Representative Bridge Histogram (Girder Spacing) 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Representative Bridge Histogram (Number of Girders). 
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Figure 4.18 Representative Bridge Scattergram (Girder Spacing vs. Span). 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Representative Bridge Scattergram (Girder Spacing vs. Stiffness). 
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Figure 4.20 Representative Bridge Scattergram (Stiffness vs. Span). 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Representative Bridge Scattergram (Girder Depth vs. Span). 
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Figure 4.22 Comparison of Specifications (Girder Spacing). 
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Figure 4.23 Comparison of Specifications (Span Length). 
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Figure 4.24 Comparison of Specifications (Slab Thickness) 
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Figure 4.25 Comparison of Specifications (Longitudinal Stiffness Parameter). 
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Figure 4.26 Comparison of Specifications (Unitless Inertia). 
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Figure 4.27 Comparison of Specifications (Skew Angle). 
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Figure 4.28 Wheel Load Distribution of Indiana Representative Bridges. 
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CHAPTER 5. POSTULATION OF SIMPLIFIED EQUATION 

  

The main objective of this research is to provide the simplest, yet sufficiently 

accurate equation for calculation of load distribution. A new simplified wheel load 

distribution factor (LDF) equation, based on the current AASHTO-LRFD LDF formula is 

postulated in this chapter. The longitudinal stiffness parameter ( gK ) and the slab 

thickness parameter ( st ) that appeared in LRFD equation are implicitly embedded in the 

simplified expression. This eliminates the iterative procedure introduced by LRFD 

formula. The accuracy and applicability of the simplified equation are demonstrated 

through comparisons of LDF calculated by AAHSTO-Standard, AASHTO-LRFD, and 

AASHTO level three analysis, namely finite element (FE) analysis.  

 

 

5.1 Parameter Selection 

 

The AASHTO-LRFD formula contains four parameters: girder spacing, span 

length, longitudinal stiffness, and slab thickness.  In the formulation of the new simplified 

LDF equation, the sensitivity of the LDF to each parameter is considered.  The goal is to 

eliminate parameters for which the LDF is not as sensitive as others, as well as those that 

require iterative design procedure. 

According to the sensitivity studies performed both in the NCHRP 12-26 Project 

(Zokaie et al. 1991) and in the previous chapter, girder spacing (S) was the most sensitive 

parameter in computation of the LDF. Span length (L) is the next most sensitive 

parameter and longitudinal stiffness (Kg) somewhat influences the LDF. The LDF 

appears to be least sensitive to changes in slab thickness ( st ).  
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Based on the results from the sensitivity studies, some parameters were kept and 

others eliminated from the new simplified LDF equation. Girder spacing and span length 

are kept since from the sensitivity study these parameters are identified as having the 

most influence on the LDF value. The slab thickness of bridges in Indiana is typically 8 

inches (200 mm), so this parameter is eliminated and the thickness is assumed to be 8 

inches (200 mm).  

Meanwhile, the longitudinal stiffness parameter is also to be eliminated. The 

longitudinal stiffness parameter is introduced in AASHTO-LRFD to increase the 

accuracy of the equation (Zokaie et al. 1991a, 1991b, 2000).  Since the section properties 

of the girder are not known prior to determination of the LDF, the third term in the LRFD 

equation, which contains the longitudinal stiffness parameter, is assumed to be a unit 

value in the first calculation. After the girder section is determined, the LDF equation is 

reevaluated to check the strength criterion.  This iterative procedure is cumbersome since 

redesign may be required.  The intention is to eliminate the longitudinal stiffness 

parameter and the need for an iterative procedure in the LDF calculation. 

The longitudinal stiffness parameter (Kg) is found to be related to the span length 

parameter (L). In Figure 5.1, the longitudinal stiffness of the Indiana representative 

bridges and the bridge database from the NCHRP project 12-26 are plotted versus the 

span length.  The general trend of the relationship is that Kg increases as L increases, but 

the data are scattered in relatively wide range.  One of the reasons may be the bridge 

engineer’s preference on the selection of girder dimensions. 

The Kg-L relationship is adjusted to account for the constant slab thickness of 8 

inches in Indiana. The slab thickness of the bridges available in the database of the 

NCHRP 12-26 project varies from 4.5 inches to 12 inches. Kg values of the bridges are 

calibrated to a reference slab thickness 8 inches as shown in Figure 5.2. As it can be seen, 

the change of the slab thickness gives minor influence on the Kg-L relationship. 

An upper bound relationship between Kg and L can be defined by the exponential 

trendline regression. This trendline covers all bridges in a conservative manner, as shown 

in Figure 5.3, and it is given by 
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  (5.1) 

With this relationship almost all of the bridges are conservatively represented. The two 

bridges that do not fall below the trend line will be verified later by the finite element 

analysis. This Kg-L relationship will be used in the construction of the new simplified 

equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Scattergram of Longitudinal Stiffness Parameter and Span Length (from 

NCHRP 12-26 Database and Indiana Database). 
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Figure 5.2 Calibrated Longitudinal Stiffness Parameter. 
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Figure 5.3 Exponential Trend Line. 
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5.2 Postulation of Simplified Formula 

 

It is worthy to note that the applicable range for each parameter in the new 

simplified equation is summarized in Table 5.1. 

Since the LRFD equation is presumed to be accurate, the postulation of the new 

LDF equation is constructed based on the current AASHTO-LRFD equation, which is 

presented again as follows: 

 

0.10.6 0.2

3

0.10.6 0.2

3

0.15             (US customary units)
3 12

0.15             (SI units)
914

g

s

g

s

KS SLDF
L Lt

KS SLDF
L Lt

⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(From 1.2) 

With a slab thickness equal to 8 inches (200 mm) and the relationship between the 

longitudinal stiffness and the span length from Equation (5.1), the new simplified formula 

for the wheel load distribution factor of concrete slab on steel girder bridges with two or 

more design lanes loaded is derived as 

0.8
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0.3

0.8
180,000

0.3
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0.15 0.042                        (SI units)
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L

SLDF e
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⎛ ⎞
⎜ ⎟
⎝ ⎠

= + ⋅ ⋅

= + ⋅ ⋅

 (5.2) 

where S is the girder spacing (feet, mm) and L is the span length (feet, mm).  The 

advantage of the new simplified equation is that it includes the most influential 

parameters (S, L, and gK ).  The girder spacing and span length parameters are 

incorporated explicitly, while the longitudinal stiffness is built in implicitly through the 

relationship to the span length.  In this fashion, the iterative procedure in the LDF 

determination is eliminated.   

The base equation of Simplified LDF formula does not take into account the skew 

correction.  The simplified LDF should be reduced by the skew correction factor as 

identified in Table 5.2 for US customary units and Table 5.3 for SI units, respectively.  

The skew correction factor for the new Simplified equation is also derived from one in 

the AASHTO-LRFD specification by using the Kg-L relationship (Equation 5.1). 
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It is important to note that this new simplified equation should be used within the 

applicable range as described in Table 5.1.  Furthermore, the designer needs to check the 

final girder selection.  The Simplified LDF equation works best if the selected girder 

produces a Kg less than the value obtained by Equation 5.1; a safe LDF value will 

certainly be obtained.  

 

 

 

Table 5.1 Applicable Range for the New Simplified LDF Equation 

 

Parameters Girder Spacing: 
S, ft (mm) 

Span Length:  
L, ft (mm) 

Slab Thickness: 
ts, in (mm) 

Skew Angle 
(θ, degree) 

Applicable 
Range 

4 - 10  
(1220 - 3050) 

44 – 122 
(13400 – 37200) 

8 
(200) 0 - 45 

 

 

 



 

 89

 

Table 5.2 Wheel Load Distribution Formulas for Concrete Slab on Steel Girder Bridges 
and Skew Correction Factor (US Customary Units*) 

 

Specification Basic LDF Formula Skew correction factor 

AASHTO 
Standard  

5.5
S  N/A 

AASHTO 
LRFD 

1.0

3

2.06.0

123
15.0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

s

g

Lt
K

L
SS  

for °≥ 30θ  

( ) 5.1
5.025.0

3 tan
12

25.01 θ⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

L
S

Lt
K

s

g  

Simplified 
⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅+ 590
3.0

8.0

73.015.0
L

e
L
S  

for °≥ 30θ  

( )
⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅⋅− 2365.1
75.0

5.0

tan59.01
L

e
L
S θ  

* Units of S, L, Kg, and ts are ft, ft, in4, and in, respectively. 
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Table 5.3 Wheel Load Distribution Formulas for Concrete Slab on Steel Girder Bridges 
and Skew Correction Factor (SI Units**) 

 

Specification Basic LDF Formula Skew correction factor 

AASHTO 
Standard  

1676
S  N/A 

AASHTO 
LRFD  

914
15.0

1.0

3

2.06.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

s

g

Lt
K

L
SS

for °≥ 30θ  

( ) 5.1
5.025.0

3 tan25.01 θ⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

L
S

Lt
K

s

g  

Simplified ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅+ 000,180
3.0

8.0

042.015.0
L

e
L
S  

for °≥ 30θ  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⋅⋅− 000,725.1
75.0

5.0

tan5.21
L

e
L
S θ  

** Units of S, L, Kg, and ts are mm, mm, mm4, and mm, respectively. 
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5.3 Comparison of LDFs 

 

The load distribution factors obtained using the proposed simplified equation are 

compared with those obtained using AASHTO LRFD and AASHTO Standard.  They are 

also compared with those resulting from the finite element analysis (FEA).  The 

definitions of the terms used in the LDF comparison are given in Table 5.2 and Table 5.3.   

The comparisons of three LDF equations are shown in Figure 5.4 and Figure 5.5.  

The ratio of Simplified LDF to LRFD LDF for different span lengths and girder spacing 

is shown in Figure 5.4.  Each data point represents a real bridge from the NCHRP 12-26 

and Indiana databases.  Simplified LDFs are greater than LRFD LDFs except for two 

data points which are located under the dotted line.  These are data points for the two 

bridges beyond the upper limit defined in equation 5.1.  Although at first glance these 

seem to be unconservative LDF values, further studies using the developed FE model 

reveal that the simplified LDFs are greater than those obtained using FEA results.  Thus, 

it can be ascertained that the new equation always produces conservative LDFs within the 

applicable range of bridges. 

The ratio between Simplified LDF to Standard LDF is shown in Figure 5.5.  

Simplified LDFs are typically greater than Standard LDFs for small span length and 

small girder spacing, and lesser for large span length and large girder spacing.  A similar 

trend is seen when LRFD LDF is compared to Standard LDF.  In other words, the 

Simplified LDF equation has similar characteristics as the LRFD LDF equation. 

In Figure 5.6 and Figure 5.7, the Simplified LDF and the LRFD LDF are 

compared to the FEM LDF for positive moment and negative moment, respectively.  

Each of the data points is an LDF ratio for one of the Indiana representative bridges.  As 

mentioned earlier, the FEM LDF is considered to be the “exact” LDF.  It is observed that 

LRFD LDFs are generally conservative, but for some bridges unconservative results are 

obtained.  Simplified LDFs, on the other hand, are always conservative.   

The Simplified LDF may be greater than the LRFD LDF by up to 16 percent 

depending on the bridge geometry.  However, the Simplified LDF is always conservative, 

unlike the LRFD LDF.  The Simplified and LRFD LDF are greater than the Standard 



 

 92

LDF when span length and girder spacing are relatively small.  In other words, the 

Standard LDF is not conservative in those cases.  Therefore, the simplified formula, 

which is similar to the LRFD formula in its ability to represent the load distribution.  

Finally, the new simplified equation is simple, requires no iteration, and produces LDF 

values that are at least as conservative as the ones obtained by the LRFD equation. 

The limits of validity outside the applicable range of the Simplified LDF are 

further investigated. Very short and long span bridges are selected and analyzed. As can 

be seen in Figure 5.8, the Simplified LDF is always larger than the FEM LDF. Thus, the 

Simplifed formula can be applicable for the bridges whose span length ranges out of 

applicable range.  
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Figure 5.4 LDF Comparisons Between Simplified Equation and LRFD Equation. 
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Figure 5.5 LDF Comparisons Between Simplified Equation and Standard Equation. 
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Figure 5.6 Positive Moment LDF Comparisons. 
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Figure 5.7 Negative Moment LDF Comparisons. 
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Figure 5.8 LDF Comparisons for Out of Range Bridges 
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CHAPTER 6. PRESTRESSED CONCRETE BRIDGES 

 

6.1 Introduction 

 

One of the popular types in bridge superstructure is the prestressed concrete (PC) 

girder bridge.  About 17 % of Indiana highway bridges are PC girder bridges according to 

the NBI database. The applicability of the simplified load distribution factor (LDF) 

equation to PC girder bridges is examined in this chapter.  

Current AASHTO specifications utilize the same LDF formula for both steel I-

girder bridges and PC I-girder bridges.  In this study, the simplified LDF equation has 

been developed based on data from steel girder bridges.  This chapter further evaluates 

the simplified LDF equation with respect to PC girder bridges.  First, several finite 

element modeling techniques are investigated to determine the exact LDF.  The FE 

results are then compared with experimental tests done by other researchers. Next, a total 

of 17 Indiana PC girder bridges are selected and analyzed using a chosen finite element 

model. Finally, the applicability of the simplified LDF formula is evaluated through the 

comparisons with LDF values form finite element analyses and AASHTO-LRFD.  

 

 

6.2 Finite Element Modeling of PC Girder Bridges 

 

The eccentric beam model is selected for modeling of steel girder bridges due to its 

accuracy and efficiency as discussed in Chapter 3.  In the finite element modeling of 

prestressed concrete (PC) girder bridges, eccentric truss elements are added in the 

framework of the eccentric beam model to idealize the prestressing tendons.  Since the 

tendon profile varies along the length of the girder, the eccentricity between the centroid 

of the slab and the prestressing tendon varies from node to node as shown in Figure 6.1.  
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The eccentricity of the tendon is specified using the multi-point-constraint (MPC) feature 

available in ABAQUS. 

In addition to modeling the profile of the prestressing tendons, the prestressing 

force must also be represented appropriately.  Prestressing forces are specified through 

the initial stress of each truss element representing prestressing tendons.  The magnitude 

of the initial stress can be determined by dividing the initial tension per strand by the area 

of each tendon.  After the girders, slab, and prestressing tendons are all effective, live 

load cases are applied to the final configuration of PC girder bridges. This is referred to 

as a full load analysis (Hays et al. 1994).   

In this study, however, only the effect of live loads is of interest since the load 

distribution factor (LDF) is due to live loads such as AASHTO HS20 trucks or lane 

loading.  Three different modeling techniques for PC girder bridges are investigated to 

ensure their applicability for modeling live load effects. The first model (Model A) is the 

eccentric beam model. All prestressing elements, including prestressing tendons and 

prestressing force, are excluded from the finite element model as shown in Figure 6.2.  

The second model (Model B) is the same as Model A, but prestressing strands are 

modeled by eccentric truss elements and the prestressing force is not considered as shown 

in Figure 6.3.  This model is included to examine the effect of tendon elements on live 

load distribution.  The last model (Model C) is the most accurate and most rigorous 

model.  First, the bridge is analyzed with the full load analysis (Figure 6.4 (a)).  The LDF 

from the full load analysis is then subtracted by the LDF from the full load analysis 

without live loads (Figure 6.4 (b)). In this way, only live load effect is considered in the 

analysis. It should be noted that all FE models discussed above do not include the 

structure’s self weight. 

The LDFs obtained using the three modeling techniques discussed above are 

compared for two Indiana PC bridges. The first one is a single span bridge located on 

Indiana State Route 257 over Hurricane Creek in Davies County with a 72 ft span length. 

The bridge deck is supported by seven AASHTO Type III PC girders spaced at 6.5 ft.  

The other bridge is located on Indiana State Route 32 over White River in Randolph 
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County. It is a three span bridge with 55-65-55 ft span lengths. The bridge deck is 

supported by eight AASHTO Type II PC girders spaced at 6.0 ft. 

Each bridge is modeled with the three developed FE models (Model A, Model B, 

and Model C).  Figure 6.5 shows the load distribution factor (LDF) from the three finite 

element models,  AASHTO-LRFD code, and Simplified equation. The LDF calculated by 

three different finite element models are essentially the same. The maximum difference is 

less than 0.5 %. However, it is clear that the LDF values from AASHTO-LRFD and 

Simplified equation are more conservative than the predicted LDF values. This indicates 

that the eccentric beam model (Model A) is just as accurate as the other models while  

being the simplest model. The eccentric beam model is thus selected for PC bridge 

modeling.  It should be noted that the LRFD LDF equation is also derived based on the 

eccentric beam model (Zokaie 1991a & 1991b).  

 

 

 

 

Table 6.1  Selected Indiana Bridges 

Location Indiana SR 257 Indiana SR 32 

AASHTO Section Type Type III Type II 

Skew (degree) 0 0 

Overhang 2.125 2.25 

Slab thickness (in) 8.0 6.25 

Construction Year 1992 1981 

Identification Number NBI 18317 NBI 270 
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Figure 6.1 Eccentric Beam Model Including Prestressing Tendon 
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Figure 6.2 PC Bridge Model A 

 

 

 

 

Figure 6.3  PC Bridge Model B 
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(a) Full Load Analysis 

 

 

(b) Full Load Analysis Without Live Loads 

 

Figure 6.4  PC Bridge Model C 
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Figure 6.5 Comparisons of Live Load Distribution Factor 
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6.3 Washington Field Test 

 

 The finite element model developed for PC girder bridges is verified with the 

results of the field test conducted by University of Washington (Barr et al. 2001).  This 

bridge is three span continuous with span lengths of 80 ft, 137 ft, and 80 ft.  The cross 

sectional dimensions of PC girders are shown in Figure 6.6.  The load for field testing is a 

tractor and semi-trailer unit approximating the ASSHTO HS-20 design loading. 

 The bridge deck is modeled using eight-node shell elements, and the girders are 

idealized using three-node beam elements. The deck thickness above the girder is 11.25 

in and 7.5 in elsewhere.  In the FE modeling of deck slabs, the thickness of the shell 

elements is assumed to be 9.125 in as an average value. Diaphragms are not modeled for 

this study.  For the future comparisons, the finite element analysis based on the developed 

eccentric beam model is denoted as “Simplified FEA”.  

The FE model used for this study is compared with experimental results and 

predicted results using the developed FE model by University of Washington (denoted 

“Washington FEA”) as shown in Figure 6.7 and Figure 6.8.  Comparisons between 

calculated and measured moments at mid-span due to placement of a truck at mid-span of 

the exterior girder are made in Figure 6.7.  It is observed that the moment from the 

Simplified FEA is generally larger than the results from Washington FEA and 

experiments. Washington FEA includes intermediate diaphragms and end diaphragms, 

which help the distribution of moment. It should be noted that moments from Simplified 

FEA are always larger than measured moments, while Washington FEA sometimes 

underestimates girder moments. Similarly, Figure 6.8 presents mid-span moments for a 

truck located at mid-span of the first interior girder. In general, good agreement between 

measured and calculated values is observed.   It is concluded that the Simplified FEA 

based on the eccentric beam model is as accurate as the detailed Washington FEA and 

always produces conservative results.   
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(a) Bridge Cross Section 

 

 

(b) W74MG girder dimension 

 

Figure 6.6  Washington Bridge Girder (Barr et al. 2001) 
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Figure 6.7  Mid-span Moment Due to Truck Load Located on the Exterior Girder 
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Figure 6.8  Mid-span Moment Due to Truck Load Located on the First Interior Girder 
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6.4 LDF Comparisons of PC Girder Bridges 

 

From the data analysis of the NBI database it has been determined that the typical 

range of bridge span length for Indiana PC girder bridges is 45 to 80 feet. This range is 

thus assigned as the applicable range for the span length.  The typical number of spans 

ranges from one span to three spans and the skew angle along the supports spans from 0 

to 45 degrees.   

From the applicable range, a total of 17 Indiana bridges are deliberately selected 

to cover the range.  Theses bridges are referred to as “Indiana Representative PC girder 

Bridges” and are used later in the verification of the postulated formula. Table 6.2 shows 

the list of the Indiana Representative PC girder Bridges. The longest PC girder bridge 

(115 ft) among the available Indiana database is included to examine the range of validity 

of the simplified load distribution equation. Girder spacing of the representative bridges 

ranges from 6 ft to 7.5 ft. 

In Figure 6.9, the longitudinal stiffness parameters for the Indiana representative 

bridges are plotted against the span length.  The general trend of the relationship is that 

Kg increases as L increases. It should be noted that AAHSTO Type II, III, and IV are 

common in Indiana PC girder bridges.  Type II bridges are used for span lengths from 45 

ft to 70 ft, and Type III bridges are common in the range of 65 ft to 80 ft.  Type IV 

bridges are used when the span length is larger than 80 ft. However, the data are scattered 

in relatively wide range. In other words, different girder types are used for relatively 

similar span lengths.  One of the reasons for this may be the bridge engineer’s preference 

on the selection of girder spacing. 

In Figure 6.10 and Figure 6.11, the Simplified LDF and the LRFD LDF are 

compared to the FEM LDF for positive moment and negative moment, respectively.  

Each of the data points is an LDF ratio for one of the Indiana representative bridges.  As 

mentioned earlier, the FEM LDF is considered to be the “exact” LDF.  It is observed that 

the Simplified LDFs and LRFD LDFs are always conservative. Some simplified LDFs, 

however, are less than LRFD LDFs as shown in Figure 6.10 and Figure 6.11.  These 

bridges do not fall below the exponential trend line used to derive the Simplified LDF, 
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which is an upper bound relationship between Kg and L for steel girder bridges. Even 

though Simplified LDFs do not guarantee the larger LDFs compared to LRFD LDFs, it is 

obvious from the results that simplified LDFs are always conservative with respect to 

“exact” LDFs (at least 10 % conservative) for the bridges analyzed.  

 

 

Table 6.2 Representative Indiana Prestressed Concrete Girder Bridges 

No 
NBI 

Structure 
Number 

County Location Year built 
(rebuilt) 

Skew 
[ °] 

Max. 
length  

[ft] 

Girder 
Spacing 

[ft] 

AASHTO 
Girder Type 

1 270 Randolph  SR 32 1981 0 65 6 II 
2 530 Lake  US41 1995 0 54 7.25 II 
3 590 Porter SR 149 1994 20 115 6.75 IV 
4 610 Porter US 30 1988 30 49 7 II 
5 1342 De Kalb  SR205 1990 0 87 6.33 IV 
6 1690 La Porte  US 35 1996 35 78 8.5 IV 
7 10400 Fountain US 41 1982 16 71 6.5 III 
8 11110 Wayne  SR 38 1984 20 76 7 III 
9 12720 Hamilton  US31 1995 15 65 7 III 

10 18253 Knox SR 550 1999 15 55 6.5 II 
11 18317 Daviess SR257 1933 (1999) 0 70 6.5 III 
12 19670 Lawrence  SR 58 1996 0 60 6.25 II 
13 22850 Gibson SR 65 1978 15 79 7 IV 
14 23700 Knox SR 550 1983 0 82 7 IV 
15 24380 Gibson US 41 1999 0 67 7.4 III 
16 31100 Ohio  SR56 1967 (1999) 35 50 7.5 III 
17 33020 Steuben I-90 1986 0 48 7 II 
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Figure 6.9 Scattergram of Longitudinal Stiffness Parameter and Span Length 

(Indiana PC girder bridges) 
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Figure 6.10 Positive Moment LDF Comparisons. 
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Figure 6.11 Negative Moment LDF Comparisons. 
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CHAPTER 7. EFFECTS OF SECONDARY ELEMENTS AND DECK CRACKING 

ON LOAD DISTRIBUTION FACTOR 

 

7.1 Introduction 

 

A new simplified equation based on the AASHTO LRFD formula has been 

developed using sophisticated finite element analyses of the 43 steel girder and 17 

prestressed concrete girder bridges identified in the previous chapters. Even though the 

Simplified equation is considered to represent well the actual behavior of bridges, the FE 

model used in developing the Simplified LDF equation does not include some important 

features of bridges, which may affect lateral load distribution. 

First, despite the presence of the secondary elements such as cross bracing, 

diaphragms, and parapets in bridges, these elements are not considered in the 

development of the AASHTO LRFD LDF equation. Previous parametric studies (Eamon 

and Nowak 2004; Eamon and Nowak 2002; Mabsout et al. 1997) have shown that 

consideration of secondary elements, which are typically present in steel girder bridges, 

has a significant effect on the lateral load distribution. Consequently, the AASHTO 

LRFD equation provides overly conservative results. Secondly, previous research (Frosch 

et al. 2003; French et al. 1999) revealed a widespread presence of pre-existing cracks in 

concrete bridge decks.  These cracks are usually formed even before the bridge is open to 

traffic. Direction of cracking is typically transverse with respect to traffic direction, but 

longitudinal cracking has also been observed. Even though early-age deck cracking is a 

well-known phenomenon, the effect of deck cracking on the live load distribution has not 

yet been assessed.  

The objectives of this study are (1) to investigate the influence of secondary 

elements on the lateral load distribution of typical steel girder bridges; and (2) to examine 
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the effects of deck cracking on the load distribution mechanism through nonlinear 

analyses.  In order to examine these effects, a reliable three-dimensional finite element 

model including secondary elements and a concrete cracking constitutive model is 

developed. Then, nine Indiana bridges are selected and analyzed using the model.  The 

load distribution factors obtained using this model are compared with those obtained 

using the AASHTO LRFD equation, AASHTO Standard equation, and Simplified 

equation. 

 

 

7.2 Research Methodology 

 

A total of nine Indiana steel girder bridges were deliberately selected to 

investigate the effect of secondary elements on load distribution factor. All the selected 

bridges are right-angled and service the state highway system. The two types of lateral 

bracing typically used in Indiana steel girder bridges, diaphragms and cross bracing, were 

considered. In general, the spacing of the lateral bracing ranges from 6.4 m (21 ft) to 7.5 

m (24.5 ft). The Indiana 84 cm (33 in) concrete barrier, or parapet, was used for the 

analysis of each of the nine bridges. Figure 7.1 shows the dimensions of the common 

concrete barrier for Indiana. More details of the selected bridges are given in Table 7.1.  

The load distribution factor of each bridge was calculated using four different FE models.  

The influence of lateral bracing and parapets was investigated both separately and 

together, representing the bridge “as is”.  

The influence of deck cracking on the load distribution of steel girder bridges was 

investigated through case studies of actual bridges. Nine Indiana bridges, which have 

experienced cracking in the deck slab, were identified. In previous research (Frosch et al. 

2003), some bridges known to have experienced deck cracks were identified.  As part of 

this study, field investigations were also carried out to determine the existence of 

cracking in the concrete deck. The list of identified bridges is given in Table 7.2. 

Nonlinear finite element analyses were performed using a previously developed nonlinear 
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finite element framework (Chung and Sotelino 2004).  Through a number of simulations, 

typical crack types that have a major effect on load distribution were identified. 

 

Table 7.1 Selected Indiana Bridges (Secondary Elements) 

No. NBI 
Number County Location S  

ft (m) 
Max. L 
ft (m) 

gK
 

in4 (cm4 ) 
Type of 
bracing 

Lateral 
bracing 

Bracing 
Spacing 
ft (m) 

1 17843 Monroe SR48 7.58 
(2.31) 

117 
(35.7) 

472,333 
(19,659,984) K frame L4×3½×½ 

(L102×89×13) 23 (7.0) 

2 50460 Hamilton I-465 8.33 
(2.54) 

150 
(45.7) 

741,548 
(30,865,558) K frame L4×3½×5/16 

(L102×89×8) 22 (6.7) 

3 16130 Montgomery US231 9.66 
(2.94) 

155 
(47.2) 

2,303,292 
(95,870,251) K frame L5×5×5/16 

(L127×127×8) 
21∼23 

(6.4∼7.0) 

4 1030 Delaware US35 8.33 
(2.54) 

83 
(25.3) 

220,638 
(9,183,647) Diaphragm W18×45 

(W450×67) 22 (6.7) 

5 12290 Morgan SR37 5.50 
(1.68) 

84 
(25.6) 

220,638 
(9,183,647) Diaphragm W14×43 

(W360×64) 
20∼24  

(6.1∼7.3) 

6 3600 Jasper SR14 5.25 
(1.60) 

98 
(29.9) 

215,395 
(8,965,417) Diaphragm W18×45 

(W450×67) 24.5 (7.5) 

7 49240 Porter I-94 7.25 
(2.21) 

105 
(32.0) 

195,857 
(8,152,184) Diaphragm W18×45 

(W450×67) 21 (6.4) 

8 37630 Tippecanoe I-65 pass 6.17 
(1.88) 

97 
(29.6) 

289,719 
(12,059,015) Diaphragm W18×45 

(W450×67) 24.5 (7.5) 

9 38300 Lake I-65 pass 6.58 
(2.01) 

66 
(20.1) 

241,748 
(10,062,311) Diaphragm W18×45 

(W450×67) 22 (6.7) 

 

 

Table 7.2 Selected Indiana Bridges (Pre-existing Cracks) 

No. County Location S  
ft (m) 

Max. L  
ft (m) 

gK
 

in4 (cm4 ) 
Year 
built Skew Cracking 

10 Lake I-65 pass 5.83 
(1.78) 

65 
(19.8) 

186,521 
(7,763,590) 1965 0 Transverse cracks 

11 Lake I-65 pass 6.58 
(2.01) 

66 
(20.1) 

70,688 
(2,942,257) 1966 0 Transverse cracks 

12 Carroll IN75 5.33 
(1.62) 

78 
(23.8) 

51,359 
(2,137,723) 1992 0 Transverse cracks 

13 Marion I-465 5.17 
(1.58) 

81 
(34.7) 

61,155 
(2,545,463) 1997 0 Transverse cracks 

14 Marion I-465 7.5 
(2.29) 

82 
(25.0) 

46,345 
(1,929,025) 1999 3 Transverse cracks 

15 Knox IN58 5.08 
(1.55) 

29 
(8.8) 

7,888 
(328,323) 1996 0 Longitudinal cracks 

16 Tippecanoe IN25 8.0 
(2.44) 

110 
(33.5) 

298,772 
(12,435,830) 1995 0 Longitudinal cracks 

17 Marion I-65 9.16 
(2.79) 

124 
(37.8) 

300,694 
(12,515,829) 1996 20 Longitudinal cracks 

18 Greene IN-67 5.75 
(1.76) 

47 
(14.3) 

196,954 
(8,197,844) 1994 20 Longitudinal cracks 
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7.3 Finite Element Modeling of Secondary Elements 

 

Several finite element bridge models were studied using the commercial finite 

element software, ABAQUS (2001). It was concluded that the eccentric beam model 

gives as close to real idealization as possible while retaining simplicity for practical use 

as discussed in Chapter 3.  The eccentric beam model was extended to include the 

secondary elements in the bridge system. 

In this study, the FE model of primary members such as bridge deck and steel 

girders is called “Base FEM”.  The concrete deck is modeled by 8-node Mindlin shell 

elements (ABAQUS S8R), while the steel girder is modeled by 3-node Timoshenko 

beam elements (ABAQUS B32). The full composite action between the centroid of the 

girder and the mid-surface of the slab is modeled by rigid links (ABAQUS MPC).  The 

bearings are modeled by assigning boundary conditions to the grounded spring elements 

(ABAQUS SPRING1) at their real location. For simply supported conditions, rotations in 

all directions are allowed. Minimum restraints are assigned for longitudinal and 

transverse movement while vertical restraint is placed at the supports. Rigid links are also 

applied to nodes between the girders and the deck. 

For steel girder bridges, however, lateral bracing, such as diaphragms and cross 

bracings is typically used to prevent lateral movement of the girders.  It also helps to 

distribute the load between girders. In this study, the lateral bracing is modeled by 3-node 

beam elements (ABAQUS B32). Diaphragms are assumed to be directly connected to the 

girders. The cross bracings are connected at the intersection of the flanges and the web. 

Rigid links are applied between the nodes to ensure full composite action.  

The parapet (or barrier) is idealized using the beam elements (B32). The parapet 

is assumed to act as fully composite with the deck. Rigid links between the parapet and 

the deck provide this composite action in the model. Figure 7.2 shows the developed 

finite element model.  

Two experiments are selected for comparison and verification of the developed 

finite element model. The first bridge is a full scale laboratory test conducted by Kathol 
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et al. (1995). This bridge is a 21.4 m (70 ft) simply supported steel girder bridge.  The 

superstructure consists of three 137 cm (54 in) deep welded plate girders built 

compositely with a 19 cm (7.5 in) thick reinforced concrete deck. There are 3 girders 

with girder spacing of 3 m (10 ft).  K frames are placed at approximately every 6.83 m 

(22.4 ft) along the span.  The cross section of the bridge and the layout of strain gauges 

are shown in Figure 7.3.  The test loading setup consisted of 12 post-tensioning rods 

simulating two side-by-side AASHTO HS-20 design trucks. Two sets of loads simulating 

two trucks were placed symmetrically with respect to the center girder in the transverse 

direction. For the elastic test, 2.5 times the HS20 truck load was applied on the rod plates. 

This load consisted of 362.5 kN (40 kips) for the center and rear wheels and 87.5 kN (10 

kips) for the front wheels.  

Figure 7.4 presents the measured and calculated bottom flange deflections and 

strains at various locations. As can be seen from this figure, the finite element models 

generally produce calculated deflections similar to the measured deflections. The 

maximum error between predicted and measured deflection is 9 % at the exterior girder 

of the mid-span. Good agreement between measured and calculated strains is also 

observed.   

The finite element model including diaphragms is further verified with the results 

of the field test conducted by Canna and Bowman (2002).  This bridge is located on 

Indiana SR 52 over 9th street in Lafayette, Indiana. It is a right angled five span 

continuous composite steel girder bridge with total length of 148.5 m (148 ft). Eight 

longitudinal steel girders and a 19 cm (7.5 in) deep reinforced concrete deck are used. 

The detailed geometry of the bridge model is shown in Figure 7.5. The diaphragms are 

connected to the longitudinal girders with fillet welds located on the tops of both flanges 

of the diaphragms and with intermittent welds along both sides of the web.  The first 28 

m (92 ft) span of the bridge was selected to be instrumented span. Strain gauges were 

placed at several locations on the bottom of the top and bottom flanges of the girders and 

mid-span of several diaphragms. The names and locations of the strain gauges, where 

comparisons with the finite element results are made, are given in Table 7.3.  Several 

load cases are considered using a tandem axle dump truck weighting 232 kN.  Table 7.4 
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shows the locations of the load cases considered. More descriptions on the field test of 

the bridge are available in the original report (Canna and Bowman 2002).  

Figure 7.6 (a) shows the displacement comparisons between the finite element 

results and the test results. The finite element models generally predict the displacement 

results very well. The maximum displacement error at Girder 1 is 6 % for load case 3B. 

The predicted strains are compared to those obtained from the test results. Figure 7.6 (b) 

and (c) show the strain results at various locations. The correlations between calculated 

and measured strains are overall very good. The maximum error for girder strain is within 

7 %. Based on the comparisons from the above, it can be concluded that the developed 

FE model used in this study is capable of predicting well the behavior of steel girder 

bridges. 

 

Table 7.3 List of Strain Gauges (US 52 Bridge) 

Strain Gauge  Location 

G1A  Bottom of top flange (Girder #1) 

G2A  Bottom of top flange (Girder #2) 

G2D  Bottom of bottom flange (Girder #2) 

D1A  Top of top flange (Diaphragm #1) 

D1B  Bottom of bottom flange (Diaphragm #1) 

 

 

Table 7.4 Load Cases for the US 52 Bridge Test 

Load Case  Longitudinal Position  Transverse Position 

2A  13 m (42’2”) from the end support  4 m (13’) from the curb 

2B  13 m (42’2”) from the end support  3.3 m (10’10.5”) from the curb 

3A  13.5 m (44’4”) from the end support  4 m (13’) from the curb 
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(a) Diaphragms + Parapet 

 

 

(b) Cross Bracing + Parapet 

 

Figure 7.2 Finite Element Model 
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Figure 7.3 Layout of Strain Gauges at Mid-span (Nebraska Bridge) 
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(a) Bottom Flange Deflection 
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(b) Strain Results 

 

Figure 7.4 Comparisons of FE results to Experimental Results (Nebraska Bridge) 
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Figure 7.5 Cross Section of Instrumented Span (US 52 Bridge) 
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(a) Deflection at Girder 1 
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(b) Strain Results 

 

Figure 7.6 Comparisons of FE Results to Experimental Results (US 52 Bridge) 
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7.4 Concrete Crack Model 

 

The simplest method for considering the effect of deck cracking on the behavior of 

a bridge deck consists of reducing the deck’s stiffness. Deck cracking can, then, be 

accounted for by using orthotropic material properties for the slab elements. In the 

cracked regions, the elastic modulus of the shell perpendicular to the crack direction is 

reduced, while the elastic modulus parallel to the crack direction and the actual thickness 

of the shell elements remains unchanged. In this manner, deck cracking can be taken into 

account in a simple way. However, this assumption oversimplifies the actual 

phenomenon across the crack surface.  

In this study, a concrete crack model based on the strain decomposition technique 

(Chung and Sotelino 2004) has been adopted. This technique enables the explicit 

inclusion of physical behavior across the cracked concrete surface such as aggregate 

interlock and dowel action unlike other models that introduce these effects implicitly by 

means of a shear retention factor. The concrete material model has been extended to 

three-dimensional problems using a layered approach. The development and verification 

of the above model is discussed in detail in Chung and Sotelino (2004).  

The above concrete crack model has been extended to include the modeling of 

pre-existing cracks in reinforced concrete bridge decks. The modification involves the 

state determination of pre-existing cracks. Since pre-existing cracks are not necessarily 

formed perpendicular to the principal stress direction, the crack surface can be subjected 

to a considerable amount of in-plane shear stress through dowel action and aggregate 

interlock. For this reason, the concrete crack model based on the strain decomposition 

technique is better able to represent the effect of pre-existing cracks in bridge decks than 

other modeling techniques.  

The proposed crack model has been integrated into the ABAQUS shell elements 

through the user-defined material subroutine (UMAT). UMAT is called at all material 

calculation points of the elements. Thus, the user subroutine must update the stresses 
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( cσ ), concrete tangent stiffness ( concC ), and solution dependent state variables at the end 

of the increment. The solution dependent variables for this case are crack displacements 

as defined by 

{ }Tw v=δ .       (7.1) 

This model consists of three routines, namely, “closed crack routine”, “crack 

closing routine”, and “open crack routine”. Depending on the crack displacement, the 

appropriate routine is called. The detailed algorithm for the state determination and 

linearization is presented in Figure 7.7. 

The first routine is called “Closed Crack Routine”. This routine is used when the 

cracks in the bridge deck are closed, i.e., the crack displacement vector is zero at the 

beginning of the increment.  In this case, the concrete is assumed to be an isotropic linear 

elastic material ( elC ). and , thus, strain decomposition does not need to be performed .   

The second routine is the “Crack Closing Routine”. This routine enables the 

modeling of the closing of pre-existing cracks in the bridge deck, which may occur due to 

bridge live loads. If the updated crack opening (w) becomes negative, the crack is closing 

within the current increment. Once the crack is closed, i.e., when the normal stress 

component across the crack changes from tension to compression, it is assumed that the 

concrete material recovers its linear elastic characteristics. The stiffness matrix of intact 

solid concrete is then reinserted for these crack closing states.  The stress states just after 

the closing of the crack can be mathematically written as follows (de Borst and Nauta 

1985): 

( )c o el o= + −σ σ C ε ε       (7.2) 

where oσ  and oε   are, respectively, the stress state and strain state at the moment the 

crack begins to close.  

The last state determination routine is “Open Crack Routine”. This routine is used 

when the crack displacement increases indicating that the crack is opening.  In the present 

modeling technique, the cracks in the concrete material are assumed to be smeared into 

the shell element. The total strain increment is divided into two parts: the strain increment 

due to the cracks and the strain increment due to the intact concrete material between 
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cracks. Using the crack strain increment, a proper constitutive model for aggregate 

interlock and dowel action are included into the cracked concrete model through the 

average crack stress-strain relations. The intact solid concrete can be modeled using a 

linear-elastic isotropic constitutive material model, whereas this would not be appropriate 

for cracked concrete since it behaves highly nonlinearly due to the wedging effect 

between aggregate particles and due to the presence of the rebars. After mathematical 

manipulation (Chung and Sotelino 2004), the stiffness matrix of cracked concrete can be 

calculated by   

 
1

11 ( )cr T el

s

−
−⎛ ⎞= + +⎜ ⎟

⎝ ⎠
C Ω B G Ω S   (7.3) 

where s is the crack spacing between two adjacent cracks, B  is the constitutive matrix of 

the aggregate interlock, G  is the constitutive matrix of the dowel action, elS  is the 

tangential compliance matrix of linear elastic concrete and Ω  is the transformation 

matrix reflecting the orientation of the crack. Using the strain decomposition and the 

crack shear constitutive relations, more realistic results are expected to be obtained than 

those resulting from the commonly used method, which simply reduces the shear 

modulus after cracking. 
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Figure 7.7 State Determination for Cracked Concrete 
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7.5 Load Distribution Factor Comparisons 

 

7.5.1 Effects of Secondary Elements 

 

The calculated load distribution factors considering the secondary elements are 

compared with those obtained using AASHTO LRFD equation and Simplified equation. 

Four different FE models are investigated. The first FE model includes primary members 

including deck, girders, and bearings. It is called “Base FEM”. The other three models 

are modifications of the Base FEM model. In the second model, lateral bracing is added 

in the FE model. In the third model, parapets are added, but no lateral bracing. The last 

model, which is the most comprehensive, both lateral bracing and parapets are added to 

the Base FEM. This model is referred to as the “As Is” model. 

Two sets of AASHTO HS20 design truck wheel load are applied to produce the 

maximum effect on the live load distribution. For example, in the longitudinal direction, 

the maximum moment in simple span bridges occurs when the center line of the span is 

midway between the center of gravity of loads and the nearest concentrated load. The live 

load distribution factor is also greatly influenced by the transverse loading position. 

Several truck positions are investigated for the transverse direction to find the maximum 

effect after the longitudinal position is determined.  

The maximum load distribution cases for two selected bridges are shown in 

Figure 7.8.  Note that Girders 1 and 7 and 1 and 8 are the exterior girders for Bridge 1 

and 4, respectively.  The maximum interior LDF is found on the first interior girder when 

the Base FEM is considered or only the lateral bracing is modeled. However, the 

maximum LDF is found on the second interior girder for the model considering parapets. 

It is also found that the maximum LDF of the “As Is” model can occur on the first 

interior girder or the second interior girder for all considered bridges. This indicates that 

the presence of secondary elements significantly alters the load distribution for each 

bridge.  
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In Figure 7.9, the Base FEM LDF is compared to the FEM LDF considering 

secondary elements. The consideration of lateral bracing and parapet reduces the LDF by 

up to 11 % and 25 %, respectively. The LDFs obtained by the “As Is” FE model are 17 % 

to 38 % less than those obtained using the Base FEM LDF. 

The comparisons of LDF obtained from code equations to LDF from FEM are 

shown in Figure 7.10 through Figure 7.12 for the nine selected bridges. Each of the data 

points is an LDF ratio for one of the considered bridges.  In Figure 7.10, the LRFD LDF 

is compared to the FEM LDF. The Base FEM produces LDF greater than LRFD LDF for 

some of the considered bridges. In other words, the LRFD LDF is not conservative in 

these cases.  However, the addition of lateral bracing or parapet decreases LDF when 

compared to Base FEM.  The LDFs obtained from the “As Is” FEM are always less than 

LRFD LDF. It is observed that the consideration of lateral bracing and parapet separately 

produces an LDF up to 12 % and 27 % less than LRFD LDF, respectively. The “As Is” 

FE model gives LDF value less than up to 39 % than the LRFD value. There is no 

apparent trend in the LDF ratio with respect to either girder spacing or span length. 

The ratios of FEM LDF to Simplified LDF are presented in Figure 7.11.  All FE 

models produce lower LDF values than FEM LDFs. The modeling of lateral bracing and 

parapet produces LDF up to 20 % and 36 % less than the Simplified LDF.   The “As Is” 

FEM LDF produces the LDF ranging from 20 % to 45 % less than the Simplified LDF.  

Similar trends are observed in the comparison between FEM LDF and Standard LDF as 

shown in Figure 7.12.  

It is clear from the previous observation that the effect of secondary elements on 

the load distribution factor can be significant.  In general, it is found that the presence of 

secondary elements helps the lateral load distribution of girder bridges. Furthermore, both 

the AASHTO LRFD and Simplified LDF formulas always produce conservative results 

when all secondary elements are considered. 
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Figure 7.8 Lateral Distribution of LDF (Secondary Elements) 
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Figure 7.9 Effect of Secondary Elements on LDF 
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Figure 7.10 Comparisons of FEM LDF to LRFD LDF 
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Figure 7.11 Comparisons of FEM LDF to Simplified LDF 
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Figure 7.12 Comparisons of FEM LDF to Standard LDF 
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7.5.2 Effects of Bridge Deck Cracking 

 

The characteristics of the nine selected Indiana bridges with pre-existing cracks 

are shown in Table 7.2. These bridges are analyzed within the developed nonlinear finite 

element (NLFE) framework to determine the effect of deck cracking on lateral load 

distribution.  

The parameters considered in the performed case studies are crack patterns 

(transverse cracks, longitudinal cracks) and crack depth (full depth, partial depth crack). 

The assumptions made in this study are discussed next. First, the smearing concept is 

used to model the pre-existing cracks. If cracks exist at an integration point, the cracking 

is modeled through an adjustment of the material properties, which effectively treats the 

cracking as a “smeared band” of cracks, rather than discrete cracks.  Thus, the crack is 

idealized by an infinite number of parallel fissures across the element. Other assumptions 

include the area and length of the cracked elements and the depth of the cracking.  A 

different number of cracked elements is assumed and only the case that produces the 

maximum effect is presented in this manuscript. The cracks are assumed to run the entire 

length of bridge in both the transverse and longitudinal directions. The last assumption is 

concerned with the depth of the cracks. It is difficult to measure the depth of a crack in 

the field since only the top surface of the crack is visible due to the use of stay-in-place 

formwork or due to lack of accessibility. In the simulations, however, the use of layered 

shell element enables the simulation of different crack depths.  

It should be noted that the material properties of the beam elements are assumed 

to be linear elastic since the stresses in the bridge girders under service loads are much 

smaller than the steel yield limits. It should be noted that secondary elements are modeled 

in this case.  

Figure 7.13 shows a comparison between LDF obtained from the nonlinear 

analyses considering deck cracking and the linear elastic analysis (Base FEM) for the 

selected bridges. As can be seen, transverse cracking of bridge deck slightly increases 

load distribution by 1 % to 3 % when compared to the values obtained from a linear 

elastic analysis. However, longitudinal cracking results in higher LDF by 12 % to 17 %.   



 

 137

The LDFs obtained from NLFE analyses are compared to the LDFs obtained from 

the LRFD LDF, Simplified LDF, and Standard LDF in Figure 7.14 through Figure 7.16. 

It is observed that the ratios of FEM LDF considering longitudinal cracking to LRFD 

LDF are larger than 1 for three of four bridges as shown in Figure 7.14.  This indicates 

that the LRFD LDF, which is based on the linear elastic analysis, can result in an 

unconservative LDF with respect to a FEA considering longitudinal cracking of bridge 

deck. However, the Simplified LDF generally produces conservative results except for 

one bridge (Bridge 16) as shown in Figure 7.15.  It is also observed that the FEM LDF 

considering transverse cracking is generally less than the LRFD LDF and the Simplified 

LDF. 

The effect of both secondary elements and deck cracking is further investigated 

for Bridge 16.  This bridge has been identified as having a higher calculated LDF than 

both the LRFD LDF and the Simplified LDF when longitudinal cracking is considered.  

This bridge has secondary elements including steel diaphragms and 84 cm (33”) oncrete 

parapet. Figure 7.17 shows the lateral distribution of LDF for Bridge 16.  The 

consideration of both secondary elements and deck cracking produces LDF values lower 

than LRFD, Simplified, and Standard LDFs.  Therefore, the effect of deck cracking,  

more specifically longitudinal cracking, increases the LDF, but the decrease in the LDF 

due to the presence of secondary elements results in LRFD, Simplified and Standard LDF 

values which are also conservative. 
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Figure 7.13 Effect of Deck Cracking on LDF 
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Figure 7.14 Comparisons of FEM LDF vs. LRFD LDF 
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Figure 7.15 Comparisons of FEM LDF vs. Simplified LDF 
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Figure 7.16 Comparisons of FEM LDF vs. Standard LDF 
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Figure 7.17 Lateral Distribution of LDF for Bridge 16 
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7.6 Summary 

 

The AASHTO LRFD load distribution factor equation was developed based on 

linear elastic finite element analysis considering only primary members, i.e., the effects 

of secondary elements such as lateral bracing and parapets were not considered.  

Meanwhile, many bridges have been identified as having significant cracking in the 

concrete deck. Even though deck cracking is a well-known phenomenon, the significance 

of pre-existing cracks on the live load distribution has not yet been assessed.  

The purpose of this chapter was to investigate the effect of secondary elements and 

deck cracking on the lateral load distribution of girder bridges. First, secondary elements 

such as diaphragms and parapet were modeled using the finite element method, and the 

calculated load distribution factors were compared with the code-specified values. 

Second, the effects of typical deck cracking and crack types that have a major effect on 

load distribution were identified through a number of nonlinear finite element analyses.  

It was established that the presence of secondary elements can produce load 

distribution factors that are up to 40 % less than the AASHTO LRFD values.  

Longitudinal cracking was found to produce the load distribution factor up to 17 % 

greather than the LRFD value, while the transverse cracking was found to not 

significantly influence the transverse distribution of moment. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Summary 

 

 The main objective of this research is to provide the simplest, yet sufficiently 

accurate equation for calculation of the load distribution factor. A new simplified wheel 

load distribution factor (LDF) equation is postulated based on the current AASHTO-

LRFD specification.  The longitudinal stiffness parameter ( gK ) and the slab thickness 

parameter ( st ) that appear in the LRFD equation are implicitly embedded in the 

simplified expression. The simplified equation is developed based on the database of the 

steel girder bridges and eliminates the iterative procedure introduced by the LRFD 

formula. The accuracy and applicability of the simplified equation are demonstrated by 

comparisons to the AAHSTO-Standard, AASHTO-LRFD, and AASHTO level-three 

analysis, namely finite element (FE) analysis. Both the steel girder bridges and 

prestressed concrete girder bridges are investigated in this research. 

Another objective of this study is to investigate the effects of secondary elements 

and deck cracking on the lateral load distribution of girder bridges.  Several Indiana 

bridges are selected and analyzed considering each secondary element separately and in 

combination. The secondary elements in the bridge system considered in this study 

include lateral bracing and parapets.  A concrete crack model is incorporated in the finite 

element model to account for the pre-existing cracks on bridge deck.  Nonlinear FE 

analyses are performed to examine the influence of deck cracking on the load distribution 

factor.  Finally, for one of the selected bridges, both concrete cracking and secondary 

elements are considered to investigate their combined effect on lateral load distribution. 
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8.2 Conclusions 

 

 Based on comparisons of the load distribution factor (LDF) from the Simplified 

equation, AASHTO-LRFD equation, AASHTO-Standard equation, and finite element 

analyses, the following conclusions can be drawn for steel girder bridges. 

• The developed Simplified equation produces LDF values that are always 

conservative when compared to those obtained from the finite element 

analyses.  

• The LDF values using the Simplified equation are generally greater than ones 

obtained using AASHTO-LRFD specification.  Therefore, the Simplified 

equation provides a simple yet safe specification for LDF calculation. 

• The Simplified and AASHTO-LRFD LDF are greater than the AASHTO-

Standard LDF when span length and girder spacing are relatively small, in 

which case the Standard LDF tends to be unconservative.  Therefore, the 

simplified formula is similar to the LRFD formula in its ability to represent 

the load distribution.   

• The new simplified equation is simple, requires no iteration, and produces 

LDF values that are at least as conservative as the ones obtained by the 

LRFD equation. 

 

 The applicability of the Simplified LDF equation has been investigated for prestressed 

concrete (PC) girder bridges. The following conclusions are drawn based on the 

comparisons of the LDF from the Simplified equation, AASHTO-LRFD equation, 

AASHTO-Standard equation, and finite element analyses. 

• The LRFD LDF equation for the PC girder bridges is the same as the one for 

the concrete slab on steel girder bridges.  According to the finite element 

analysis of the 17 Indiana representative PC girder bridges, the LDF values 

obtained from the LRFD equation can be conservative by about 30%. 
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• According to the finite element analysis of the 17 Indiana representative PC 

girder bridges, the Simplified LDF equation, similarly to the LRFD LDF 

equation, is always conservative. 

• AASHTO recommends a specific PC girder type for a given range of span 

length.  If the recommended AASHTO type is used for the suggested span 

length, the Simplified equation represents the LDF values well.  In other 

words, the Simplified LDF is generally more conservative than the LRFD 

LDF if the recommended AASHTO type is used.   

 

The following conclusions can be drawn from the investigation of secondary elements 

and deck cracking on LDF.  

• Secondary elements significantly help the transverse distribution of moment. 

It is found that the consideration of secondary elements produces LDF up to 

39 % less than the AASHTO LRFD LDF. Both the AASHTO LRFD 

equation and Simplified equation always produce conservative LDF when 

secondary elements are considered.   

• Transverse cracking in a bridge deck reduces its stiffness, thus resulting in 

higher deflection.  However, it does not significantly influence the transverse 

distribution of moment.   

• Longitudinal cracking increases the LDF significantly. For the limited 

number of tested cases, an LDF up to 17% higher than the AASHTO LRFD 

LDF has been observed. Thus, an increased LDF should be anticipated in the 

analysis and bridge rating when longitudinal cracking is present.  However, it 

should be kept in mind that this increase is somewhat offset by the 

contributions from the secondary elements. 
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8.3 Recommendations for Simplified Specifications 

 

Steel Girder Bridges 

 

 The new Simplified LDF equation should be used within the applicable range.  

Furthermore, the designer needs to check the final girder selection.  The Simplified LDF 

equation works best if the selected girder produces a Kg less than the value obtained by  
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In other words, a safe LDF value will be obtained as long as the final Kg is less than the 

upper bound Kg presented above.   

 

 

Prestressed Concrete Girder Bridges 

 

 The Simplified LDF is generally greater than the LRFD LDF if the recommended 

AASHTO PC girder type for span length is used.  If a larger PC section type is used, 

there is a risk of the Simplified LDF being less than the LRFD LDF.  Although the LDF 

may still be conservative, it is recommended that the LRFD LDF be used in this case. 
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8.4 Simplified Load Distribution Factor Specification 

 

The new simplified live load distribution factor equation is as follows:   

⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅+ 590
3.0

8.0

73.015.0
L

e
L
S  

where S is the girder spacing (ft) and L is the span length (ft).  The applicable range for 

span length is 44 ft to 122 ft. The applicable range for girder spacing is from 4 ft to 10 ft.  

The simplified equation is only valid when the slab thickness is 8 in. and the skew angle 

along the supports ranges from 0 °  to 45 ° .   

When the line supports are skewed and the difference between skew angles (θ ) of 

two adjacent lines of supports exceeds 30 ° , the load distribution factor shall be adjusted 

by the skew reduction factor: 

( )
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⎠
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Commentary 

The designer must check the final girder selection.  The simplified load 

distribution factor equation works best if the selected girder produces a Kg less than the 

value obtained by  

59189940   
L

gK e
⎛ ⎞
⎜ ⎟
⎝ ⎠= ⋅  

If a larger section is used, there is a risk of the simplified load distribution factor being 

less than the AASHTO-LRFD load distribution factor.  In this case, it is recommended 

that the AASHTO-LRFD load distribution factor be used instead. 
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APPENDIX A: PRE PROCESSOR CODE LIST  

(prePro.for) 
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* ********************************************************************* 
* 
* Work Equivalent Nodal Force Calculation in ABAQUS format 
* <filename>.aba contains a loading block of ABAQUS input file.  
*    
*    Wonseok Chung 
*     Purdue University 
*     Last modified Aug. 5, 2003 
* 
*  ELEMENT : S8R (thick only shell) 
* 
*  NOTE :  Default maximum number of truck(max) = 10 
*          Number of element in longitidunal direction = 2000 
*          Number of element in transverse direction = 200 
*          Max. element number in deck = 400000 
* 
* WARNING !!!!! 
*   output unit => kips, feet 
* ********************************************************************* 
* 

PARAMETER (maxMesh1=200) 
 PARAMETER (maxMesh2=2000) 
* maxEle = maxMesh1*maxMesh2 
 PARAMETER (maxEle=maxMesh1*maxMesh2) 
       PARAMETER (maxTruck=10) 
 PARAMETER (maxSpan=20) 
 PARAMETER (nWheel=6) 
** WARNING!! nShort and nLong should be "odd" number. 
 PARAMETER (nShort=31) 
 PARAMETER (nLong=31) 
* DECLARATION of NEW VARIABLES from SUBROUTINE INPUT 
 REAL span(maxSpan),widOH,widGir 
 REAL sELSpan(maxSpan),spaceG,sWidOH,sWidGir,skew 
 REAL xLoad(maxTruck),yLoad(maxTruck),trailer(maxTruck) 
 REAL Es,Ec,PoissonS,PoissonC 
 REAL area,strongI,weakI,TJ,h,thick,thickOHs,thickOHe 
 REAL paraH,paraWid 

INTEGER nSpan,nElSpan(maxSpan),nGirder,nElG,nWidOH,nWidGir 
INTEGER nTotSpan,nTotWid 

 INTEGER nTruck,direct(maxTruck) 
 INTEGER nUnit 
 INTEGER Nmat, Npara 
* DECLARATION of NEW VARIABLES from SUBROUTINE HS20 
 REAL xHS20(maxTruck,nWheel,nShort,nLong) 
 REAL yHS20(maxTruck,nWheel,nShort,nLong)   
* DECLARATION of NEW VARIABLES from SUBROUTINE meshGen 
       INTEGER nElement(maxMesh1,maxMesh2) 
       INTEGER nNode(maxEle,9)  
* DECLARATION of NEW VARIABLES from SUBROUTINE loadElem 
       INTEGER nXPos(maxTruck,nWheel,nShort,nLong) 
       INTEGER nYPos(maxTruck,nWheel,nShort,nLong) 
       REAL localX(maxTruck,nWheel,nShort,nLong) 
       REAL localY(maxTruck,nWheel,nShort,nLong) 
       REAL sElX(maxTruck,nWheel,nShort,nLong)  
       REAL sElY(maxTruck,nWheel,nShort,nLong) 
       INTEGER iElement(maxTruck,nWheel,nShort,nLong) 
       INTEGER iNode(maxTruck,nWheel,nShort,nLong,9) 
* DECLARATION of NEW VARIABLES from SUBROUTINE loadElem 
 REAL N(maxTruck,nWheel,nShort,nLong,9) 
* DECLARATION of NEW VARIABLES from SUBROUTINE enfCalc 
 REAL enf(maxTruck,nWheel,nShort,nLong,9) 
* 
* Input data 
* 
  
      CALL INPUT(maxTruck,maxSpan,nSpan,span,widGir,widOH, 
     +    nElSpan,nWidGir,nWidOH,sELSpan,sWidGir,sWidOH, 
     +    nTotWid,nTotSpan, 
     +    nGirder,spaceG,nElG,Ec,Es,PoissonC,PoissonS, 
     +           area,strongI,weakI,TJ,h,thick,thickOHs,thickOHe, 
     +    paraH, paraWid, Nmat,Npara, 
     +    nTruck,direct,xLoad,yload,trailer,skew,nUnit) 
* 
* Open abaqus output file (enf.aba) 
* 
      OPEN(6,FILE='abaqus.inp',STATUS='REPLACE') 
* 
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* Generate AASHTO HS 20 Truck Loading 
*    xHS20(i), yHs20(i) 
* 
 CALL HS20(nTruck,nWheel,nShort,nLong,xLoad,yLoad, 
     +             trailer,direct,xHS20,yHS20,skew) 
* 
* Generate element number and corresponding node number 
*    nElement(number of tran element,number of long element) 
*    nNode(nElement,4) 
* 
 CALL meshGen(nTotSpan,nTotWid,nElement,nNode) 
* 
* Identify loaded elements 
* 
 CALL loadElem(nSpan,nTruck,nWheel,span, 
     +     nShort,nLong,widGir,widOH,sELSpan,sWidOH,sWidGir, 
     +     nElSpan,nWidOH,nWidGir,nTotSpan,nTotWid, 
     +     xHS20,yHS20,nElement,nNode, 
     +     nXPos,nYPos,localX,localY,sElX,sElY,iElement,iNode)  
* 
* 
* Calculate Shape function of the Kirchhoff plate element 
* N(i,j,k) 
*  i = each truck  
*  j = each HS20 wheel load 
*  k = each dof (3 dof * 4 nodes) 
 
 CALL shapeFun(nTruck,nWheel,nShort,nLong, 
     +    localX,localY,sElX,sElY,N) 
* 
* Calculate Equivalent Nodal Force 
* enf(i,j,k) 
*  i = each truck  
*  j = each HS20 wheel load 
*  k = each dof (3 dof * 4 nodes) 
* 
 CALL enfCalc(nTruck,nWheel,nShort,nLong,N,enf) 
* 
* File Output w/ ABAQUS format 
* 
 CALL OUTPUT(nSpan,span,widGir,widOH,nElSpan,nWidGir,nWidOH,sELSpan,sWidGir, 
     +             sWidOH,nGirder,spaceG,nElG,Ec,Es,PoissonC,PoissonS, 
     +             area,strongI,weakI,TJ,h,thick,thickOHs,thickOHe, 
     +      paraH, paraWid, Nmat,Npara,skew,nUnit) 
* 
* Assemble equivalent nodal force to each node 
* 
 CALL assNout(nTruck,nWheel,nShort,nLong,nTotSpan,nTotWid,iNode,enf) 
* 
* File Output w/ ABAQUS format 
* 
 CALL OUTPUT2() 
* 
* Close the opened file 
* 
 CLOSE(6) 
* 
 write(*,*) '-----------------------------------------------------' 
 write(*,*) 'The pre-processor has completed successfully.' 
 write(*,*) 'You can find <abaqus.inp> file in the same directory ' 
 write(*,*) '-----------------------------------------------------' 
* 
 STOP  
 END 
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* ************************************************************************ 
*    SUBROUTINE HS20 
*  In 
*   maxTruck 
*   nTruck: Number of Truck 
*   xLoad(nTruck): x-co of the representative loading point for HS20 truck  
*   yLoad(nTruck): y-co of the representative loading point for HS20 truck  
*       trailer(nTruck): Variable length of trailer 
*   direct(nTruck): Direction of the HS20 truck 
*  Out 
*   xHS20(nTruck,6,3,21): x-co of HS20 (each truck, each wheel) 
*   yHS20(nTruck,6,3,21): y-co of HS20 (each truck, each wheel) 
* ************************************************************************* 
* 
 SUBROUTINE HS20 (nTruck,nWheel,nShort,nLong,xLoad,yLoad,    
      +              trailer,direct,xHS20,yHS20,skew) 
* 
* VARIABLE DECLARATION (IN)  
* 
       INTEGER nTruck, direct(nTruck) 
       REAL xLoad(nTruck),yLoad(nTruck),trailer(nTruck),skew 
* 
* VARIABLE DECLARATION (OUT)  
* 
 REAL xHS20(nTruck,nWheel,nShort,nLong) 
 REAL yHS20(nTruck,nWheel,nShort,nLong) 
* 
* ************************************************************************* 
*       | 
*  HS 20 truck configuration     | 
*       | 
*       | 
*  direct = 2      |   direct = 1  
*       | 
*       | 
*    o(2) O(4)        O(6)   | O(5)         O(3)     o(1) 
*    |  |        |   | |       |  | 
*    x---------|-------------|     | |------------|--------x 
*    |  |        |    | |      |  | 
*    o(1) O(3)  O(5)   | O(6)      O(4)      o(2) 
*       | 
*  ( ) : wheel number    | 
*  x : representative point       | 
*       | 
*  PATCH LOADING     | 
*     at wheel number 1    | 
*       | 
*       -------------------           |   -------------------    
* |  x 5|  x  |  x  |      |   |  x  |  x 6|  x 1| 
* |-----|-----|-----|      |     |-----|-----|-----| 
* |  x 4|  x  |  x |      |   |  x  |  x  |  x 2| 
* |-----|-----|-----|    |   |-----|-----|-----| 
* |  x 3|  x  |  x  |     |   |  x  |  x  |  x 3| 
* |-----|-----|-----|      |   |-----|-----|-----| 
* |  x 2|  x  |  x  |      |   |  x  |  x  |  x 4| 
* |-----|-----|-----|      |   |-----|-----|-----| 
* |  x 1|  x 6|  x  |      |   |  x  |  x  |  x 5| 
* |-----|-----|-----|      |   |-----|-----|-----| 
* 
* ** WARNING : NShort and NLong should be odd number 
* ** WARNING : Unit => inch !! 
*           
 do i=1,nTruck 
   if(direct(i).EQ.1) then 
  do j=1,nShort 
    do k=1,nLong 
   yHS20(i,1,j,k) = yLoad(i) + 36. 
 +     -10./nLong*(k-(nLong/2+1)) 
   yHS20(i,2,j,k) = yLoad(i) - 36. 
 +     -10./nLong*(k-(nLong/2+1)) 
   yHS20(i,3,j,k) = yLoad(i) + 36. 
 +     -20./nLong*(k-(nLong/2+1)) 
   yHS20(i,4,j,k) = yLoad(i) - 36. 
 +     -20./nLong*(k-(nLong/2+1)) 
   yHS20(i,5,j,k) = yHS20(i,3,j,k) 
   yHS20(i,6,j,k) = yHS20(i,4,j,k) 
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   xHS20(i,1,j,k) = xLoad(i)-yHS20(i,1,j,k)*tan(skew)    
 +     - 4./nShort*(j-(nShort-nShort/2))  
   xHS20(i,2,j,k) = xLoad(i)-yHS20(i,2,j,k)*tan(skew)   
 +     - 4./nShort*(j-(nShort-nShort/2))  
   xHS20(i,3,j,k) = xLoad(i)-yHS20(i,3,j,k)*tan(skew)-168.   
 +     - 8./nShort*(j-(nShort-nShort/2))  
   xHS20(i,4,j,k) = xLoad(i)-yHS20(i,4,j,k)*tan(skew)-168.  
 +     - 8./nShort*(j-(nShort-nShort/2))  
   xHS20(i,5,j,k) = xLoad(i)-yHS20(i,5,j,k)*tan(skew)-168. 
    
 +    - trailer(i)- 8./nShort*(j-(nShort-nShort/2)) 
     
    enddo 
  enddo 
   else 
  do j=1,nShort 
    do k=1,nLong 
   yHS20(i,1,j,k) = yLoad(i) - 36. 
 +     +10./nLong*(k-(nLong/2+1)) 
   yHS20(i,2,j,k) = yLoad(i) + 36. 
 +     +10./nLong*(k-(nLong/2+1)) 
   yHS20(i,3,j,k) = yLoad(i) - 36.     
 +     +20./nLong*(k-(nLong/2+1)) 
   yHS20(i,4,j,k) = yLoad(i) + 36. 
 +     +20./nLong*(k-(nLong/2+1)) 
   yHS20(i,5,j,k) = yHS20(i,3,j,k) 
   yHS20(i,6,j,k) = yHS20(i,4,j,k) 
 
   xHS20(i,1,j,k) = xLoad(i)-yHS20(i,1,j,k)*tan(skew)   
 +     + 4./nShort*(j-(nShort-nShort/2))  
   xHS20(i,2,j,k) = xLoad(i)-yHS20(i,2,j,k)*tan(skew)   
 +     + 4./nShort*(j-(nShort-nShort/2))  
   xHS20(i,3,j,k) = xLoad(i)-yHS20(i,3,j,k)*tan(skew)+168.   
 +     + 8./nShort*(j-(nShort-nShort/2))  
   xHS20(i,4,j,k) = xLoad(i)-yHS20(i,4,j,k)*tan(skew)+168.  
 +     + 8./nShort*(j-(nShort-nShort/2))  
   xHS20(i,5,j,k) = xLoad(i)-yHS20(i,5,j,k)*tan(skew)+168. 
 +    + trailer(i)+ 8./nShort*(j-(nShort-nShort/2)) 
   xHS20(i,6,j,k) = xLoad(i)-yHS20(i,6,j,k)*tan(skew)+168.  
 +    + trailer(i)+ 8./nShort*(j-(nShort-nShort/2)) 
     
    enddo 
  enddo 
   endif 
 enddo 
 
  
 return 
 end 
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* ************************************************************************ 
*    SUBROUTINE meshGen 
*  In 
*       nTotSpan: "total" number of element in long direction 
*   nTotWid: "total" number of element in transverse direction  
*  Out 
*   nElement(nTotWid,nTotspan): array of element number  
*       nNode(element#,nodeNumber): 4 node numbers correspond to element number  
* 
*  NOTE: In mesh design, the node number and element number scheme 
*  should be same as followings. 
* 
* - node number  
*   29 __30__31___32__33___34___35 
*     |      |       |  | 
*   22|  23  24|  25  26|  27  28| 
*     |      |       |         | 
*   15|__16__17|__18__19|__20__21| 
*     |      |        |        | 
*           8|   9  10|  11  12|  13  14| 
*     |      |        | | 
*    1|___2___3|___4___5|___6___7| 
* 
* 
* - element number  
*     ____________________ 
*    |   |     | 
*    |   3   |    4   | 
*    |________|_______ |__ 
*    |   |     | 
*    |   1   |    2    | 
*    |________|________|__ 
* 
* ************************************************************************* 
* 
 SUBROUTINE meshGen(nTotSpan,nTotWid,nElement,nNode) 
* 
* VARIABLE DECLARATION (IN)  
* 
 INTEGER nTotSpan,nTotWid 
* 
* VARIABLE DECLARATION (OUT)  
* 
 INTEGER nElement(nTotWid,nTotSpan),nNode(nTotWid*nTotSpan,9)  
* 
* Generate element number array 
* 
 do i=1,nTotWid 
        do j=1,nTotSpan 
  nElement(i,j) = j + (i-1)*nTotSpan 
    enddo 
 enddo 
* 
* Generate node number array 
* 
* Definition of node number array 
* 
*    4 ___ 7___ 3 
*     |      | 
*    8|    9   |6    <= nElement 
*     |________| 
*    1 5    2 
* 
 iVary=2*nTotSpan+1 
 
 do i=1,nTotWid 
    do j=1,nTotSpan 
       nNode(nElement(i,j),1)= iVary*2*(i-1) + (2*j-1) 
       nNode(nElement(i,j),2)= iVary*2*(i-1) + (2*j+1) 
       nNode(nElement(i,j),3)= iVary*2*(i-1) + (iVary*2+2*j+1) 
       nNode(nElement(i,j),4)= iVary*2*(i-1) + (iVary*2+2*j-1) 
       nNode(nElement(i,j),5)= iVary*2*(i-1) + 2*j 
       nNode(nElement(i,j),6)= iVary*2*(i-1) + (iVary+2*j+1) 
       nNode(nElement(i,j),7)= iVary*2*(i-1) + (iVary*2+2*j) 
       nNode(nElement(i,j),8)= iVary*2*(i-1) + (iVary+2*j-1) 
       nNode(nElement(i,j),9)= iVary*2*(i-1) + (iVary+2*j) 
    enddo 
 enddo 
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 return 
 end 
* ************************************************************************ 
*    SUBROUTINE loadElem 
*  In 
*   maxMesh: Maximum number of mesh matrix size(??) 
*   maxTruck: maximum number of trucks 
*   maxSpan: Maximum number of span 
*   nSpan: Number of span 
*   nTruck: Number of Truck 
*   span(nSpan): Span length in ith span 
*   nELSpan(nSpan): Number of element in ith span 
*   sELSpan(nSpan): Size of element in ith span  
*   widGir: Transverse width (girder part only) 
*   widOH: Overhanging width 
*   nWidGir: Number of element in girder transverse direction  
*   nWidOH: Number of element in overhang  
*   sWidGir: size of element in girder transverse direction  
*   sWidOH: size of element in overhang  
*   xHS20(nTruck,6,nShort,nLong): x-co of HS20 (each truck, each wheel) 
*   yHS20(nTruck,6,nShort,nLong): y-co of HS20 (each truck, each wheel) 
*   nElement(nTotWid,nTotspan): array of element number  
*         nNode(element#,nodeNumber): 4 node numbers correspond to element number  
*  Out 
*   nXPos(nTruck,6,nShort,nLong): (N-1)th element in longitudinal(x) direction 
*   nYPos(nTruck,6,nShort,nLong): (N-1)th element in transverse(y) direction  
*   localX(nTruck,6,nShort,nLong): Local position in element natural (xi) direction  
*         localY(nTruck,6,nShort,nLong): Local position in element transverse(eta) 
direction  
*   sElX(nTruck,6,nShort,nLong): Element length in the current span 
*   sElY(nTruck,6,nShort,nLong): Element width in the current span 
*   iElement(nTruck,6,nShort,nLong): Loaded element number  
*   iNode(nTruck,6,nShort,nLong,9): node number of the loaded element 
* ************************************************************************* 
 
 SUBROUTINE loadElem(nSpan,nTruck,nWheel,span,nShort,nLong,widGir,widOH, 
     +                    sELSpan,sWidOH,sWidGir,nElSpan,nWidOH,nWidGir,nTotSpan, 
     +                    nTotWid,xHS20,yHS20,nElement,nNode, 
     +      nXPos,nYPos,localX,localY,sElX,sElY,iElement,iNode)  
* 
* VARIABLE DECLARATION (IN)  
* 
 REAL span(nSpan),widOH,widGir 
 REAL sELSpan(nSpan),sWidOH,sWidGir 
 INTEGER nTruck,nSpan,nElSpan(nSpan),nWidOH,nWidGir 
 INTEGER nTotWid,nTotSpan 
 REAL xHS20(nTruck,nWheel,nShort,nLong) 
 REAL yHS20(nTruck,nWheel,nShort,nLong)   
 INTEGER nElement(nTotWid,nTotSpan),nNode(nTotWid*nTotSpan,9)  
* 
* VARIABLE DECLARATION (OUT)  
* 
 INTEGER nXPos(nTruck,nWheel,nShort,nLong) 
 INTEGER nYPos(nTruck,nWheel,nShort,nLong) 
 REAL localX(nTruck,nWheel,nShort,nLong) 
 REAL localY(nTruck,nWheel,nShort,nLong) 
 REAL sElX(nTruck,nWheel,nShort,nLong) 
 REAL sElY(nTruck,nWheel,nShort,nLong) 
 INTEGER iElement(nTruck,nWheel,nShort,nLong) 
 INTEGER iNode(nTruck,nWheel,nShort,nLong,9) 
* 
* Local Variables 
* 
 INTEGER nTotX 
       REAL preSpan, totSpan 
* 
* Calc. total span length 
* 
      totSpan=0 
      do i=1,nSpan 
   totSpan = totSpan + span(i) 
      enddo 
* 
* Find (N-1)th element & local position in longitudinal(x) direction 
* Find the each element length in the current span 
* 
 do i=1,nTruck 
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   do j=1,nWheel 
     do l=1,nShort 
    do m=1,nLong     
   preSpan = 0. 
   nTotX = 0 
   k=1 
10   continue 
   if(xHS20(i,j,l,m)/(span(k)+preSpan).GT.1.0) then 
       nTotX = nTotX + nELSpan(k) 
       preSpan = preSpan + span(k) 
       k=k+1 
       if(k.GT.nSpan) then 
    write(*,*) '**Warning in loadElem' 
       endif 
       goto 10 
   else 
       CALL quot(xHS20(i,j,l,m)-preSpan, sELSpan(k),  
 +     nXPos(i,j,l,m),localX(i,j,l,m)) 
       nXPos(i,j,l,m) = nXPos(i,j,l,m) + nTotx 
       localX(i,j,l,m) = localX(i,j,l,m) - sELSpan(k)/2.   
       sElX(i,j,l,m) = sELSpan(k) 
   endif 
 
                if(xHS20(i,j,l,m).GT.totSpan.OR. 
 +                xHS20(i,j,l,m).LT.0.0) then 
                    write(*,*) '**WARNING: X Loading is out of structure.' 
                    pause 
                endif 
            enddo 
  enddo 
   enddo 
 enddo 
 
* 
* Find (N-1)th element & local position in transverse(y) direction 
* Find the each element width in the current span 
* 
 do i=1,nTruck 
   do j=1,nWheel 
     do l=1,nShort 
   do m=1,nLong         
      if(yHS20(i,j,l,m).LE.widOH) then 
   CALL quot(yHS20(i,j,l,m),sWidOH,nYPos(i,j,l,m),localY(i,j,l,m)) 
   localY(i,j,l,m) = localY(i,j,l,m) - sWidOH/2. 
   sElY(i,j,l,m) = sWidOH 
      else if (yHS20(i,j,l,m).GT.widOH.AND. 
 +     yHS20(i,j,l,m).LE.widOH+widGir) then 
   CALL quot(yHS20(i,j,l,m)-widOH,sWidGir,nYPos(i,j,l,m),  
 +      localY(i,j,l,m)) 
   nYPos(i,j,l,m) = nYPos(i,j,l,m) + nWidOH  
   localY(i,j,l,m) = localY(i,j,l,m) - sWidGir/2. 
   sElY(i,j,l,m) = sWidGir 
      else 
   CALL quot(yHS20(i,j,l,m)-(widOH+widGir), sWidOH,  
 +      nYPos(i,j,l,m), localY(i,j,l,m)) 
   nYPos(i,j,l,m) = nYPos(i,j,l,m) + (nWidOH+nWidGir)  
   localY(i,j,l,m) = localY(i,j,l,m) - sWidOH/2. 
   sElY(i,j,l,m) = sWidOH 
      endif 
 
             if(yHS20(i,j,l,m).GT.2*widOH+widGir.OR. 
 +                yHS20(i,j,l,m).LT.0.0) then 
                write(*,*) '**WARNING: Y Loading is out of structure.' 
                pause 
             endif 
    enddo 
      enddo 
   enddo 
 enddo 
  
 
* 
* Identify loading element 
* 
 do i=1,nTruck 
   do j=1,nWheel 
     do l=1,nShort 
    do m=1,nLong         
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  iElement(i,j,l,m)=nElement(nYPos(i,j,l,m)+1,nXPos(i,j,l,m)+1) 
    enddo 
  enddo 
    enddo 
 enddo   
* 
* Identify the node numbers of loading element 
* 
 
 do i=1,nTruck 
  do j=1,nWheel 
   do l=1,nShort 
    do m=1,nLong         
     do k=1,9 
     iNode(i,j,l,m,k) = nNode(iElement(i,j,l,m),k)  
  enddo 
    enddo 
   enddo 
  enddo 
 enddo   
 
 return  
 end 
 
 
 
 
 
 
* ************************************************************************ 
*    SUBROUTINE shapeFun 
*  In 
*   maxTruck: maximum number of trucks 
*   nTruck: Number of Truck 
*   localX(nTruck,6,nShort,nLong): Local position in element natural (xi) direction  
*        localY(nTruck,6,nShort,nLong): Local position in element transverse(eta) 
direction  
*   sElX(nTruck,6,nShort,nLong): Element length in the current span 
*   sElY(nTruck,6,nShort,nLong): Element width in the current span 
*  Out 
*   N(nTruck,6,nShort,nLong,dof) 
* ************************************************************************* 
 SUBROUTINE shapeFun(nTruck,nWheel,nShort,nLong, 
 +     localX,localY,sElX,sElY,N) 
* 
* VARIABLE DECLARATION (IN)  
* 
 INTEGER nTruck 
 REAL localX(nTruck,nWheel,nShort,nLong) 
 REAL localY(nTruck,nWheel,nShort,nLong) 
 REAL sElX(nTruck,nWheel,nShort,nLong) 
 REAL sElY(nTruck,nWheel,nShort,nLong) 
* 
* VARIABLE DECLARATION (OUT)  
* 
 REAL N (nTruck,nWheel,nShort,nLong,9) 
* 
* Local Variables 
* 
 REAL xi,eta 
* 
* Shape Function of the 8-node Serendipity element 
*  N(i,j,k) 
*  i = number of truck 
*  j = HS20 wheel number 
*  k = dof number 
* 
 
 do i=1,nTruck 
   do j=1,nWheel  
     do l=1,nShort 
       do m=1,nLong 
         xi = localX(i,j,l,m)/(sElX(i,j,l,m)/2.) 
          eta = localY(i,j,l,m)/(sElY(i,j,l,m)/2.) 
              N(i,j,l,m,1) = -0.25*(1.-xi)*(1.-eta)*(xi+eta+1) 
         N(i,j,l,m,2) = 0.25*(1.+xi)*(1.-eta)*(xi-eta-1) 
         N(i,j,l,m,3) = 0.25*(1.+xi)*(1.+eta)*(xi+eta-1) 
         N(i,j,l,m,4) = 0.25*(1.-xi)*(1.+eta)*(-xi+eta-1) 
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         N(i,j,l,m,5) = 0.5*(1.-eta)*(1.-xi**2) 
         N(i,j,l,m,6) = 0.5*(1.+xi)*(1.-eta**2) 
         N(i,j,l,m,7) = 0.5*(1.+eta)*(1.-xi**2) 
         N(i,j,l,m,8) = 0.5*(1.-xi)*(1.-eta**2) 
       enddo 
     enddo 
   enddo 
 enddo 
 
 return  
 end 
 
 
* ************************************************************************ 
*    SUBROUTINE enfCalc 
*  In 
*   maxTruck: maximum number of trucks 
*   nTruck: Number of Truck 
*   N(nTruck,nWheel,nShort,nLong,dof) 
*  Out 
*   enf(nTruck,nWheel,nShort,nLong,dof) 
* ************************************************************************* 
* 
 SUBROUTINE enfCalc(nTruck,nWheel,nShort,nLong,N,enf) 
* 
* VARIABLE DECLARATION (IN)  
* 
 INTEGER nTruck 
 REAL N(nTruck,nWheel,nShort,nLong,9) 
* 
* VARIABLE DECLARATION (OUT)  
* 
 REAL enf(nTruck,nWheel,nShort,nLong,9) 
* 
 do k=1,nTruck 
    do i=1,nWheel 
   do l=1,nShort 
    do m=1,nLong 
       do j=1,9 
    if(i.LE.2) then  
   enf(k,i,l,m,j) =  N(k,i,l,m,j)*4./(nShort*nLong) 
    else 
   enf(k,i,l,m,j) = N(k,i,l,m,j)*16./(nShort*nLong) 
    endif 
       enddo 
    enddo 
   enddo 
  enddo 
 enddo 
 
 return 
 end 
 
 
 
 
* ************************************************************************ 
*    SUBROUTINE OUTPUT 
*  In 
*   maxTruck: maximum number of trucks 
*   maxSpan: Maximum number of span 
*   nSpan: Number of span 
*   span(nSpan): Span length in ith span 
*   nELSpan(nSpan): Number of element in ith span 
*   sELSpan(nSpan): Size of element in ith span  
*   nGirder: Number of girders 
*   spaceG: Girder spacing 
*   nElG: Number of elements between tow adjacent girder (even number) 
*   widGir: Transverse width (girder part only) 
*   widOH: Overhanging width 
*   nWidGir: Number of element in girder transverse direction  
*   nWidOH: Number of element in overhang  
*   sWidGir: size of element in girder transverse direction  
*   sWidOH: size of element in overhang  
* 
*   Ec: Concrete modulus  
*   Es: Steel modulus 
*   PoissonC: Poisson's ratio concrete 
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*   PoisoonS: Poisson's ratio steel 
* 
*   area: Sectional area of girder  
*   strongI: Moment of inertia about strong axis 
*   weakI: Moment of inertia about weak axis 
*   TJ: Tortional rigidity 
*   h: Girder height 
*   thick: slab thickness 
*   thickOHs: slab thickness of starting OH 
*   thickOHe: slab thickness of edge 
* 
*   nTruck: Number of Truck 
*   direct(nTruck): Direction of the HS20 truck 
*   xLoad(nTruck): x-co of the representative loading point for HS20 truck  
*   yLoad(nTruck): y-co of the representative loading point for HS20 truck  
*         trailer(nTruck): Variable length of trailer 
*   skew: skew angle (radian)  
* ************************************************************************* 
* 
 SUBROUTINE OUTPUT(nSpan,span,widGir,widOH,nElSpan,nWidGir,nWidOH, 
     +                sELSpan,sWidGir,sWidOH, 
     +   nGirder,spaceG,nElG,Ec,Es,PoissonC,PoissonS, 
     +                area,strongI,weakI,TJ,h,thick,thickOHs,thickOHe, 
     +   paraH, paraWid, Nmat,Npara,skew,nUnit) 
* 
* VARIABLE DECLARATION (IN)  
* 
 
 REAL span(nSpan),widOH,widGir 
 REAL sELSpan(nSpan),spaceG,sWidOH,sWidGir,skew 
 REAL Es,Ec,PoissonS,PoissonC 
 REAL area,strongI,weakI,TJ,h,thick,thickOHs,thickOHe 
    REAL paraH,paraWid 
 INTEGER nSpan,nElSpan(nSpan),nGirder,nElG,nWidOH,nWidGir 
 INTEGER nUnit 
 INTEGER Nmat, Npara 
* 
* VARIABLE DECLARATION (Local)  
* 
 INTEGER ntmp1(nSpan+1),ntmp2(nSpan+1) 
 INTEGER ntmp3(nSpan+1),ntmp4(nSpan+1) 
 INTEGER kGtmp(nSpan+1,nGirder) 
 INTEGER kStmp(nSpan+1,nGirder), kSEl(nSpan+1,nGirder) 
 INTEGER kPAtmp(nSpan+1,nGirder) 
 INTEGER nSpanTmp(nSpan+1) 
 REAL xCor1(nSpan+1),xCor2(nSpan+1),xCor3(nSpan+1),xCor4(nSpan+1) 
 REAL yCor1,yCor2,yCor3,yCor4 
 REAL xGCor(nSpan+1,nGirder),yGCor(nSpan+1,nGirder) 
 REAL xSCor(nSpan+1,nGirder),ySCor(nSpan+1,nGirder) 
 REAL xPACor(nSpan+1,nGirder),yPACor(nSpan+1,nGirder) 
* 
* ------------------------------------------------------------------ 
*       Heading 
* ------------------------------------------------------------------ 
* 
 write(6,10) '*HEADING' 
 write(6,10) 'Automatic ABAQUS input generator'  
* 
* ------------------------------------------------------------------- 
*      MESH GENERATION (Bridge Slab) 
* ------------------------------------------------------------------- 
* 
* *NODE part   
* 
 nTotSpan=0 
 do i=1,nSpan 
    nTotSpan = nTotSpan + nElSpan(i) 
 enddo   
* 
* Node number  
* 
 iVary = nTotSpan*2 + 1 
 nTmp=1 
 do i=1,nSpan 
    nTmp = nTmp + nElSpan(i)*2 
    ntmp1(i) = nTmp - nElSpan(i)*2 
    ntmp2(i) = ntmp1(i) + iVary*2*nWidOH  
    ntmp3(i) = ntmp2(i) + iVary*2*nWidGir 
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    ntmp4(i) = ntmp3(i) + iVary*2*nWidOH 
 enddo 
 ntmp1(nSpan+1) = nTotSpan*2+1 
 ntmp2(nSpan+1) = ntmp1(nSpan+1) + iVary*2*nWidOH  
 ntmp3(nSpan+1) = ntmp2(nSpan+1) + iVary*2*nWidGir 
 ntmp4(nSpan+1) = ntmp3(nSpan+1) + iVary*2*nWidOH 
* 
* X and Y coordinate 
* 
 yCor1 = 0.  
 yCor2 = widOH 
 yCor3 = widOH + widGir 
 yCor4 = 2*widOH + widGir 
 
        totSpan1=0. 
 totSpan2=0. 
 totSpan3=0. 
 totSpan4=0. 
 do i=1,nSpan 
    totSpan1 = totSpan1 + span(i)  
    totSpan2 = totSpan2 + span(i)  
    totSpan3 = totSpan3 + span(i)  
    totSpan4 = totSpan4 + span(i)  
    xCor1(i) = totSpan1 - span(i) + yCor1*tan(skew) 
    xCor2(i) = totSpan2 - span(i) + yCor2*tan(skew) 
    xCor3(i) = totSpan3 - span(i) + yCor3*tan(skew) 
    xCor4(i) = totSpan4 - span(i) + yCor4*tan(skew) 
 enddo 
 xCor1(nSpan+1) = totSpan1 + yCor1*tan(skew) 
 xCor2(nSpan+1) = totSpan2 + yCor2*tan(skew) 
 xCor3(nSpan+1) = totSpan3 + yCor3*tan(skew) 
 xCor4(nSpan+1) = totSpan4 + yCor4*tan(skew) 
 
 write(6,10) '** ' 
 write(6,10) '** ******************** Bridge Slab Nodal Coordinate' 
 write(6,10) '** ' 
 write(6,10) '*NODE' 
 do i=1,nSpan+1 
    write(6,20) ntmp1(i),xCor1(i),yCor1 
    write(6,20) ntmp2(i),xCor2(i),yCor2 
    write(6,20) ntmp3(i),xCor3(i),yCor3 
    write(6,20) ntmp4(i),xCor4(i),yCor4 
 enddo 
* 
* *NGEN part 
* 
 write(6,30) '*NGEN', ' NSET=BOTTOM' 
 do i=1,nSpan 
    write(6,40) ntmp1(i),ntmp1(i+1) 
 enddo 
 
 write(6,30) '*NGEN', ' NSET=GIRDERS' 
 do i=1,nSpan 
    write(6,40) ntmp2(i),ntmp2(i+1) 
 enddo 
 write(6,60) '*NSET', ' NSET=GIRDERS1', 'GENERATE' 
 do i=1,nSpan 
    write(6,40) ntmp2(i),ntmp2(i+1) 
 enddo 
 
 write(6,30) '*NGEN', ' NSET=GIRDERL' 
 do i=1,nSpan 
    write(6,40) ntmp3(i),ntmp3(i+1) 
 enddo 
 write(6,60) '*NSET', ' NSET=GIRDERL1', 'GENERATE' 
 do i=1,nSpan 
    write(6,40) ntmp3(i),ntmp3(i+1) 
 enddo 
 
 write(6,30) '*NGEN', ' NSET=TOP' 
 do i=1,nSpan 
    write(6,40) ntmp4(i),ntmp4(i+1) 
 enddo 
* 
* *NFILL part 
* 
 write(6,10) '*NFILL'  
 write(6,50) 'BOTTOM','GIRDERS',nWidOH*2, iVary 
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 write(6,50) 'GIRDERS','GIRDERL',nWidGir*2, iVary 
 write(6,50) 'GIRDERL','TOP',nWidOH*2, iVary 
* 
* *ELEMENT part 
* 
 write(6,60) '*ELEMENT', 'TYPE=S8R', 'ELSET=DECK'  
 write(6,71) '1','1','3',iVary*2+3,iVary*2+1,'2', 
      +  iVary+3,iVary*2+2,iVary+1  
 
71 format(a,',',2x,a,',',2x,a,',',i5,',',i5,',',2x,a,',', 
      +       i5,',',i5,',',i5) 
 
* 
* *ELGEN part 
* 
 write(6,30) '*ELGEN', 'ELSET=DECK'  
 write(6,80) '1',nTotSpan,'2','1',2*nWidOH+nWidGir,iVary*2,nTotSpan      
* 
* ------------------------------------------------------------------- 
*      MESH GENERATION (Girders) 
* ------------------------------------------------------------------- 
* 
* Node number  
* 
 nEndN1 = iVary * ( (nWidOH*2+nWidGir)*2+1 ) 
 nTmpEl = 0 
 do i=1,nSpan 
    nTmpEl=nTmpEl+nElSpan(i)*2 
    do j=1,nGirder 
       kGtmp(i,j) = (nEndN1+1)+ nTmpEl-nElSpan(i)*2 + (j-1)*iVary  
    enddo 
 enddo 
 do j=1,nGirder 
    kGtmp(nSpan+1,j) = (nEndN1+1)+ nTmpEl + (j-1)*iVary  
 enddo 
* 
* X and Y coordinate 
* 
      totSpan=0. 
 do i=1,nSpan 
    totSpan = totSpan + span(i) 
    do j=1,nGirder 
       if(j.EQ.1) then 
          yGCor(i,j) = widOH 
       else if (j.EQ.nGirder) then 
          yGCor(i,j) = widOH + widGir 
       else 
          yGCor(i,j) = widOH + spaceG*(j-1) 
       endif 
       xGCor(i,j) = totSpan - span(i) + yGCor(i,j)*tan(skew) 
    enddo 
 enddo 
 do j=1,nGirder 
    if(j.EQ.1) then 
       yGCor(nSpan+1,j) = widOH 
    else if (j.EQ.nGirder) then 
       yGCor(nSpan+1,j) = widOH + widGir 
    else 
       yGCor(nSpan+1,j) = widOH + spaceG*(j-1) 
    endif 
    xGCor(nSpan+1,j) = totSpan + yGCor(nSpan+1,j)*tan(skew) 
 enddo 
 
 write(6,10) '** ' 
 write(6,10) '** ************************* Girder Nodal Coordinate' 
 write(6,10) '** ' 
 write(6,10) '*NODE' 
 do i=1,nSpan+1 
    do j=1,nGirder 
       write(6,25) kGtmp(i,j),xGCor(i,j),yGCor(i,j),-(thick/2+h/2.) 
    enddo 
 enddo 
* 
* *NGEN part 
* 
 do j=1,nGirder 
    write(6,35) '*NGEN', ' NSET=GIRDER',j 
    do i=1,nSpan 
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       write(6,40) kGTmp(i,j),kGTmp(i+1,j) 
    enddo 
 enddo 
* 
* *ELEMENT part 
* 
 nEndEl1 = nTotSpan*(2*nWidOH+nWidGir) 
 write(6,60) '*ELEMENT', 'TYPE=B32', 'ELSET=GIRDER'  
 write(6,75) nEndEl1+1,nEndN1+1,nEndN1+2,nEndN1+3 
 
* 
* *ELGEN part 
* 
 write(6,30) '*ELGEN', 'ELSET=GIRDER'  
 write(6,85) nEndEl1+1,nTotSpan,'2','1',nGirder, 
      +            iVary,nTotSpan 
 
 
* 
* ------------------------------------------------------------------- 
*      MESH GENERATION (Support) 
* ------------------------------------------------------------------- 
* 
* Node number & coordinate  
* 
 nEndN2 = nEndN1 + iVary*nGirder 
 
* 
* Node number  
* 
 do i=1,nSpan+1 
    do j=1,nGirder 
       kStmp(i,j) = (nEndN2+j) + nGirder*(i-1) 
    enddo 
 enddo 
* 
* X and Y coordinate 
* 
      totSpan=0. 
 do i=1,nSpan 
    totSpan = totSpan + span(i) 
    do j=1,nGirder 
       if(j.EQ.1) then 
          ySCor(i,j) = widOH 
       else if (j.EQ.nGirder) then 
          ySCor(i,j) = widOH + widGir 
       else 
          ySCor(i,j) = widOH + spaceG*(j-1) 
       endif 
       xSCor(i,j) = totSpan - span(i) + ySCor(i,j)*tan(skew) 
    enddo 
 enddo 
 do j=1,nGirder 
    if(j.EQ.1) then 
       ySCor(nSpan+1,j) = widOH 
    else if (j.EQ.nGirder) then 
       ySCor(nSpan+1,j) = widOH + widGir 
    else 
       ySCor(nSpan+1,j) = widOH + spaceG*(j-1) 
    endif 
    xSCor(nSpan+1,j) = totSpan + ySCor(nSpan+1,j)*tan(skew) 
 enddo 
 write(6,10) '** ' 
 write(6,10) '** ************************ Support Nodal Coordinate' 
 write(6,10) '** ' 
 write(6,10) '*NODE' 
 do i=1,nSpan+1 
    do j=1,nGirder 
       write(6,25) kStmp(i,j),xSCor(i,j),ySCor(i,j),-(thick/2+h+2.) 
    enddo 
 enddo 
* 
* *ELEMENT part 
* 
 nEndEl2 = nEndEl1 + nTotSpan*nGirder 
 do i=1,nSpan 
    do j=1,nGirder 
       kSEl(i,j)= (nEndEl2+j) + nGirder*(i-1) 



 

 168

    enddo 
 enddo 
 do j=1,nGirder 
    kSEl(nSpan+1,j)= nEndEl2 + nGirder*nSpan +j 
 enddo 
 write(6,60) '*ELEMENT', 'TYPE=SPRING1', 'ELSET=SUPPORT'  
 do i=1,nSpan+1 
    do j=1,nGirder 
       write(6,77) kSEl(i,j), kStmp(i,j)  
    enddo 
 enddo 
77 format(i7,',',i7) 
* 
* ------------------------------------------------------------------- 
*      MESH GENERATION (Paraphet, OPTIONAL) 
* ------------------------------------------------------------------- 
* 
* 
 if(Npara.EQ.1) then  
* 
* Node number  
* 
 nEndN3 = nEndN2 + nGirder*(nSpan+1) 
 nTmpEl = 0 
 do i=1,nSpan 
    nTmpEl=nTmpEl+nElSpan(i)*2 
    do j=1,2 
       kPAtmp(i,j) = (nEndN3+1)+ nTmpEl-nElSpan(i)*2 + (j-1)*iVary  
    enddo 
 enddo 
 do j=1,2 
    kPAtmp(nSpan+1,j) = (nEndN3+1)+ nTmpEl + (j-1)*iVary  
 enddo 
* 
* X and Y coordinate 
* 
      totSpan=0. 
 do i=1,nSpan 
    totSpan = totSpan + span(i) 
    do j=1,2 
       if(j.EQ.1) then 
          yPACor(i,j) = 0. 
       else 
          yPACor(i,j) = 2*widOH + widGir 
       endif 
       xPACor(i,j) = totSpan - span(i) + yPACor(i,j)*tan(skew) 
    enddo 
 enddo 
 do j=1,2 
    if(j.EQ.1) then 
       yPACor(nSpan+1,j) = 0. 
    else 
       yPACor(nSpan+1,j) = 2.*widOH + widGir 
    endif 
    xPACor(nSpan+1,j) = totSpan + yPACor(nSpan+1,j)*tan(skew) 
 enddo 
 
 write(6,10) '** ' 
 write(6,10) '** *********************** Paraphet Nodal Coordinate' 
 write(6,10) '** ' 
 write(6,10) '*NODE' 
 do i=1,nSpan+1 
    do j=1,2 
       write(6,25) kPAtmp(i,j),xPACor(i,j),yPACor(i,j), 
      +               (thick/2+paraH/2.) 
    enddo 
 enddo 
* 
* *NGEN part 
* 
 do j=1,2 
    write(6,35) '*NGEN', ' NSET=PARAPHET',j 
    do i=1,nSpan 
       write(6,40) kPATmp(i,j),kPATmp(i+1,j) 
    enddo 
 enddo 
* 
* *ELEMENT part 
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* 
 nEndEl3 = nEndEl2 + nGirder*(nSpan+1) 
 write(6,60) '*ELEMENT', 'TYPE=B32', 'ELSET=PARAPHET'  
 write(6,75) nEndEl3+1,nEndN3+1,nEndN3+2,nEndN3+3 
* 
* *ELGEN part 
* 
 write(6,30) '*ELGEN', 'ELSET=PARAPHET'  
 write(6,88) nEndEl3+1,nTotSpan,'2','1','2', 
      +            iVary,nTotSpan 
88 format(i6,',',i6,',',1x,a,',',1x,a,',',a,',',1x,i6,',',i6)      
* 
 endif 
* 
 
* 
* ------------------------------------------------------------------- 
*         MATERIAL & SECTION PROPERTIES 
* ------------------------------------------------------------------- 
* 
* Material 
* 
 write(6,10) '** ' 
 write(6,10) '** ***************************** Material Property' 
 write(6,10) '** Concrete' 
 write(6,10) '** ' 
 write(6,30) '*MATERIAL', 'NAME=CONC' 
 write(6,30) '*ELASTIC', 'TYPE=ISO' 
 write(6,31) Ec, PoissonC 
 
 write(6,10) '** ' 
 write(6,10) '** Steel' 
 write(6,10) '** ' 
 write(6,30) '*MATERIAL', 'NAME=STEEL' 
 write(6,30) '*ELASTIC', 'TYPE=ISO' 
 write(6,31) Es, PoissonS 
31 format(f9.2,',',2x, f5.2) 
* 
* Shell section 
* 
 write(6,10) '** ' 
 write(6,10) '** **************************** Sectional Property' 
 write(6,10) '** ' 
 write(6,10) '** Shell' 
 write(6,10) '** ' 
* Variable thickness definition in OH 
 write(6,10) '*NODAL THICKNESS ' 
 write(6,79) 'BOTTOM, ', thickOHe 
 write(6,79) 'GIRDERS1, ', thickOHs 
 write(6,30) '*NODAL THICKNESS ', 'GENERATE' 
 write(6,81) 'BOTTOM, ', 'GIRDERS1, ', 2*nWidOH, iVary 
 
 write(6,10) '*NODAL THICKNESS ' 
 write(6,79) 'GIRDERS, ', thick 
 write(6,79) 'GIRDERL, ', thick 
 write(6,30) '*NODAL THICKNESS ', 'GENERATE' 
 write(6,81) 'GIRDERS, ', 'GIRDERL, ', 2*nWidGir, iVary 
 
 write(6,10) '*NODAL THICKNESS ' 
 write(6,79) 'GIRDERL1, ', thickOHs 
 write(6,79) 'TOP, ', thickOHe 
 write(6,30) '*NODAL THICKNESS ', 'GENERATE' 
 write(6,81) 'GIRDERL1, ', 'TOP, ', 2*nWidOH, iVary 
 
 write(6,82) '*SHELL SECTION', 'NODAL THICKNESS ', 
      +             'ELSET=DECK', 'MATERIAL=CONC' 
79 format(a,1x,f6.3) 
81 format(a,1x,a,1x,i5,',',2x,i9) 
82 format(a,',',2x,a,',',2x,a,',',2x,a)  
* 
* Beam Section 
* 
 write(6,10) '**' 
 write(6,10) '** Girder' 
 write(6,10) '** ' 
 write(6,34) '*BEAM GENERAL SECTION','ELSET=GIRDER', 
      +   'SECTION=GENERAL' 
 write(6,30) 'DENSITY=0.', 'ZERO=0.' 
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 write(6,32) area, strongI, '0.0', weakI, TJ, '0.0', '0.0' 
 write(6,60) '0.', '1.', '0.' 
 write(6,33) Es, Es/(2*(1.+PoissonS)), '0.' 
* 
* Support section 
* 
 write(6,10) '** ' 
 write(6,10) '** Spring' 
 write(6,10) '** ' 
 write(6,30) '*SPRING', 'ELSET=SUPPORT' 
 write(6,10) '3,' 
 write(6,10) '200.,' 
* 
32 format(f7.2,',',f8.2,',',2x,a,',',2x,f8.2,',',f8.2,','2x, 
      +  a,',',2x,a) 
33 format(f15.2,',',f15.2,',',2x,a) 
34 format(a,',',2x,a,',',2x,a,',')  
36 format(f6.2,',',3x,a) 
* 
* Paraphet section (optional) 
* 
 if(Npara.EQ.1) then 
   write(6,10) '**' 
   write(6,10) '** Paraphet' 
   write(6,10) '** ' 
   write(6,34) '*BEAM SECTION','ELSET=PARAPHET', 
      +   'SECTION=RECT' 
   if (nMat.EQ.1) then 
      write(6,30) 'MATERIAL=CONC', 'POISSON=0.' 
   else 
      write(6,30) 'MATERIAL=STEEL', 'POISSON=0.' 
   endif 
   write(6,63) paraWid, paraH 
   write(6,60) '0.', '1.', '0.' 
 endif 
63    format(f10.2,',', 2x,f10.2) 
* 
* ------------------------------------------------------------------- 
*         MPC (Constraints) 
* ------------------------------------------------------------------- 
* 
* Support MPC 
 write(6,10) '** ' 
 write(6,10) '** ************************** Multi Point Constraint' 
 write(6,10) '** ' 
 write(6,10) '** Support MPC' 
 write(6,10) '** ' 
 write(6,10) '*MPC ' 
 do i=1,nSpan 
    nSpanTmp(1) = 0 
    nSpanTmp(i+1) = nElSpan(i) 
 enddo 
 nTmp = 0 
 do i=1,nSpan+1 
 ntmp = ntmp + nSpanTmp(i) 
    do j=1,nGirder 
       write(6,100)'BEAM,',(iVary*2*nWidOH+1)+iVary*2*nElG*(j-1) 
     +                        +nTmp*2, kStmp(i,j) 
       write(6,100)'BEAM,',kGtmp(i,j), kStmp(i,j)   
    enddo 
 enddo 
* Rest of MPC 
 write(6,10) '** ' 
 write(6,10) '** Rest of MPC' 
 write(6,10) '** ' 
 write(6,10) '*MPC ' 
 nTmp = 0 
 do i=1,nSpan 
 ntmp = ntmp + nElSpan(i) 
    do j=1,nGirder 
       do k=1,2*nElSpan(i)-1 
  write(6,100)'BEAM,',(nEndN1+1)+iVary*(j-1)+(ntmp-nElSpan(i))*2+k, 
     +  (iVary*2*nWidOH+1)+iVary*2*nElG*(j-1) + (ntmp-nElSpan(i))*2 + k 
    enddo 
    enddo 
 enddo 
* Paraphet MPC (optional) 
 if (nPara.EQ.1) then 
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    write(6,10) '** ' 
    write(6,10) '** Paraphet MPC' 
    write(6,10) '** ' 
    write(6,10) '*MPC ' 
    do j=1,2 
       do k=1,iVary 
          write(6,100)'BEAM,',nEndN3+iVary*(j-1)+k, 
      +                     (nEndN1-iVary)*(j-1)+k 
    enddo 
    enddo 
 endif 
* 
* ------------------------------------------------------------------- 
*       Boundary Conditions 
* ------------------------------------------------------------------- 
* 
 write(6,10) '** ' 
 write(6,10) '** ****************************** Boundary Condition' 
 write(6,10) '** ' 
* Bottom left (x,y,z restraint) 
 write(6,10) '** bottom left node' 
 write(6,10) '*BOUNDARY' 
 write(6,51) nEndN2+1, '1,,', '0.' 
 write(6,51) nEndN2+1, '2,,', '0.' 
 write(6,51) nEndN2+1, '3,,', '0.'  
* Rest of left end(x,z restraits) 
 write(6,10) '** rest of left node'  
 write(6,10) '*BOUNDARY' 
 do i=1,nGirder-1 
    write(6,51) (nEndN2+1)+i, '1,,', '0.' 
    write(6,51) (nEndN2+1)+i, '3,,', '0.'  
 enddo 
* Rest of bottom (y,z restraint) 
 write(6,10) '** rest of bottom supports' 
 write(6,10) '*BOUNDARY' 
 do i=1,nSpan 
    write(6,51) (nEndN2+1)+nGirder*i, '2,,', '0.' 
    write(6,51) (nEndN2+1)+nGirder*i, '3,,', '0.' 
 enddo 
 
* Rest of left 
 write(6,10) '** rest of supports'  
 write(6,10) '*BOUNDARY' 
 do i=1,nSpan 
    do j=1,nGirder-1 
       write(6,51) (nEndN2+2)+nGirder*i+(j-1), '3,,', '0.'  
    enddo 
 enddo 
* 
* ------------------------------------------------------------------- 
*       Step 
* ------------------------------------------------------------------- 
* 
 write(6,10) '** ' 
 write(6,10) '** ***************************************** Step' 
 write(6,10) '** ' 
 write(6,30) '*STEP', 'PERTURBATION' 
 write(6,10) '*STATIC ' 
 
* 
* ------------------------------------------------------------------- 
*       Loading 
* ------------------------------------------------------------------- 
* 
 write(6,10) '** ' 
 write(6,10) '** ************************************ Truck Load' 
 write(6,10) '** ' 
 write(6,10) '*CLOAD' 
* 
* format sentences 
* 
10 format(a) 
20 format(i6,',',F9.2,',',F8.2,',',3x,'0.0') 
25 format(i6,',',F9.2,',',F8.2,',',3x,F6.2) 
30 format(a,',',2x,a) 
35 format(a,',',2x,a,i1) 
40 format(i6,',',i6,',',2x,'1')  
50 format(a,',',2x,a,',',2x,i6,',',2x,i6) 
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51 format(i7,',',2x,a,3x,a)  
60 format(a,',',2x,a,',',2x,a)  
70 format(a,',',2x,a,',',2x,a,',',i5,',',i5,',',2x,a,',', 
 +       i5,',',i5,',',i5,',',i5) 
75 format(i7,',',i7,',',i7,',',i7) 
 
80 format(a,',',i6,',',1x,a,',',1x,a,',',i6,',',i6,',',i6) 
85 format(i6,',',i6,',',1x,a,',',1x,a,',',i6,',',i6,',',i6)      
100 format(a,2x,i7,',',2x,i7) 
 return 
      end 
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* ************************************************************************ 
*    SUBROUTINE assemble 
*  In 
*   maxTruck: maximum number of trucks 
*   nTruck: Number of Truck 
*       nTotSpan: "total" number of element in long direction 
*   nTotWid: "total" number of element in transverse direction  
*   enf(nTruck,6,nShort,nLong,dof) 
*   iNode(nTruck,6,nShort,nLong,#of nodes)  
*  Out 
*   file output to <filename>.aba 
* ************************************************************************* 
* 
 SUBROUTINE assNout(nTruck,nWheel,nShort,nLong, 
     +        nTotSpan,nTotWid,iNode,enf) 
* 
* VARIABLE DECLARATION (IN)  
* 
 INTEGER nTruck,nTotSpan,nTotWid 
 INTEGER iNode(nTruck,nWheel,nShort,nLong,9)  
 REAL enf(nTruck,nWheel,nShort,nLong,9) 
* 
* Local Variables 
* 
 REAL Genf((2*nTotSpan+1)*(2*nTotWid+1)) 
 INTEGER nCode((2*nTotSpan+1)*(2*nTotWid+1)) 
 INTEGER line 
 REAL temp 
* 
* Assemble enf in terms of nodal quantity  
* 
 
 do i=1, (2*nTotSpan+1)*(2*nTotWid+1) 
   line=0 
   temp = 0. 
   do j=1,nTruck 
      do k=1,nWheel 
  do ll=1,nShort 
     do mm=1,nLong 
        do l=1,8 
     if(i.EQ.iNode(j,k,ll,mm,l)) then 
        line = 1 
        temp = temp - enf(j,k,ll,mm,l) 
     endif 
        enddo 
      enddo 
  enddo 
      enddo 
   enddo 
   Genf(i) = temp 
   nCode(i) = line 
 enddo  
 
 do i=1,(2*nTotSpan+1)*(2*nTotWid+1) 
    if(nCode(i).EQ.1) then  
       write(6,157) i, 3, Genf(i) 
    endif 
 enddo 
 
157   format(i5, 2x, ',', i3,3x, ',', f20.4)  
 
 return 
 end 
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* ************************************************************************ 
*       Output Request 
* ************************************************************************ 
 
 
 SUBROUTINE OUTPUT2() 
 
 write(6,10) '** ' 
 write(6,10) '** ********************************** Output request' 
 write(6,10) '** ' 
 write(6,30) '*NODE PRINT', 'FREQ=1' 
 write(6,10) 'U,' 
 write(6,30) '*NODE FILE', 'FREQ=1' 
 write(6,10) 'U,' 
 write(6,60) '*EL PRINT', 'POS=INTEG', 'FREQ=1' 
 write(6,10) 'SF,' 
 write(6,60) '*EL FILE', 'POS=INTEG', 'FREQ=1'  
 write(6,10) 'SF,' 
* 
* End of step  
* 
 write(6,10) '** ' 
 write(6,10) '*END STEP' 
* 
* format sentences 
* 
10 format(a) 
30 format(a,',',2x,a) 
60 format(a,',',2x,a,',',2x,a)  
 return 

end 
 
 
 
* 
* ******************************************************** 
* Subroutine quot provides "%" operator in JAVA 
* ******************************************************** 
* Input: a, b 
* Output: q = quotient    
*  r = remainder 
* 
 SUBROUTINE quot(a,b,q,r) 
 
 REAL a,b,r  
 INTEGER q 
 
 q=a/b 
 r=a-q*b 
 
 return 
 end 
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APPENDIX B: POSTPROCESSOR MANUAL 
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Program Algorithm 

 

Programming in the MATLAB Software is considered as the tool in this post-

processing procedure.  The post-processing program is written in MATLAB M-files.  

Four M-files involve in the determination of the section moment, which are 

‘main_envelop.m’, ‘GetBeam.m’, ‘GetShell.m’, and ‘Qd.m’.  Figure A.1 displays the 

flowchart of post-processing procedure.  The four M-files are described as follows: 

 

a) main_envelop.m 

This M-file is the main file that will call other sub-files.  The bridge 

configuration is needed as the input.  This main file will determine the location to 

calculate the section moment and invoke the sub-files, ‘GetBeam.m’ to get the force 

and moment in beam, and ‘Qd.m & GetShell.m’ to get the force and moment in shell.  

Then, the effective width and the neutral axis location of the section are determined in 

the sub-functions, ‘Getbeff’ and ‘GetNA’, respectively.  The moment in the section is 

consecutively calculated by the method as described in the previous section. 

 

a) GetBeam.m 

This M-file is the sub-file that is called by ‘main_envelop.m’.  It is used to 

determine the force and moment in the beam element at the requested location using 

the one-dimensional spline interpolation. 

 

b) GetShell.m 

This M-file is the sub-file that is called by ‘Qd.m’.  It is used to determine the 

force and moment in the shell element at the requested location using the two-

dimensional spline interpolation. 

 

c) Qd.m 

This M-file is the sub-file that is called by ‘main_envelop.m’.  It is used to 

determine the integration of force and moment in shell along the section within the 



 

 177

effective width because the shell element outputs are results as “per unit width”.  This 

file is the modification of ‘Quad.m’ in the MATLAB tool box directory by mean to 

serve the need of the post-processing. 

 

Program Restrictions and Limitations 
 

The assumptions used in the post-processing are as follows: 

1. The order of element number is the same as the format for the pre-processor.  

The element number is ascending from left to right (x-direction) and then 

bottom to top (y-direction). 

2. Origin of coordinate (0,0,0) is at the lower left node of first shell element of 

reinforced concrete deck. 
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Figure A.1 Flowchart of the post-processor MATLAB program (moment_envelop.m). 
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Program Manual 

 

The required inputs are as follows: 

S  = Girder spacing (ft) 
widthOH  = Width of overhanging (ft), assume same for both side of bridge 
noGirder  = Total number of girders in bridge 
noElmtG  = Number of shell element between two adjacent girders 
noElmtOH  = Number of shell element in each overhanging 
noSpan  = Number of span in bridge 
lengthSpan  = Length of each span (ft)   (input as array format) 
noElmtSpan  = Number of shell/beam element in each span  (input as array format) 
skew   = Skew angle from transversal y-axis (degree) 
ts   = Slab thickness (in) 
tf   = Girder flange thickness (in)      
bf   = Girder flange width (in) 
tw   = Girder web thickness (in) 
bw   = Girder web width (in) 
n   = Ratio of steel to concrete modulus (=Es/Ec) 

 
lengthTotal  = Summation of all span lengths 
widthTotal  = Total width of bridge 
noElmtLong  = Total number of element in longitudinal direction (X-direction) 
noElmtTran  = Total number of element in transversal direction (Y-direction) 

 
interval   = Interval to display moment envelop in each span  
tol   = Tolerance in the adaptive quadrature integration for shell [default=10e-6] 
d  = Distance from support to exclude in the result (ft) [default=ts/2+2*tf+bw)/2/12] 

 
girder  = Girder number to be considered   (only needed in main_section.m) 
xLocation  = Section location in X-coordinate (ft)  (only needed in main_section.m) 
span  = Section location in which span   (only needed in main_section.m) 

 

Program Procedure: 

 

After running the finite element analysis for the specific loading locations, the 

ABAQUS result file is obtained as “filename.dat”.  This result file is composed of shell 

and beam element outputs.  In order to use the post-processor program, these outputs are 

required to extract into 2 files, “shell.txt” and “beam.txt”.  Each file is in the format as 

described previous section (ABAQUS Result Format) and contains only numeric data, 

i.e., without text data.  The bridge configuration is then required as the input into the 
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MATLAB M-files, “main_envelop.m”, “GetBeam.m” and “GetShell.m”.  After running 

“main_envelop.m”, the results of the maximum and minimum moments and their 

corresponding locations are obtained in the MATLAB command window.  The moment 

envelop of all girders are plotted in other windows. An example of the moment envelope 

is shown in Figure A.2. 

 

 

Figure A.2 Output example from post-processing (moment_envelop.m). 
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Figure A.3 Determination of the longitudinal truck position (loadposition.m). 
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Program list of  main_section.m 

 
function Moment_Section; 
% Find section moment at specific 'girder', 'xLocation' and 'span' 
 
% INPUT 
% girder = 3;         % girder number to be considered 
xLocation = 216.58;       % section location in X-coordinate (ft) 
span = 2;            % section location in which span 
 
S        = 8.67;     % girder spacing (ft) 
widthOH  = 2.5;     % width of overhanging (ft), assume same for both side of bridge 
noGirder = 4;       % total number of girders in bridge 
noElmtG  = 4;       % number of shell element between two adjacent girders 
noElmtOH = 1;       % number of shell element in each overhanging 
noSpan     = 2;       % number of span in bridge 
lengthSpan = [126,140]; % length of each span (ft) 
noElmtSpan = [63,70]; % number of shell/beam element in each span 
skew  = 24;          % skew angle from transversal y-axis (degree) 
ts    = 8.0;        % slab thickness (in) 
Ec    = 3182;       % Modulus of concrete (ksi) 
Es    = 29000;      % Modulus of steel (ksi) 
dd    = 46.5;      % girder thickness (in) 
tw    = 0.4375;      % girder web thickness (in) 
bf    = 20;     % girder flange width (in) 
tf    = 1.75;      % girder flange thickness (in)      
 
Mo    = 10846.9;        % Moment from 1-D analysis (in.k) 
Vo    = 0;      % Shear from 1-D analysis (kips) 
 
% Variable to output the results (can adjust) 
GPlot = 0;          % girder in quesion (if want to plot all girder or have no idea, 
enter 0;) 
interval = [1,1];   % interval (between x1Plot and x2Plot) to display moment envelop in 
each span  
tol   = 10e-1;      % tolerance in the adaptive quadrature integration for shell 
[default=10e-6] 
% END INPUT 
 
 
% Calculate data to be used in program 
n = Es/Ec; 
bw = dd-2*tf;        % girder web width (in) 
lengthTotal = 0; 
noElmtLong  = 0; 
for i=1:noSpan 
    lengthTotal = lengthTotal+lengthSpan(i);    % summation of all span lengths 
    noElmtLong  = noElmtLong+noElmtSpan(i);     % total number of elmt in long. direction 
(X-direction) 
end; 
widthTotal = 2*widthOH + (noGirder-1)*S;        % total width of bridge 
noElmtTran = 2*noElmtOH + (noGirder-1)*noElmtG; % total number of elmt in trans. 
direction (Y-direction) 
 
% Open files 'beam.txt' and store them in array variables 'beam' 
f1 = fopen('beam.txt','r'); 
beam = fscanf(f1,'%i %i %g %g %g %g %g %g',[8,inf]);  % "beamTemp" has 8 rows now. 
beam = beam';                               % Transpose to get the same format as 
beam.txt 
if (size(beam,1)~=(2*noElmtLong*noGirder)) 
    disp('Error in input or in beam.txt') 
end; 
fclose(f1); 
 
% Find the X-coordinate of each beam data point  
XB = 0; 
index = 0; 
temp = widthOH*tan(skew*pi/180); 
for i=1:noSpan 
    elmtSize = lengthSpan(i)/noElmtSpan(i); 
    temp = temp+elmtSize/2*(1-1/sqrt(3)); 
    for j=1:noElmtSpan(i) 
        index = index+1; 
        XB(1,index) = temp; 
        temp = temp+elmtSize/sqrt(3); 
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        index = index+1; 
        XB(1,index) = temp; 
        temp = temp+elmtSize*(1-1/sqrt(3)); 
    end; 
    temp = temp-elmtSize/2*(1-1/sqrt(3)); 
end; 
xDifferent = S*tan(skew*pi/180); 
for i=2:noGirder 
    for j=1:(2*noElmtLong) 
        XB(i,j) = XB(i-1,j)+xDifferent; 
    end; 
end; 
 
% Obtain beam data (SF1,SF2,SM1) in matrix form 
for i=1:noGirder 
    for j=1:(2*noElmtLong) 
        index1 = noElmtLong*(i-1)*2+j; 
        SF1B(i,j) = beam(index1,3); 
        SM1B(i,j) = beam(index1,6); 
        SF2B(i,j) = beam(index1,4); 
    end; 
end; 
 
f2 = fopen('XB.txt','w'); 
f3 = fopen('SF1B.txt','w'); 
f4 = fopen('SM1B.txt','w'); 
f5 = fopen('SF2B.txt','w'); 
for i=1:noGirder 
    fprintf(f2,'%g ',XB(i,:)); 
    fprintf(f2,'\n'); 
    fprintf(f3,'%g ',SF1B(i,:)); 
    fprintf(f3,'\n'); 
    fprintf(f4,'%g ',SM1B(i,:)); 
    fprintf(f4,'\n'); 
    fprintf(f5,'%g ',SF2B(i,:)); 
    fprintf(f5,'\n'); 
end; 
fclose(f2); 
fclose(f3); 
fclose(f4); 
fclose(f5); 
 
 
% Open files 'shell.txt' and store them in array variables 'shell' and 'beam' 
f6 = fopen('shell.txt','r'); 
shell = fscanf(f6,'%i %i %g %g %g %g %g %g %g %g',[10,inf]);   % "shell" has 8 rows now. 
shell = shell';                                         % Transpose to get the same 
format as shell.txt 
if (size(shell,1)~=(4*noElmtLong*noElmtTran)) 
    disp('Error in input or in shell.txt') 
end; 
fclose(f6); 
 
% Find the X- and Y- coordinate of each data point 
xS = 0; 
xindex = 0; 
temp = 0; 
for i=1:noSpan 
    elmtSize = lengthSpan(i)/noElmtSpan(i); 
    temp = temp+elmtSize/2*(1-1/sqrt(3)); 
    for j=1:noElmtSpan(i) 
        xindex = xindex+1; 
        xS(xindex) = temp; 
        temp = temp+elmtSize/sqrt(3); 
        xindex = xindex+1; 
        xS(xindex) = temp; 
        temp = temp+elmtSize*(1-1/sqrt(3)); 
    end; 
    temp = temp-elmtSize/2*(1-1/sqrt(3)); 
end; 
 
y = 0; 
yindex = 0; 
elmtSizeOH = widthOH/noElmtOH; 
elmtSizeG = S/noElmtG; 
temp = elmtSizeOH/2*(1-1/sqrt(3)); 
for i=1:noElmtOH 
    yindex = yindex+1; 
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    yS(yindex) = temp; 
    temp = temp+elmtSizeOH/sqrt(3); 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH*(1-1/sqrt(3)); 
end; 
temp = temp-elmtSizeOH/2*(1-1/sqrt(3))+elmtSizeG/2*(1-1/sqrt(3)); 
for i=1:(noGirder-1) 
    for j=1:noElmtG 
        yindex = yindex+1; 
        yS(yindex) = temp; 
        temp = temp+elmtSizeG/sqrt(3); 
        yindex = yindex+1; 
        yS(yindex) = temp; 
        temp = temp+elmtSizeG*(1-1/sqrt(3)); 
    end; 
end; 
temp = temp-elmtSizeG/2*(1-1/sqrt(3))+elmtSizeOH/2*(1-1/sqrt(3)); 
for i=1:noElmtOH 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH/sqrt(3); 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH*(1-1/sqrt(3)); 
end; 
 
for i=1:yindex      % X and Y are matrices dimension '(2xnoElmtTran)*(2xnoElmtLong)' 
    for j=1:xindex 
        YS(i,j) = yS(i); 
        XS(i,j) = xS(j)+yS(i)*tan(skew*pi/180); 
    end; 
end; 
 
% Obtain shell data (SF1,SM1) in matrix form 
for i=1:noElmtTran 
    for j=1:noElmtLong 
        index1 = noElmtLong*(i-1)+j; 
        SF1S(2*i-1,2*j-1) = shell(4*index1-3,3); 
        SF1S(2*i-1,2*j)   = shell(4*index1-2,3); 
        SF1S(2*i  ,2*j-1) = shell(4*index1-1,3); 
        SF1S(2*i  ,2*j)   = shell(4*index1  ,3); 
 
        SF4S(2*i-1,2*j-1) = shell(4*index1-3,6); 
        SF4S(2*i-1,2*j)   = shell(4*index1-2,6); 
        SF4S(2*i  ,2*j-1) = shell(4*index1-1,6); 
        SF4S(2*i  ,2*j)   = shell(4*index1  ,6); 
 
        SM1S(2*i-1,2*j-1) = shell(4*index1-3,8); 
        SM1S(2*i-1,2*j)   = shell(4*index1-2,8); 
        SM1S(2*i  ,2*j-1) = shell(4*index1-1,8); 
        SM1S(2*i  ,2*j)   = shell(4*index1  ,8); 
    end; 
end; 
 
f7 = fopen('XS.txt','w'); 
f8 = fopen('YS.txt','w'); 
f9 = fopen('SF1S.txt','w'); 
f10 = fopen('SF4S.txt','w'); 
f11 = fopen('SM1S.txt','w'); 
for i=1:yindex 
    fprintf(f7,'%g ',XS(i,:)); 
    fprintf(f7,'\n'); 
    fprintf(f8,'%g ',YS(i,:)); 
    fprintf(f8,'\n'); 
    fprintf(f9,'%g ',SF1S(i,:)); 
    fprintf(f9,'\n'); 
    fprintf(f10,'%g ',SF4S(i,:)); 
    fprintf(f10,'\n'); 
    fprintf(f11,'%g ',SM1S(i,:)); 
    fprintf(f11,'\n'); 
end; 
fclose(f7); 
fclose(f8); 
fclose(f9); 
fclose(f10); 
fclose(f11); 
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% **** Begin MAIN PROGRAM **** % 
if (Vo==0) 
    fprintf('<Mo = %g in.k, xLocation = %g ft>\n',Mo,xLocation); 
 for girder=1:noGirder 
  % Get moment from beam and shell 
  forceB  = -GetBeam(girder,xLocation,'SF1'); 
  momentB = -GetBeam(girder,xLocation,'SM1'); 
  [beff1,beff2] = 
Getbeff(girder,noGirder,span,lengthSpan,S,ts,tw,bf,widthOH); 
  yLocation = widthOH+(girder-1)*S; 
  a = yLocation-beff1; 
  b = yLocation+beff2; 
  forceS  = -12*Qd(@GetShell,a,b,xLocation,'SF1',tol); 
  momentS = -12*Qd(@GetShell,a,b,xLocation,'SM1',tol); 
  % Moment calculation 
  bEff = 12*(beff1+beff2); 
  [eNA] = GetNA(tf,bf,tw,bw,bEff,ts,n); 
  momentForce = -(forceB*eNA)+(forceS*(ts/2+tf+bw/2-eNA)); 
  mSection = momentB + momentS + momentForce; 
        fprintf('Girder No. %i, moment = %7.1f in.k, M-LDF = 
%5.3f\n',girder,mSection,mSection/Mo); 
 end; 
end 
if (Mo==0) 
    fprintf('<Vo = %g k, xLocation = %g ft>\n',Vo,xLocation); 
 for girder=1:noGirder 
  % Get shear from beam and shell 
  shearB  = -GetBeam(girder,xLocation,'SF2'); 
  [beff1,beff2] = 
Getbeff(girder,noGirder,span,lengthSpan,S,ts,tw,bf,widthOH); 
  yLocation = widthOH+(girder-1)*S; 
  a = yLocation-beff1; 
  b = yLocation+beff2; 
  shearS  = -12*Qd(@GetShell,a,b,xLocation,'SF4',tol); 
  % Shear calculation 
  bEff = 12*(beff1+beff2); 
  [eNA] = GetNA(tf,bf,tw,bw,bEff,ts,n); 
  vSection = shearB+shearS; 
        fprintf('Girder No. %i, shear = %6.2f k(%6.2fB,%5.2fS), S-LDF = 
%5.3f\n',girder,vSection,shearB,shearS,vSection/Vo); 
 end; 
end 
% **** END MAIN PROGRAM **** % 
 
 
function [beff1,beff2] = Getbeff(girder,noGirder,span,lengthSpan,S,ts,tw,bf,widthOH); 
% Get the effective width of the girder section 
a = lengthSpan(span)/4/2;           
b1 = S/2;                           % for interior girder 
b2 = widthOH;                       % for exterior girder 
c = (12*ts+max(tw,bf/2))/2; 
if (girder~=1) 
    beff1 = min(a,b1);            % beff1 is eff. width in minus y-direction 
    beff1 = min(beff1,c); 
else 
    beff1 = min(a,b2); 
    beff1 = min(beff1,c); 
end; 
if (girder~=noGirder) 
    beff2 = min(a,b1);            % beff2 is eff. width in plus y-direction 
    beff2 = min(beff2,c); 
else 
    beff2 = min(a,b2); 
    beff2 = min(beff2,c); 
end; 
 
 
function [eNA] = GetNA(tf,bf,tw,bw,bEff,ts,n); 
% Get the nuetral axis location of the transformed section 
area = (2*tf*bf)+(tw*bw)+(ts*bEff/n); 
moment_area = 
(tf*bf*tf/2)+(tw*bw*(tf+bw/2))+(tf*bf*(1.5*tf+bw))+(ts*bEff/n*(2*tf+bw+ts/2)); 
y = moment_area/area; 
eNA = y-tf-bw/2; 
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Program list of moment_envelop.m 
 
  
function Moment_Envelop; 
% Determine the maximum moment and coresponding location, and draw moment envelop for all 
girders 
 
% INPUT 
S        = 8.67;     % girder spacing (ft) 
widthOH  = 2.5;     % width of overhanging (ft), assume same for both side of bridge 
noGirder = 4;       % total number of girders in bridge 
noElmtG  = 4;       % number of shell element between two adjacent girders 
noElmtOH = 1;       % number of shell element in each overhanging 
noSpan     = 2;       % number of span in bridge 
lengthSpan = [126,140]; % length of each span (ft) 
noElmtSpan = [63,70]; % number of shell/beam element in each span 
skew  = 24;          % skew angle from transversal y-axis (degree) 
ts    = 8.0;        % slab thickness (in) 
Ec    = 3182;       % Modulus of concrete (ksi) 
Es    = 29000;      % Modulus of steel (ksi) 
dd    = 46.5;      % girder thickness (in) 
tw    = 0.4375;      % girder web thickness (in) 
bf    = 20;     % girder flange width (in) 
tf    = 1.75;      % girder flange thickness (in)      
 
Mo    =-6006.2;        % Moment from 1-D analysis (in.k) 
Vo    = 0;      % Shear from 1-D analysis (kips) 
 
% Variable to output the results (can adjust) 
GPlot = 3;          % girder in quesion (if want to plot all girder or have no idea, 
enter 0;) 
interval = [1,1];   % interval (between x1Plot and x2Plot) to display moment envelop in 
each span  
tol   = 10e-1;      % tolerance in the adaptive quadrature integration for shell 
[default=10e-6] 
% END INPUT 
 
                              
% Calculate data to be used in program 
n = Es/Ec; 
bw = dd-2*tf;        % girder web width (in) 
lengthTotal = 0; 
noElmtLong  = 0; 
for i=1:noSpan 
    lengthTotal = lengthTotal+lengthSpan(i);    % summation of all span lengths 
    noElmtLong  = noElmtLong+noElmtSpan(i);     % total number of elmt in long. direction 
(X-direction) 
end; 
widthTotal = 2*widthOH + (noGirder-1)*S;        % total width of bridge 
noElmtTran = 2*noElmtOH + (noGirder-1)*noElmtG; % total number of elmt in trans. 
direction (Y-direction) 
 
% Open files 'beam.txt' and store them in array variables 'beam' 
f1 = fopen('beam.txt','r'); 
beam = fscanf(f1,'%i %i %g %g %g %g %g %g',[8,inf]);  % "beamTemp" has 8 rows now. 
beam = beam';                               % Transpose to get the same format as 
beam.txt 
if (size(beam,1)~=(2*noElmtLong*noGirder)) 
    disp('Error in input or in beam.txt') 
end; 
fclose(f1); 
 
% Find the X-coordinate of each beam data point  
XB = 0; 
index = 0; 
temp = widthOH*tan(skew*pi/180); 
for i=1:noSpan 
    elmtSize = lengthSpan(i)/noElmtSpan(i); 
    temp = temp+elmtSize/2*(1-1/sqrt(3)); 
    for j=1:noElmtSpan(i) 
        index = index+1; 
        XB(1,index) = temp; 
        temp = temp+elmtSize/sqrt(3); 
        index = index+1; 
        XB(1,index) = temp; 
        temp = temp+elmtSize*(1-1/sqrt(3)); 
    end; 
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    temp = temp-elmtSize/2*(1-1/sqrt(3)); 
end; 
xDifferent = S*tan(skew*pi/180); 
for i=2:noGirder 
    for j=1:(2*noElmtLong) 
        XB(i,j) = XB(i-1,j)+xDifferent; 
    end; 
end; 
 
% Obtain beam data (SF1,SF2,SM1) in matrix form 
for i=1:noGirder 
    for j=1:(2*noElmtLong) 
        index1 = noElmtLong*(i-1)*2+j; 
        SF1B(i,j) = beam(index1,3); 
        SM1B(i,j) = beam(index1,6); 
        SF2B(i,j) = beam(index1,4); 
    end; 
end; 
 
f2 = fopen('XB.txt','w'); 
f3 = fopen('SF1B.txt','w'); 
f4 = fopen('SM1B.txt','w'); 
f5 = fopen('SF2B.txt','w'); 
for i=1:noGirder 
    fprintf(f2,'%g ',XB(i,:)); 
    fprintf(f2,'\n'); 
    fprintf(f3,'%g ',SF1B(i,:)); 
    fprintf(f3,'\n'); 
    fprintf(f4,'%g ',SM1B(i,:)); 
    fprintf(f4,'\n'); 
    fprintf(f5,'%g ',SF2B(i,:)); 
    fprintf(f5,'\n'); 
end; 
fclose(f2); 
fclose(f3); 
fclose(f4); 
fclose(f5); 
 
 
% Open files 'shell.txt' and store them in array variables 'shell' and 'beam' 
f6 = fopen('shell.txt','r'); 
shell = fscanf(f6,'%i %i %g %g %g %g %g %g %g %g',[10,inf]);   % "shell" has 8 rows now. 
shell = shell';                                         % Transpose to get the same 
format as shell.txt 
if (size(shell,1)~=(4*noElmtLong*noElmtTran)) 
    disp('Error in input or in shell.txt') 
end; 
fclose(f6); 
 
% Find the X- and Y- coordinate of each data point 
xS = 0; 
xindex = 0; 
temp = 0; 
for i=1:noSpan 
    elmtSize = lengthSpan(i)/noElmtSpan(i); 
    temp = temp+elmtSize/2*(1-1/sqrt(3)); 
    for j=1:noElmtSpan(i) 
        xindex = xindex+1; 
        xS(xindex) = temp; 
        temp = temp+elmtSize/sqrt(3); 
        xindex = xindex+1; 
        xS(xindex) = temp; 
        temp = temp+elmtSize*(1-1/sqrt(3)); 
    end; 
    temp = temp-elmtSize/2*(1-1/sqrt(3)); 
end; 
 
y = 0; 
yindex = 0; 
elmtSizeOH = widthOH/noElmtOH; 
elmtSizeG = S/noElmtG; 
temp = elmtSizeOH/2*(1-1/sqrt(3)); 
for i=1:noElmtOH 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH/sqrt(3); 
    yindex = yindex+1; 
    yS(yindex) = temp; 
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    temp = temp+elmtSizeOH*(1-1/sqrt(3)); 
end; 
temp = temp-elmtSizeOH/2*(1-1/sqrt(3))+elmtSizeG/2*(1-1/sqrt(3)); 
for i=1:(noGirder-1) 
    for j=1:noElmtG 
        yindex = yindex+1; 
        yS(yindex) = temp; 
        temp = temp+elmtSizeG/sqrt(3); 
        yindex = yindex+1; 
        yS(yindex) = temp; 
        temp = temp+elmtSizeG*(1-1/sqrt(3)); 
    end; 
end; 
temp = temp-elmtSizeG/2*(1-1/sqrt(3))+elmtSizeOH/2*(1-1/sqrt(3)); 
for i=1:noElmtOH 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH/sqrt(3); 
    yindex = yindex+1; 
    yS(yindex) = temp; 
    temp = temp+elmtSizeOH*(1-1/sqrt(3)); 
end; 
 
for i=1:yindex      % X and Y are matrices dimension '(2xnoElmtTran)*(2xnoElmtLong)' 
    for j=1:xindex 
        YS(i,j) = yS(i); 
        XS(i,j) = xS(j)+yS(i)*tan(skew*pi/180); 
    end; 
end; 
 
% Obtain shell data (SF1,SM1) in matrix form 
for i=1:noElmtTran 
    for j=1:noElmtLong 
        index1 = noElmtLong*(i-1)+j; 
        SF1S(2*i-1,2*j-1) = shell(4*index1-3,3); 
        SF1S(2*i-1,2*j)   = shell(4*index1-2,3); 
        SF1S(2*i  ,2*j-1) = shell(4*index1-1,3); 
        SF1S(2*i  ,2*j)   = shell(4*index1  ,3); 
         
        SF4S(2*i-1,2*j-1) = shell(4*index1-3,6); 
        SF4S(2*i-1,2*j)   = shell(4*index1-2,6); 
        SF4S(2*i  ,2*j-1) = shell(4*index1-1,6); 
        SF4S(2*i  ,2*j)   = shell(4*index1  ,6); 
         
        SM1S(2*i-1,2*j-1) = shell(4*index1-3,8); 
        SM1S(2*i-1,2*j)   = shell(4*index1-2,8); 
        SM1S(2*i  ,2*j-1) = shell(4*index1-1,8); 
        SM1S(2*i  ,2*j)   = shell(4*index1  ,8); 
    end; 
end; 
 
f7 = fopen('XS.txt','w'); 
f8 = fopen('YS.txt','w'); 
f9 = fopen('SF1S.txt','w'); 
f10 = fopen('SF4S.txt','w'); 
f11 = fopen('SM1S.txt','w'); 
for i=1:yindex 
    fprintf(f7,'%g ',XS(i,:)); 
    fprintf(f7,'\n'); 
    fprintf(f8,'%g ',YS(i,:)); 
    fprintf(f8,'\n'); 
    fprintf(f9,'%g ',SF1S(i,:)); 
    fprintf(f9,'\n'); 
    fprintf(f10,'%g ',SF4S(i,:)); 
    fprintf(f10,'\n'); 
    fprintf(f11,'%g ',SM1S(i,:)); 
    fprintf(f11,'\n'); 
end; 
fclose(f7); 
fclose(f8); 
fclose(f9); 
fclose(f10); 
fclose(f11); 
 
 
% **** Begin MAIN PROGRAM **** % 
mMax = 0; mMin = 0; 
gMax = 0; gMin = 0; 
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xMax = 0; xMin = 0; 
spanMax = 0; spanMin = 0; 
for i=1:noGirder 
    d1(i) = S/2*tan(skew*pi/180); 
    if (i==noGirder) 
        d1(i) = widthOH*tan(skew*pi/180); 
    end; 
    d2(i) = S/2*tan(skew*pi/180); 
    if (i==1) 
        d2(i) = widthOH*tan(skew*pi/180); 
    end; 
end; 
 
if (GPlot==0) 
    girder1 = 1; 
    girder2 = noGirder; 
else 
    girder1 = GPlot; 
    girder2 = GPlot; 
end; 
for girder=girder1:girder2 
    fprintf('Girder No.   : %i\n',girder); 
 
    d1(girder) = S/2*tan(skew*pi/180); 
    if (girder==noGirder) 
        d1(girder) = widthOH*tan(skew*pi/180); 
    end; 
    d2(girder) = S/2*tan(skew*pi/180); 
    if (girder==1) 
        d2(girder) = widthOH*tan(skew*pi/180); 
    end; 
     
    index = 0; 
    yLocation = widthOH+(girder-1)*S; 
    xLocation = yLocation*tan(skew*pi/180); 
    for span=1:noSpan 
        fprintf('  Span       : %i\n',span); 
 
        d1(girder) = d1(girder) + lengthSpan(span)/noElmtSpan(span)/2*(1-1/sqrt(3)); 
        d2(girder) = d2(girder) + lengthSpan(span)/noElmtSpan(span)/2*(1-1/sqrt(3)); 
%        d1(girder) = 0 
%        d2(girder) = 0 
         
        xLocation = xLocation + d1(girder); 
        size = (lengthSpan(span)-d1(girder)-d2(girder))/interval(span); 
        fprintf('    Interval :\n'); 
  [beff1,beff2] = 
Getbeff(girder,noGirder,span,lengthSpan,S,ts,tw,bf,widthOH); 
  a = yLocation-beff1; 
  b = yLocation+beff2; 
  bEff = 12*(beff1+beff2); 
  [eNA] = GetNA(tf,bf,tw,bw,bEff,ts,n); 
        for i=1:(interval(span)+1) 
            fprintf('               %i\n',i); 
            index = index+1; 
             
%            if (i>=190 & span==1) 
    % Get moment from beam and shell 
    forceB  = -GetBeam(girder,xLocation,'SF1'); 
    momentB = -GetBeam(girder,xLocation,'SM1'); 
    forceS  = -12*Qd(@GetShell,a,b,xLocation,'SF1',tol); 
    momentS = -12*Qd(@GetShell,a,b,xLocation,'SM1',tol); 
    % Moment calculation 
    momentForce = -(forceB*eNA)+(forceS*(ts/2+tf+bw/2-eNA)); 
    mSection = momentB + momentS + momentForce; 
 %            else 
 %               mSection = 0; 
 %           end; 
             
            if (mSection>mMax) 
                mMax = mSection;  gMax = girder; 
                xMax = xLocation; spanMax = span; 
            end; 
            if (mSection<mMin) 
                mMin = mSection;  gMin = girder; 
                xMin = xLocation; spanMin = span; 
            end; 
            x(girder,index) = xLocation; 
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            moment(girder,index) = mSection; 
            xLocation = xLocation+size; 
        end;     
        xLocation = xLocation-size + d2(girder); 
    end; 
%    switch girder 
%        case 1, string = 'ro'; 
%        case 2, string = 'bo'; 
%        case 3, string = 'yo'; 
%        case 4, string = 'go'; 
%        case 5, string = 'mo'; 
%        case 6, string = 'co'; 
%        otherwise, string = 'ko'; 
%    end; 
%    figure(girder) 
%    plot(x(girder,:),moment(girder,:),string,x(girder,:),moment(girder,:),'k-') 
%    grid 
%    xlabel('X-Coordinate, ft.') 
%    ylabel('Moment, in.kips') 
%    title(['Moment Diagram for Girder no. ',int2str(girder)]) 
end; 
%figure(noGirder+1) 
for girder=girder1:girder2 
    switch girder 
        case 1, string = 'ro-'; 
        case 2, string = 'bo-'; 
        case 3, string = 'yo-'; 
        case 4, string = 'go-'; 
        case 5, string = 'mo-'; 
        case 6, string = 'co-'; 
        otherwise, string = 'ko-'; 
    end; 
    plot(x(girder,:),moment(girder,:),string) 
    hold on 
end; 
grid 
xlabel('X-Coordinate, ft.') 
ylabel('Moment, in.kips') 
title('Comparison of Moment in each Girder') 
hold off 
fprintf('\nMaximum Positive Moment = %7.0f in.kips (LDF = %5.3f)',mMax,mMax/Mo); 
fprintf('\n  at Girder = %i\n  at x-coord = %5.2f ft. within span no. 
%i',gMax,xMax,spanMax); 
fprintf('\n             = %5.2f ft. from left support\n\n',xMax-((gMax-
1)*S+widthOH)*tan(skew/180*pi)); 
fprintf('\nMaximum Negative Moment = %7.0f in.kips (LDF = %5.3f)',mMin,mMin/Mo); 
fprintf('\n  at Girder = %i\n  at x-coord = %5.2f ft. within span no. 
%i',gMin,xMin,spanMin); 
fprintf('\n             = %5.2f ft. from left support\n\n',xMin-((gMin-
1)*S+widthOH)*tan(skew/180*pi)); 
% **** End MAIN PROGRAM **** %     
 
 
 
function [beff1,beff2] = Getbeff(girder,noGirder,span,lengthSpan,S,ts,tw,bf,widthOH); 
% Get the effective width of the girder section 
a = lengthSpan(span)/4/2;           
b1 = S/2;                           % for interior girder 
b2 = widthOH;                       % for exterior girder 
c = (12*ts+max(tw,bf/2))/2; 
if (girder~=1) 
    beff1 = min(a,b1);            % beff1 is eff. width in minus y-direction 
    beff1 = min(beff1,c); 
else 
    beff1 = min(a,b2); 
    beff1 = min(beff1,c); 
end; 
if (girder~=noGirder) 
    beff2 = min(a,b1);            % beff2 is eff. width in plus y-direction 
    beff2 = min(beff2,c); 
else 
    beff2 = min(a,b2); 
    beff2 = min(beff2,c); 
end; 
 
 
function [eNA] = GetNA(tf,bf,tw,bw,bEff,ts,n); 
% Get the nuetral axis location of the transformed section 
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area = (2*tf*bf)+(tw*bw)+(ts*bEff/n); 
moment_area = 
(tf*bf*tf/2)+(tw*bw*(tf+bw/2))+(tf*bf*(1.5*tf+bw))+(ts*bEff/n*(2*tf+bw+ts/2)); 
y = moment_area/area; 
eNA = y-tf-bw/2; 
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Program list of Qd.m 
 
 

function [Q,fcnt] = Qd(funfcn,a,b,x,string,tol,trace,varargin) 
% Subfuction called from 'main_envelop.m' or 'main_section.m' 
 
%************************IMPORTANT 
NOTE************************************************** 
% This M-file is modified from M-file 'quad' in 
D:\MATLAB6p1\toolbox\MATLAB\funfun\quad.m 
% It includes variable, 'x' for the use in moment_envelop ABAQUSin Post-processing 
% Also, string is additional variable indicate 'SF1' (force) or 'SM1' (moment) 
% Example:  
%    Q = Qd(@myfun,0,2,10,'SF1'); 
%    where myfun.m is an M-file: 
%          function z = myfun(x,y) 
%          z = y./(x.^3-2*x-5); 
%*************************************************************************************
**** 
 
%QUAD   Numerically evaluate integral, adaptive Simpson quadrature. 
%   Q = QUAD(FUN,A,B) tries to approximate the integral of function 
%   FUN from A to B to within an error of 1.e-6 using recursive 
%   adaptive Simpson quadrature.  The function Y = FUN(X) should 
%   accept a vector argument X and return a vector result Y, the 
%   integrand evaluated at each element of X.   
% 
%   Q = QUAD(FUN,A,B,TOL) uses an absolute error tolerance of TOL  
%   instead of the default, which is 1.e-6.  Larger values of TOL 
%   result in fewer function evaluations and faster computation, 
%   but less accurate results.  The QUAD function in MATLAB 5.3 used 
%   a less reliable algorithm and a default tolerance of 1.e-3. 
% 
%   [Q,FCNT] = QUAD(...) returns the number of function evaluations. 
% 
%   QUAD(FUN,A,B,TOL,TRACE) with non-zero TRACE shows the values 
%   of [fcnt a b-a Q] during the recursion. 
% 
%   QUAD(FUN,A,B,TOL,TRACE,P1,P2,...) provides for additional  
%   arguments P1, P2, ... to be passed directly to function FUN, 
%   FUN(X,P1,P2,...).  Pass empty matrices for TOL or TRACE to 
%   use the default values. 
% 
%   Use array operators .*, ./ and .^ in the definition of FUN 
%   so that it can be evaluated with a vector argument. 
% 
%   Function QUADL may be more efficient with high accuracies 
%   and smooth integrands. 
% 
%   Example: 
%       FUN can be specified three different ways. 
% 
%       A string expression involving a single variable: 
%          Q = quad('1./(x.^3-2*x-5)',0,2); 
% 
%       An inline object: 
%          F = inline('1./(x.^3-2*x-5)'); 
%          Q = quad(F,0,2); 
% 
%       A function handle: 
%          Q = quad(@myfun,0,2); 
%          where myfun.m is an M-file: 
%             function y = myfun(x) 
%             y = 1./(x.^3-2*x-5); 
% 
%   See also QUADL, DBLQUAD, INLINE, @. 
 
%   Based on "adaptsim" by Walter Gander.   
%   Ref: W. Gander and W. Gautschi, "Adaptive Quadrature Revisited", 1998. 
%   http://www.inf.ethz.ch/personal/gander 
%   Copyright 1984-2001 The MathWorks, Inc.  
%   $Revision: 5.22 $  $Date: 2001/04/15 11:59:20 $ 
 
f = fcnchk(funfcn); 
if nargin < 6 | isempty(tol), tol = 1.e-6; end; 
if nargin < 7 | isempty(trace), trace = 0; end; 
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% Initialize with three unequal subintervals. 
h = 0.13579*(b-a); 
y = [a a+h a+2*h (a+b)/2 b-2*h b-h b]; 
for i=1:7 
    z(i) = feval(f, y(i), x,string, varargin{:}); 
end; 
fcnt = 7; 
 
% Fudge endpoints to avoid infinities. 
if ~isfinite(z(1)) 
   z(1) = feval(f,a+eps*(b-a),x,string,varargin{:}); 
   fcnt = fcnt+1; 
end 
if ~isfinite(z(7)) 
   z(7) = feval(f,b-eps*(b-a),x,string,varargin{:}); 
   fcnt = fcnt+1; 
end 
 
% Call the recursive core integrator. 
hmin = eps/1024*abs(b-a); 
[Q(1),fcnt,warn(1)] = ... 
   quadstep(f,y(1),y(3),x,string,z(1),z(2),z(3),tol,trace,fcnt,hmin,varargin{:}); 
[Q(2),fcnt,warn(2)] = ... 
   quadstep(f,y(3),y(5),x,string,z(3),z(4),z(5),tol,trace,fcnt,hmin,varargin{:}); 
[Q(3),fcnt,warn(3)] = ... 
   quadstep(f,y(5),y(7),x,string,z(5),z(6),z(7),tol,trace,fcnt,hmin,varargin{:}); 
Q = sum(Q); 
warn = max(warn); 
 
switch warn 
   case 1 
      warning('Minimum step size reached; singularity possible.') 
   case 2 
      warning('Maximum function count exceeded; singularity likely.') 
   case 3 
      warning('Infinite or Not-a-Number function value encountered.') 
   otherwise 
      % No warning. 
end 
 
% ------------------------------------------------------------------------ 
 
function [Q,fcnt,warn] = quadstep 
(f,a,b,x,string,fa,fc,fb,tol,trace,fcnt,hmin,varargin) 
%QUADSTEP  Recursive core routine for function QUAD. 
 
maxfcnt = 10000; 
 
% Evaluate integrand twice in interior of subinterval [a,b]. 
h = b - a; 
c = (a + b)/2; 
if abs(h) < hmin | c == a | c == b 
   % Minimum step size reached; singularity possible. 
   Q = h*fc; 
   warn = 1; 
   return 
end 
y = [(a + c)/2, (c + b)/2]; 
for i=1:2 
    z(i) = feval(f, y(i), x, string,varargin{:}); 
end; 
fcnt = fcnt + 2; 
if fcnt > maxfcnt 
   % Maximum function count exceeded; singularity likely. 
   Q = h*fc; 
   warn = 2; 
   return 
end 
fd = z(1); 
fe = z(2); 
 
% Three point Simpson's rule. 
Q1 = (h/6)*(fa + 4*fc + fb); 
 
% Five point double Simpson's rule. 
Q2 = (h/12)*(fa + 4*fd + 2*fc + 4*fe + fb); 
 
% One step of Romberg extrapolation. 
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Q = Q2 + (Q2 - Q1)/15; 
 
if ~isfinite(Q) 
   % Infinite or Not-a-Number function value encountered. 
   warn = 3; 
   return 
end 
if trace 
   disp(sprintf('%8.0f %16.10f %18.8e %16.10f',fcnt,a,h,Q)) 
end 
 
% Check accuracy of integral over this subinterval. 
if abs(Q2 - Q) <= tol 
   warn = 0; 
   return 
 
% Subdivide into two subintervals. 
else 
   [Qac,fcnt,warnac] = 
quadstep(f,a,c,x,string,fa,fd,fc,tol,trace,fcnt,hmin,varargin{:}); 
   [Qcb,fcnt,warncb] = 
quadstep(f,c,b,x,string,fc,fe,fb,tol,trace,fcnt,hmin,varargin{:}); 
   Q = Qac + Qcb; 
   warn = max(warnac,warncb); 
end 
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Program List of GetBeam.m 
 
function Data = GetBeam(girderi,xi,string); 
% Subfuction called from 'main_envelop.m' or 'main_section.m' 
% This function can also be used alone to plot beam data 
 
% INPUT 
S        = 8.67;     % girder spacing (ft) 
widthOH  = 2.5;     % width of overhanging (ft), assume same for both side of bridge 
noGirder = 4;       % total number of girders in bridge 
noElmtG  = 4;       % number of shell element between two adjacent girders 
noElmtOH = 1;       % number of shell element in each overhanging 
noSpan     = 2;       % number of span in bridge 
lengthSpan = [126,140]; % length of each span (ft) 
noElmtSpan = [63,70]; % number of shell/beam element in each span 
skew  = 24;          % skew angle from transversal y-axis (degree) 
ts    = 8.0;        % slab thickness (in) 
Ec    = 3182;       % Modulus of concrete (ksi) 
Es    = 29000;      % Modulus of steel (ksi) 
dd    = 46.5;      % girder thickness (in) 
tw    = 0.4375;      % girder web thickness (in) 
bf    = 20;     % girder flange width (in) 
tf    = 1.75;      % girder flange thickness (in)      
 
Mo    = 10846.9;        % Moment from 1-D analysis (in.k) 
Vo    = 0;      % Shear from 1-D analysis (kips) 
 
% Variable to output the results (can adjust) 
GPlot = 0;          % girder in quesion (if want to plot all girder or have no idea, 
enter 0;) 
interval = [1,1];   % interval (between x1Plot and x2Plot) to display moment envelop in 
each span  
tol   = 10e-1;      % tolerance in the adaptive quadrature integration for shell 
[default=10e-6] 
% END INPUT 
 
 
% Calculate data to be used in program 
n = Es/Ec; 
bw = dd-2*tf;        % girder web width (in) 
lengthTotal = 0; 
noElmtLong  = 0; 
for i=1:noSpan 
    lengthTotal = lengthTotal+lengthSpan(i);    % summation of all span lengths 
    noElmtLong  = noElmtLong+noElmtSpan(i);     % total number of elmt in long. direction 
(X-direction) 
end; 
widthTotal = 2*widthOH + (noGirder-1)*S;        % total width of bridge 
noElmtTran = 2*noElmtOH + (noGirder-1)*noElmtG; % total number of elmt in trans. 
direction (Y-direction) 
                              
%Open necessary files and interpolate to obtain the acquired data 
f1 = fopen('XB.txt','r'); 
XB = fscanf(f1,'%g',[2*noElmtLong,noGirder]); 
XB = XB'; 
fclose(f1); 
 
switch string 
    case 'SF1', str = 'SF1B.txt'; 
    case 'SM1', str = 'SM1B.txt'; 
    case 'SF2', str = 'SF2B.txt'; 
    otherwise, disp('Unknown Required Data in Shell') 
end; 
f3 = fopen(str,'r'); 
DataB = fscanf(f3,'%g',[2*noElmtLong,noGirder]); 
DataB = DataB'; 
fclose(f3); 
 
XB(girderi,:); 
DataB(girderi,:); 
Data = interp1(XB(girderi,:),DataB(girderi,:),xi,'spline'); 
 
%% Plot the spline interpolation graph of beam SF1 or SM1 for all girders 
%for girder=1:noGirder 
% Dat = 0; 
% for i=1:noElmtLong 
%        index1 = noElmtLong*(girder-1)+i;  
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%        Dat(i) = beam(index1,index2); 
%    end; 
%    xtemp = 1.75:.25:54.25; 
% Datatemp = interp1(x,Dat,xtemp,'spline'); 
% figure(girder) 
%    plot(x,Dat,'o',xtemp,Datatemp); 
% grid 
% xlabel('X-Coordinate, ft.') 
% switch string 
%    case 'SF1', 
%        ylabel('SF1 in beam, in.kips') 
%  title(['Spline Interpolation of SF1 in beam for girder 
no.',int2str(girder)]) 
%    case 'SM1', 
%        ylabel('SM1 in beam, in.kips') 
%  title(['Spline Interpolation of SM1 in beam for girder 
no.',int2str(girder)]) 
%    otherwise, disp('Unknown Required Data in Beam') 
%    end; 
%end; 
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Program List of GetShell.m 
 
 
function Data = GetShell(yi,xi,string); 
% Subfuction called from 'main_envelop.m' or 'main_section.m' 
% This function can also be used alone to plot shell data 
 
% INPUT 
S        = 8.67;     % girder spacing (ft) 
widthOH  = 2.5;     % width of overhanging (ft), assume same for both side of bridge 
noGirder = 4;       % total number of girders in bridge 
noElmtG  = 4;       % number of shell element between two adjacent girders 
noElmtOH = 1;       % number of shell element in each overhanging 
noSpan     = 2;       % number of span in bridge 
lengthSpan = [126,140]; % length of each span (ft) 
noElmtSpan = [63,70]; % number of shell/beam element in each span 
skew  = 24;          % skew angle from transversal y-axis (degree) 
ts    = 8.0;        % slab thickness (in) 
Ec    = 3182;       % Modulus of concrete (ksi) 
Es    = 29000;      % Modulus of steel (ksi) 
dd    = 46.5;      % girder thickness (in) 
tw    = 0.4375;      % girder web thickness (in) 
bf    = 20;     % girder flange width (in) 
tf    = 1.75;      % girder flange thickness (in)      
 
Mo    = 10846.9;        % Moment from 1-D analysis (in.k) 
Vo    = 0;      % Shear from 1-D analysis (kips) 
 
% Variable to output the results (can adjust) 
GPlot = 0;          % girder in quesion (if want to plot all girder or have no idea, 
enter 0;) 
interval = [1,1];   % interval (between x1Plot and x2Plot) to display moment envelop in 
each span  
tol   = 10e-1;      % tolerance in the adaptive quadrature integration for shell 
[default=10e-6] 
% END INPUT 
 
 
% Calculate data to be used in program 
n = Es/Ec; 
bw = dd-2*tf;        % girder web width (in) 
lengthTotal = 0; 
noElmtLong  = 0; 
for i=1:noSpan 
    lengthTotal = lengthTotal+lengthSpan(i);    % summation of all span lengths 
    noElmtLong  = noElmtLong+noElmtSpan(i);     % total number of elmt in long. direction 
(X-direction) 
end; 
widthTotal = 2*widthOH + (noGirder-1)*S;        % total width of bridge 
noElmtTran = 2*noElmtOH + (noGirder-1)*noElmtG; % total number of elmt in trans. 
direction (Y-direction) 
                             
%Open necessary files and interpolate to obtain the acquired data 
f1 = fopen('XS.txt','r'); 
XS = fscanf(f1,'%g',[2*noElmtLong,2*noElmtTran]); 
XS = XS'; 
fclose(f1); 
 
%f2 = fopen('YS.txt','r'); 
%YS = fscanf(f2,'%g',[2*noElmtLong,2*noElmtTran]); 
%YS = YS'; 
%fclose(f2); 
 
switch string 
    case 'SF1', str = 'SF1S.txt'; 
    case 'SF4', str = 'SF4S.txt'; 
    case 'SM1', str = 'SM1S.txt'; 
    otherwise, disp('Unknown Required Data in Shell') 
end; 
f3 = fopen(str,'r'); 
DataS = fscanf(f3,'%g',[2*noElmtLong,2*noElmtTran]); 
DataS = DataS'; 
fclose(f3); 
 
%Data = interp2(XS,YS,DataS,xi,yi,'spline'); 
%%Data = griddata(XS,YS,DataS,xi,yi,'cubic'); 
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if (yi<widthOH) 
    elmtSize = widthOH/noElmtOH/2; 
    index1 = fix(yi/elmtSize)+1; 
elseif (yi<(widthOH+S*(noGirder-1))) 
    elmtSize = S/noElmtG/2; 
    index1 = noElmtOH*2 + fix((yi-widthOH)/elmtSize) + 1;     
else 
    elmtSize = widthOH/noElmtOH/2; 
    index1 = noElmtOH*2 + noElmtG*(noGirder-1)*2 + fix((yi-widthOH-S*(noGirder-
1))/elmtSize) + 1; 
    if (index1>size(XS,1)) 
        index1 = size(XS,1); 
    end; 
end; 
Data = interp1(XS(index1,:),DataS(index1,:),xi,'spline'); 
 
 
 
%% Plot the surface at data point 
%nFig = 1; 
%figure(nFig); 
%meshc(XS,YS,DataS); 
%xlabel('X-Coordinate, ft.') 
%ylabel('Y-Coordinate, ft.') 
%switch string 
%case 'SF1', 
%    zlabel('SF1 in shell, in.kips') 
% title('Surface of SF1 data points in shell') 
%case 'SM1', 
%    zlabel('SM1 in shell, in.kips') 
% title('Surface of SM1 data points in shell') 
%otherwise, disp('Unknown Required Data in Beam') 
%end; 
%axis([0 lengthTotal 0 widthTotal -3 1]) 
% 
%% Plot the spline interpolation surface of shell SF1 or SM1 
%xinterval = 100; 
%yinterval = 50; 
%ysize = widthTotal/yinterval; 
%x1 = 0; 
%for i=1:noSpan 
% nFig = nFig+1; 
%    figure(nFig); 
%    sizeelmt = lengthSpan(i)/noElmtSpan(i); 
%    x1 = x1+sizeelmt/2; 
%    xsize = (lengthSpan(i)-sizeelmt)/xinterval; 
%    x2 = x1+lengthSpan(i)-sizeelmt; 
% [xi,yi] = meshgrid(x1:xsize:x2,0:ysize:widthTotal); 
%    Datatemp = interp2(XS,YS,DataS,xi,yi,'spline'); 
% meshc(xi,yi,Datatemp); 
% xlabel('X-Coordinate, ft.') 
% ylabel('Y-Coordinate, ft.') 
% switch string 
%    case 'SF1', 
%        zlabel('SF1 in shell, in.kips') 
%  title('Spline Interpolation surface of SF1 in shell') 
%    case 'SM1', 
%        zlabel('SM1 in shell, in.kips') 
%  title('Spline Interpolation surface of SM1 in shell') 
%    otherwise, disp('Unknown Required Data in Beam') 
%    end; 
% axis([0 lengthTotal 0 widthTotal -3 1]) 
% 
%    nFig = nFig+1; 
%    figure(nFig) 
%    Datatemp2 = griddata(XS,YS,DataS,xi,yi,'linear'); 
% meshc(xi,yi,Datatemp2); 
% xlabel('X-Coordinate, ft.') 
% ylabel('Y-Coordinate, ft.') 
% switch string 
%    case 'SF1', 
%        zlabel('SF1 in shell, in.kips') 
%  title('Griddata Interpolation surface of SF1 in shell') 
%    case 'SM1', 
%        zlabel('SM1 in shell, in.kips') 
%  title('Griddata Interpolation surface of SM1 in shell') 
%    otherwise, disp('Unknown Required Data in Beam') 
%    end; 
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% axis([0 lengthTotal 0 widthTotal -3 1]) 
% 
%     
%    x1 = x2+sizeelmt/2; 
%end; 
 

Program List of Loadposition.m 
 
function Loading_Position; 
%Input the span lengths of bidge and distance between second and third axial to get 
%the position of truck that produce maximum positive moment, max. neg. moment and 
%max. shear 
% - Same as 'loadposition3.m' 
 
%INPUT 
vDistance = 14;     % Distance between second and third axial (14-30 ft) 
span = 2; 
lengthSpan = [140,126];    % unit = ft. 
interval = 0.1;     % Each analysis, move truck "interval" ft to the right 
[recommend=0.1] 
%END INPUT 
 
 
%Start main program 
truckPosition = 14.05+vDistance;    % Position of front axial of truck 
[recommend=14.05+vDistance] 
 
maxV = 0; x1MaxV = 0; x2MaxV = 0; truckMaxV = 0; 
minV = 0; x1MinV = 0; x2MinV = 0; truckMinV = 0; 
maxM = 0; xMaxM = 0; truckMaxM = 0; 
minM = 0; xMinM = 0; truckMinM = 0; 
for i=1:span-1 
    for j=1:span-1 
        a(i,j) = 0; 
    end; 
    b(i) = 0; 
end; 
 
temp = 0; 
load(1,2) = 0; 
for i=1:span 
    temp = temp+lengthSpan(i); 
    load(i+1,2) = temp; 
end;   
lengthTotal = load(span+1,2);     
 
while (truckPosition<lengthTotal) 
    load(span+2,1) = -16; 
    load(span+2,2) = truckPosition-14-vDistance; 
    load(span+3,1) = -16; 
    load(span+3,2) = truckPosition-14; 
    load(span+4,1) = -4; 
    load(span+4,2) = truckPosition; 
     
    if (span~=1) 
        for i=1:span-1 
            for j=1:span-1 
                a(i,j) = Deflection(load(j+1,2),lengthTotal,load(i+1,2)); 
            end; 
            b(i) =  4*Deflection(load(span+4,2),lengthTotal,load(i+1,2)) + 
16*Deflection(load(span+3,2),lengthTotal,load(i+1,2)) + 
16*Deflection(load(span+2,2),lengthTotal,load(i+1,2)); 
        end; 
         
        R = GaussianElimination(a,b); 
        for i=1:span-1 
            load(i+1,1) = R(i); 
        end; 
    end; 
 
    mTemp = 0; 
 for i=1:span+4 
        if (i~=1 & i~=span+1) 
            mTemp = mTemp+load(i,1)*load(i,2); 
        end; 
 end; 
 load(span+1,1) = -mTemp/load(span+1,2); 
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 temp = 0; 
 for i=2:span+4 
     temp= temp+load(i,1); 
    end; 
 load(1,1) = -temp; 
 
 % Sort load 
 xSort(:,:) = load(:,:);         % variable 'xSort' is same as 'load' but sort in 
order of x 
 for i=2:span+4 
        for j=1:i-1 
            if (xSort(i,2)<xSort(j,2)) 
                temp = xSort(j,:); 
                xSort(j,:) = xSort(i,:); 
                xSort(i,:) = temp; 
            end; 
        end; 
 end; 
  
 for i=1:span+4 
        shearTemp  = 0; 
        momentTemp = 0; 
        for j=1:i 
            shearTemp  = shearTemp+xSort(j,1); 
            momentTemp = momentTemp+xSort(j,1)*(xSort(i,2)-xSort(j,2)); 
        end; 
        shear(i)  = shearTemp; 
        moment(i) = momentTemp; 
        if (shear(i)>maxV) 
            maxV = shear(i);         
            x1MaxV = xSort(i,2); 
            x2MaxV = xSort(i+1,2); 
            truckMaxV = truckPosition; 
        end; 
        if (shear(i)<minV) 
            minV = shear(i);         
            x1MinV = xSort(i,2); 
            x2MinV = xSort(i+1,2);  
            truckMinV = truckPosition; 
        end; 
        if (moment(i)>maxM) 
            maxM = moment(i);         
            xMaxM = xSort(i,2);    
            truckMaxM = truckPosition; 
        end; 
        if (moment(i)<minM) 
            minM = moment(i);         
            xMinM = xSort(i,2);   
            truckMinM = truckPosition; 
        end; 
 end; 
 
    truckPosition = truckPosition+interval; 
end;     
     
fprintf('\nINPUT:-\n'); 
fprintf('\n   Bridge span length = ');  
for i=1:span 
    fprintf('%5.2f  ',lengthSpan(i)); 
end; 
fprintf('ft.'); 
fprintf('\n   vDistance = %5.2f ft.\n',vDistance); 
fprintf('\nRESULT:-\n'); 
fprintf('\n   Maximum moment = %10.2f kips-in, at location x = %5.2f ft, when truck 
position = %6.2f ft\n',maxM*12,xMaxM,truckMaxM); 
fprintf('   Minimum moment = %10.2f kips-in, at location x = %5.2f ft, when truck 
position = %6.2f ft\n\n',minM*12,xMinM,truckMinM); 
fprintf('   Maximum shear  = %10.2f kips   , at location x = %5.2f - %5.2f ft, when truck 
position = %6.2f ft\n',  maxV,x1MaxV,x2MaxV,truckMaxV); 
fprintf('   Minimum shear  = %10.2f kips   , at location x = %5.2f - %5.2f ft, when truck 
position = %6.2f ft\n\n',minV,x1MinV,x2MinV,truckMinV); 
%End MAIN PROGRAM 
 
 
function [y] = Deflection(a,L,x); 
%Get the deflection of beam 
b = L-a; 
if (x<=a & x>=0) 
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    y = b*x*(L^2-x^2-b^2)/(6*L); 
elseif (x<=L) 
    y = b*(L/b*(x-a)^3+(L^2-b^2)*x-x^3)/(6*L); 
else 
    fprintf('Truck Position Error!'); 
end; 
 
 
function x = GaussianElimination(A,f); 
%Solve linear system of equations 
n = size(A,1); 
m = zeros(n,1); 
for k=1:n-1 
    m(k+1:n) = A(k+1:n,k)/A(k,k); 
    for i=k+1:n 
        A(i,k+1:n) = A(i,k+1:n)-m(i)*A(k,k+1:n); 
    end; 
    for j=k+1:n 
        f(j) = f(j)-m(j)*f(k); 
    end; 
end; 
U = triu(A);     
 
f(n) = f(n)/U(n,n); 
for k=n-1:-1:1 
    for j=1:k 
        f(j) = f(j)-U(j,k+1)*f(k+1); 
    end; 
    f(k) = f(k)/U(k,k); 
end; 
x = f; 
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Program List of location.m 
 
function Location(xLocation); 
%Input similar to "loadposition.m" but require the specific x-location 
%This function will find the truck position that produce the maximum moment and shear 
%         at single specific location 
%xLocation must be inside the bridge [0,lengthTotal] (ft) 
% - Same as 'location3.m' 
 
%INPUT 
vDistance = 14;     % Distance between second and third axial (14-30 ft) 
span = 1; 
lengthSpan = [102,102]; 
interval = 0.1;     % Each analysis, move truck "interval" ft to the right 
[recommend=0.1] 
%END INPUT 
 
 
%Start main program 
truckPosition = 14.05+vDistance;    % Position of front axial of truck 
[recommend=14.05+vDistance] 
 
maxV = 0; truckMaxV = 0; 
minV = 0; truckMinV = 0; 
maxM = 0; truckMaxM = 0; 
minM = 0; truckMinM = 0; 
for i=1:span-1 
    for j=1:span-1 
        a(i,j) = 0; 
    end; 
    b(i) = 0; 
end; 
 
temp = 0; 
load(1,2) = 0; 
for i=1:span 
    temp = temp+lengthSpan(i); 
    load(i+1,2) = temp; 
end;   
lengthTotal = load(span+1,2);     
 
if (xLocation>=0 & xLocation<=lengthTotal) 
 while (truckPosition<lengthTotal) 
        load(span+2,1) = -16; 
        load(span+2,2) = truckPosition-14-vDistance; 
        load(span+3,1) = -16; 
        load(span+3,2) = truckPosition-14; 
        load(span+4,1) = -4; 
        load(span+4,2) = truckPosition; 
         
        if (span~=1) 
            for i=1:span-1 
                for j=1:span-1 
                    a(i,j) = Deflection(load(j+1,2),lengthTotal,load(i+1,2)); 
                end; 
                b(i) =  4*Deflection(load(span+4,2),lengthTotal,load(i+1,2)) + 
16*Deflection(load(span+3,2),lengthTotal,load(i+1,2)) + 
16*Deflection(load(span+2,2),lengthTotal,load(i+1,2)); 
            end; 
             
            R = GaussianElimination(a,b); 
            for i=1:span-1 
                load(i+1,1) = R(i); 
            end; 
        end; 
  
        mTemp = 0; 
  for i=1:span+4 
            if (i~=1 & i~=span+1) 
                mTemp = mTemp+load(i,1)*load(i,2); 
            end; 
  end; 
  load(span+1,1) = -mTemp/load(span+1,2); 
  temp = 0; 
  for i=2:span+4 
      temp= temp+load(i,1); 
        end; 
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  load(1,1) = -temp; 
  
  % Sort load 
  xSort(:,:) = load(:,:);         % variable 'xSort' is same as 'load' but 
sort in order of x 
  for i=2:span+4 
            for j=1:i-1 
                if (xSort(i,2)<xSort(j,2)) 
                    temp = xSort(j,:); 
                    xSort(j,:) = xSort(i,:); 
                    xSort(i,:) = temp; 
                end; 
            end; 
  end; 
 
        index = 1; 
        shearTemp  = 0; 
        momentTemp = 0; 
        while (xSort(index,2)<xLocation) 
            shearTemp  = shearTemp+xSort(index,1); 
            momentTemp = momentTemp+xSort(index,1)*(xLocation-xSort(index,2)); 
            index = index+1; 
        end;     
        shear  = shearTemp; 
        moment = momentTemp; 
        if (shear>maxV) 
            maxV = shear;         
            truckMaxV = truckPosition; 
        end; 
        if (shear<minV) 
            minV = shear;         
            truckMinV = truckPosition; 
        end; 
        if (moment>maxM) 
            maxM = moment;         
            truckMaxM = truckPosition; 
        end; 
        if (moment<minM) 
            minM = moment;         
            truckMinM = truckPosition; 
        end; 
   
        truckPosition = truckPosition+interval; 
    end;     
else 
    fprintf('\n ********** ERROR ********** \n'); 
    fprintf('xLocation is outside the bridge\n\n'); 
end; 
     
fprintf('\nINPUT:-\n'); 
fprintf('\n   Bridge span length = ');  
for i=1:span 
    fprintf('%5.2f  ',lengthSpan(i)); 
end; 
fprintf('ft.'); 
fprintf('\n   vDistance = %5.2f ft.\n',vDistance); 
fprintf('   xLocation = %5.2f ft.\n',xLocation); 
fprintf('\nRESULT:-\n'); 
fprintf('\n   Maximum moment = %10.2f kips-in, when truck position = %6.2f 
ft\n',maxM*12,truckMaxM); 
fprintf('   Minimum moment = %10.2f kips-in, when truck position = %6.2f 
ft\n\n',minM*12,truckMinM); 
fprintf('   Maximum shear  = %10.2f kips   , when truck position = %6.2f ft\n',  
maxV,truckMaxV); 
fprintf('   Minimum shear  = %10.2f kips   , when truck position = %6.2f 
ft\n\n',minV,truckMinV); 
%End MAIN PROGRAM 
 
 
function [y] = Deflection(a,L,x); 
%Get the deflection of beam 
b = L-a; 
if (x<=a & x>=0) 
    y = b*x*(L^2-x^2-b^2)/(6*L); 
elseif (x<=L) 
    y = b*(L/b*(x-a)^3+(L^2-b^2)*x-x^3)/(6*L); 
else 
    fprintf('Truck Position Error!'); 
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end; 
 
 
function x = GaussianElimination(A,f); 
%Solve linear system of equations 
n = size(A,1); 
m = zeros(n,1); 
for k=1:n-1 
    m(k+1:n) = A(k+1:n,k)/A(k,k); 
    for i=k+1:n 
        A(i,k+1:n) = A(i,k+1:n)-m(i)*A(k,k+1:n); 
    end; 
    for j=k+1:n 
        f(j) = f(j)-m(j)*f(k); 
    end; 
end; 
U = triu(A);     
 
f(n) = f(n)/U(n,n); 
for k=n-1:-1:1 
    for j=1:k 
        f(j) = f(j)-U(j,k+1)*f(k+1); 
    end; 
    f(k) = f(k)/U(k,k); 
end; 
x = f; 
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